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Abstract 

 

In the fields of chemical graph theory, topological index is a type of a molecular descriptor that is 

calculated based on the graph of a chemical compound. In this paper, we investigate first and second 

reserve Zagreb indices, first and second reverse hyper-Zagreb indices, Sum connectivity reverse 

index, a product connectivity reverse index and  atomic bond connectivity reverse index, Reverse 

geometric arithemetic index for the snake and alternate snake graph are obtained. 

 

Keywords: Triangular snake graph, different topological indices. 

 

1. Introduction 

 

Topological indices enable us to collect information about algebraic structures and give us a 

mathematical approach to understand the properties of algebraic structures. With the help of 

topological indices, we can guess the properties of chemical compounds without performing 

experiments in wet lab. There are more than 148 topological indices in the literature, but none of 

them completely give all properties of under study compounds. Together, they do it to some extent; 

hence, there is always room to introduce new indices. Here, we will discuss some newly introduced 

first and second reverse Zagreb indices, hyper-Zagreb indices, [1–9] for snake graph and 

alternating snake graph 

A graph having no loop or multiple edges is known as simple graph. A molecular graph is a simple 

graph in which atoms and bonds are represented by vertex and edge sets, respectively. The vertex 

degree 𝑑𝑢(𝐺) is the number of edges attached to that vertex [10–16]. The maximum degree of 

vertex among the vertices of a graph is denoted by Δ(G). Kulli et al. [17] introduce the concept of 

reverse vertex degree 𝑐𝑢(𝐺), defined as 𝑐𝑢(𝐺) = ∆(𝐺) − 𝑑𝑢(𝐺) + 1 where 𝑑𝑢(𝐺) is the degree of 

he vertex u in the graph G. For convenience sake we represent 𝑐𝑢(𝐺) by 𝑐𝑢 

In discrete mathematics, graph theory in general is not only the study of different properties of 

objects but it also tells us about objects having same properties as investigating object. These 

properties of different objects are of main interest. Actually, topological indices are numeric 

quantities that tell us about the whole structure of graph. There are many topological indices 

[18, 19] that help us to study physical, chemical reactivities, and biological properties. Wiener, in 

1947 [20], firstly introduce the concept of topological index while working on boiling point. In 

particular, Hosoya polynomial [21] plays an important in the area of distance-based topological 

indices; we can find out Wiener index, hyper-Wiener index, and Tratch–Stankevich–Zefirov index 

by Hosoya polynomial [22, 23]. Other well-established polynomials are Zagreb and hyper-Zagreb 

polynomials introduced by Gao. 

 

The first and second reverse Zagreb indices are as follows: 

(i).𝐶𝑀1(𝐺) = 


+
)(GEuv

vu cc    (ii) 𝐶𝑀2(𝐺) = 
 )(GEuv

vucc  

 
1 *Assistant Professor, Department of Mathematics, Government First grade College, Malleshwaram, 18th cross, 

Bangalore- 560012 Karnataka kousalyaharish2015@gmail.com 



Reverse Zagreb And Reverse Hyper-Zagreb Indices Of Triangular Snake Graph And Alternate Triangular Snake Graph 

 

2420  

Now, the first and second reverse hyper-Zagreb indices are given as 

(iii).𝐻𝐶𝑀1(𝐺) = ( )
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2) Atom-bond connectivity reverse index and geometric arithmetic reverse index are abbreviated as 

ABCC index and GAC(G) and  defined as follows[32] 

(v) 𝐴𝐵𝐶𝐶(𝐺) = 
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3) Sum connectivity reverse index and product connectivity reverse index of a graph are represented 

as 

SC(G) and PC(G) and are given by 

(vii) 𝑆𝐶(𝐺) = 
 +)(

1
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               (viii) 𝑃𝐶(𝐺) = 
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Definition 2.1: Snake Graph and Alternate Triangular Snake graph 

The triangular snake Tn is obtained from the path Pn by replacing each edge of the path by a triangle 

C3. An alternate triangular snake A(Tn) is obtained from a path u1,u2,----,un by joining 

uiu i+1( alternately) to a new vertex vi. 

 

3.Main Results 

 

In this paper we compute Reverse Zagreb topological Indices of Triangular snake graph and 

alternate triangular snake graph 

 

Theorem 3.1: If  𝑮 ≅ 𝑻𝒏 is the Triangular snake graph, then 

(𝑖)𝐶𝑀1(𝐺) = 6n + 6       (𝑖𝑖)𝐶𝑀2(𝐺) = 3n + 17        (𝑖𝑖𝑖)𝐻𝐶𝑀1(𝐺) = 12𝑛 + 76 

(𝑖𝑣)𝐻𝐶𝑀2(𝐺) =  3𝑛 + 173             (𝑣)𝐴𝐵𝐶(𝐺) =
2√2

√3
+

4 

3
 

(𝑣𝑖)𝐺𝐴𝐶(𝐺) = √6 + 𝑛 − 3 + 2√3 + √2(𝑛 − 2)    (𝑣𝑖𝑖)𝑆𝐶(𝐺) = 1 +
2

√6
+

1

√2
(3𝑛 − 7) 

(𝑣𝑖𝑖𝑖)𝑃𝐶(𝐺) =  3𝑛 +
19

3
+  

2

√3
 

 

Name of the Graph Graph 

Snake Graph T7  

 

 

 

 

Alternate Snake Graph A(T7) 

 

 

 

 

 

 

Alternate Snake Graph A(T8)  
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Proof:  Let 𝑣1,𝑣2, … . 𝑣𝑛 be the vertices of the path 𝑃𝑛 of 𝑇𝑛 and 𝑣1
′, 𝑣2

′, … . 𝑣𝑛
′ be the tip vertices of 

triangle with base vertices as 𝑣𝑖,𝑣𝑖+1. There are two pairs of edges with degrees 2,4 ; (n-3) pairs of 

edges with degrees 4,4 and two pairs of edges with degrees 2,2 and 2(n-2) pairs of edges with 

degrees 2,4. Further  the reverse vertex degree is 𝑐𝑢(𝐺) = ∆(𝐺) − 𝑑𝑢(𝐺) + 1. Thus the number of 

edge pairs with their reverse vertex degrees are as given in the following table. 

 

No. of edge pairs Reverse vertex degrees 

2 3,1 

n-3 1,1 

2 3,3 

2(n-2) 3,1 

 

With these reverse vertex degree sequences, we have 

(i).𝐶𝑀1(𝐺) = 


+
)(GEuv

vu cc  

=  (2(3 + 1) + (𝑛 − 3)(1 + 1)) + (2(3 + 3) + 2(𝑛 − 2)(1 + 1)) = 6𝑛 + 6 

(ii) 𝐶𝑀2(𝐺) = 
 )(GEuv

vucc  

=  (2(3.1) + (𝑛 − 3)(1.1)) + (2(3.3) + 2(𝑛 − 2)(1.1)) = 3𝑛 + 17 

 

iii).𝐻𝐶𝑀1(𝐺) = ( )
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=  (2(3 + 1)2 + (𝑛 − 3)(1 + 1)2) + (2(3 + 3)2 + 2(𝑛 − 2)(1 + 1)2) = 12𝑛 + 76 
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=  (2(3.1)2 + (𝑛 − 3)(1.1)2) + (2(3.3)2 + 2(𝑛 − 2)(1.1)2) = 3𝑛 + 173 
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(viii) 𝑃𝐶(𝐺) = 
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Theorem 3.2: If  𝑮 ≅ 𝑨(𝑻𝒏) is the Alternate Triangular snake graph, then 

(𝑖)𝐶𝑀1(𝐺) = 5n − 1      (𝑖𝑖)𝐶𝑀2(𝐺) = 3n + 2        (𝑖𝑖𝑖)𝐻𝐶𝑀1(𝐺) = 13𝑛 + 11 

(𝑖𝑣)𝐻𝐶𝑀2(𝐺) =  5𝑛 + 18       (𝑣)𝐴𝐵𝐶(𝐺) =
𝑛

√2
 

(𝑣𝑖)𝐺𝐴𝐶(𝐺) =
2

√3
(𝑛 − 1) + 𝑛 − 3 + √2 (𝑣𝑖𝑖)𝑆𝐶(𝐺) =

1

√3
+

1

2
+

𝑛−2
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+

𝑛−3

√2
 

(𝑣𝑖𝑖𝑖)𝑃𝐶(𝐺) =  
𝑛 − 1

√2
+ 𝑛 − 2 

 

Proof: 

Case(i): For odd n 

Let 𝑣1,𝑣2, … . 𝑣𝑛 be the vertices of the path 𝑃𝑛 of 𝐴(𝑇𝑛) and 𝑣1
′, 𝑣2

′, … . 𝑣𝑛−1

2

′ be the tip vertices of 

triangle with base vertices as 𝑣2𝑖−1,𝑣2𝑖, 1 ≤ 𝑖 ≤
𝑛−1

2
. Thus there are 

𝑛−1

2
 𝑐3𝑠 in 𝐴(𝑇𝑛). Further there 

is  one edge pair each with reverse edge degrees as 2,1 ; 1,3 and 2,2  
𝑛+1

2
 pairs of edges with reverse 

edge degrees as 1,1, and (n-1) edge pairs of edges with reverse vertex degrees 2,1 . 

(i).𝐶𝑀1(𝐺) = 
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=  (1(2 + 1) + (𝑛 − 3)(1 + 1)) + 1(1 + 3) + 1(2 + 2) + (𝑛 − 2)(2 + 1) = 5𝑛 − 1 

(ii) 𝐶𝑀2(𝐺) = 
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=  (1(2.1) + (𝑛 − 3)(1.1)) + 1(1.3) + 1(2.2) + (𝑛 − 2)(2.1) = 3𝑛 + 2 
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Case(ii): For even n 

Let 𝑣1,𝑣2, … . 𝑣𝑛  be the vertices of the path 𝑃𝑛  of 𝐴(𝑇𝑛) and 𝑣1
′, 𝑣2

′, … . 𝑣𝑛

2

′  be the tip vertices of 

triangle with base vertices as 𝑣2𝑖−1,𝑣2𝑖, 1 ≤ 𝑖 ≤
𝑛−1

2
. Thus there are 

𝑛

2
 𝑐3𝑠 in 𝐴(𝑇𝑛). Further there are  

two edge pairs  with reverse edge degrees as 2,1; 2,2 and (n-2) pairs of edges with reverse edge 

degrees as 1,1; 2,1 

(i).𝐶𝑀1(𝐺) = 


+
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=  2(2 + 1) + (𝑛 − 2)(1 + 1) + 2(2 + 2) + (𝑛 − 2)(2 + 1) = 5𝑛 − 4 

(ii) 𝐶𝑀2(𝐺) = 
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=  2(2.1) + (𝑛 − 2)(1.1) + 2(2.2) + (𝑛 − 2)(2.1) = 3𝑛 + 6 
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3. Conclusion: 

 

In this paper, we computed first and second reverse Zagreb indices, first and second reverse hyper-

Zagreb indices, reverse GA index, reverse atomic bond connectivity index, first and second reverse 

Zagreb polynomials, and first and second reverse hyper-Zagreb polynomials for the crystallographic 

structure of molecules [24, 25]. Our results are important to guess the properties [26–28] and study 

the topology of the crystallographic structure of molecules and can be used in drug delivery [29–

31]. 
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