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Abstract: 

 

This review paper systematically examines the application of machine learning (ML) in the healthcare 

domain, aiming to provide a comprehensive overview of the current state, challenges, and future 

prospects. As the healthcare industry undergoes a transformative shift towards data-driven decision-

making, ML techniques have emerged as powerful tools for extracting valuable insights from 

complex medical datasets. 

The review adopts a systematic approach, categorizing the diverse applications of ML in healthcare 

into key themes. 

 

Keywords: EHR data, Machine Learning Models, trade-off of embedding a model in a healthcare 

workflow; Challenges in Machine Learnings. 

 

1.INTRODUCTION 

 

Studying patient populations to identify causes, risk factors, effective treat- ments, and subtypes of 

disease has long been the purview of epidemiology (Dicker et al., 2006). Epidemiological methods 

such as randomized con- trolled trials and case-control studies are the cornerstones of evidence-based 

medicine. However, such methods are time-consuming and expensive, may not be free of the 

biases they are designed to combat (Delgado-Rodr´ıguez and Llorca, 2004), and their results may 

not be applicable to real-world patient populations (Weng et al., 2014). Such studies are also difficult 

to exe- cute over large patient populations because of restrictive inclusion/exclusion criteria and the 

operational challenges of running large prospective studies that follow patients over long periods 

of time. Internationally, the adoption of electronic health records (EHRs) is increasing due to 

strategies and agen- cies that incentivize their use such as the Health Information for Economic 

and Clinical Health Act in the United States (Maxson et al., 2010), the National Agency for Health 

IT in Denmark, and the National eHealth Authority in India (Mossialos et al., 2016). As a result, 

methods that leverage EHRs to answer questions tackled by epidemiologists (Casey et al., 2016) 

and to increase precision in healthcare delivery are now commonplace (Parikh et al., 2016). 

Data analysis approaches broadly fall into the following categories: descriptive, exploratory, 

inferential, predictive, and causal (Leek and Peng, 2015). A descriptive analysis reports summaries 

of data without interpreta- tion and an exploratory analysis identifies associations between variables 

in a dataset. An inferential study quantifies the degree to which an observed association in a population 

will hold outside the dataset from which it was derived, and a predictive study attempts to quantify 

the probability of an out- come at the level of an individual. Finally, a causal analysis determines how 

changes in one variable affect another. It is crucial to define the type of question being asked 

in a given study to determine the type of data analysis that is appropriate to use in answering the 

question. 

Inferential analyses are widely used in clinical research. The primary goal of such studies is to 
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quantify how a change in one or more variables affects an observed outcome at a population level 

(Leek and Peng, 2015). Such analysis (referred to as the culture of data modeling by Breiman, 2001) 

assumes the existence of a model that produces observed outcomes from input variables and 

evaluates a model’s quality by measuring its goodness of fit to existing data. A model that has a good 

fit to existing data is considered adequately to define the process by which data are generated. 

Predictive analyses, on the other hand, aim to predict outcomes for indi- viduals (Leek and Peng, 

2015) by constructing a statistical model from observed data and using this model to generate a 

prediction for an individual based on their unique features. Predictive modeling is a type of 

algorithmic modeling (Breiman, 2001), which considers the process by which data are generated to 

be unknown (and perhaps unknowable). Such modeling approaches measure performance by metrics 

such as precision, recall, and calibration (Table 19.1), which quantify different notions of the 

frequency with which a model’s predictions are correct. 

Machine learning is the process of learning a good enough statistical model using observed data to 

predict outcomes or categorize observations in future data. Specifically, supervised machine learning 

methods train a model using observations on samples where the categories or predicted value of the 

outcome of interest are already known (a gold standard). The resulting model—which is often a 

penalized regression of some form—is typically applied to new samples to categorize or predict 

values of the outcome for previously unseen observations, and its performance evaluated by 

comparing predicted values to actual values for a set of test samples. Therefore, machine learning 

“lives” in the world of algorithmic modeling and should be evaluated as such. Regression models 

developed using machine learning methods cannot and should not be evaluated using criteria from 

the world of data modeling (Breiman, 2001). To do so would produce inaccurate assess- ments of a 

model’s performance for its intended task, potentially misleading users into incorrect interpretation 

of the model’s output. 

EHRs provide access to a large number and variety of variables that enable high-quality classification 

and prediction (Kennedy et al., 2013), while machine learning offers the methods to handle the large 

volumes of high-dimensional data that are typical in a healthcare setting. As a result, the application 

of machine learning to EHR data analysis is at the forefront of modern clinical informatics (Goldstein 

et al., 2016), fueling advances in both the science and practice of medicine. In the following 

sections, we present an overview of how machine learning has been applied in clinical settings 

and summarize the advantages it offers over traditional analysis methods and caveats when using 

machine learning in real-world settings. We describe the 

 

TABLE 1 Common Performance Measures Used to Evaluate 

Machine Learning Models 

Performance 

Measure 

Definition Formula or Plot 

Accuracy The number of correct 

classifications made by a 

model (true positives and 

true negatives) divided by the 

total number of predictions 

made 

A 5  TP 1 TN  TP 

1 FP 1 TN 1 FN 

Calibration A measure of how closely 

predicted probabilities for 

an outcome match the 

observed outcome in test 

data, e.g., the Brier score 

PN 

Brier score 5  1 ðpi 2 oiÞ 

N 

i51 

Discrimination A measure of how well a 

model discriminates between 

randomly selected true 

positive cases and true 

negative cases, usually 

measured as the area under 

the receiver operator curve 

(AUC)  
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Negative 

predictive value 

The total number of correct 

negative classifications made 

(true negatives) divided by 

the total number of negative 

classifications made (true 

negatives and false 

negatives) 

NPV 5   TN 

TN 1 FN 

Precision (also 

called positive 

predictive value) 

The total number of correct 

positive classifications made 

(true positives) divided by 

the total number of positive 

classifications made (true 

positives and false positives) 

P or PPV 5 TP
TP 

1 FP 

Recall (also 

called sensitivity 

or the true 

positive rate) 

The total number of correct 

positive classifications made 

(true positives) divided by 

the number of positive class 

members in the data (true 

positives and false negatives) 

R 5 TP
TP 

1 FN 

(Continued ) 

TABLE .1 (Continued) 

Performance 

Measure 

Definition Formula or Plot 

Specificity (also 

called the true 

negative rate) 

The total number of correct 

negative classifications made 

(true negatives) divided by 

the number of negative class 

members in the data (true 

negatives and false positives) 

S 5   TN 

TN 1 FP 

For a binary classifier that classifies data points to be a member of either a 

positive class or a negative class, the following definitions are used in the 

measure formulas: True positive (TP)— a correct classification that a data 

point is a member of the positive class. True negative (TN)—a correct 

classification that a data point is a member of the negative class. False 

positive (FP)—an incorrect classification that a data point is a member of the 

positive class. False negative (FN)—an incorrect classification that a data 

point is a member of the negative class. For a classifier that predicts the 

probability of an outcome, pi is the predicted probability of the outcome for 

data point i, and oi is the whether the outcome was observed for that data 

point or not. 

 

Methodological and operational challenges of using machine learning in research and practice. Lastly, 

we offer our perspective on opportunities for machine learning in medicine and applications that have 

the highest potential for impacting health and healthcare delivery. 

 

2.FROM SCORING SYSTEMS TO STATISTICAL MODELS:LITERATURE 

REVIEW 

 

In medicine, the use of scoring systems to categorize patients into different risk strata is quite 

common. For example, the Charlson Comorbidity Index (CCI) (Charlson et al., 1987) quantifies an 

individual’s burden of disease and corresponding 1-year mortality risk. The widely used APACHE 

score (Haddad et al., 2008) quantifies the severity of disease for patients admitted to intensive care 

units. The Apgar score summarizes physiological measures as an indicator of infant morbidity 

(Casey et al., 2001). A recent entrant to risk scoring systems is the Rothman Index (Finlay et al., 

2013), which is a score that quantifies risk of death based on vital signs, nursing assessments, and 

laboratory results. Disease-specific scoring systems have also been developed, such as the Dutch 

Lipid Clinic Network (DLCN) criteria for diag- nosing “unlikely,” “possible,” “probable,” or 

“definite” familial hypercholes- terolemia (FH) (European Association for Cardiovascular Prevention 

and Rehabilitation et al., 2011). 
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Scoring systems have the advantage of being easily interpretable and are usually straightforward to 

administer, but may not perform well at accurately reflecting the risk for individuals. For example, 

the DLCN criteria for FH have specificity ranging from 5.9% to 89.4% and sensitivity ranging from 

41.5% to 99.3% for predicting the results of a genetic test for the disease (Damgaard et al., 2005). 

However, due to the association between age and several features of “definite” FH, the scores are 

more likely to misclassify younger individuals (Besseling et al., 2016). Similarly, the APACHE 

scores were found to have excellent discrimination, but poor calibration (Haddad et al., 2008) 

meaning that while the APACHE score could separate the high- risk group from the low-risk group, 

the outcome probabilities for specific individuals were inaccurate. This has implications for deciding 

how to use such scores in practice. For example, the excellent discrimination of the APACHE score 

makes it highly useful to decide whether to transfer a patient out of an ICU or not. However, it is 

inappropriate to use the score to quan- tify that an individual patient will need to be resuscitated with 

a 90% probability. 

 

Given such limitations of traditional scoring systems, approaches that use machine learning to build 

well-calibrated statistical models that correctly classify individuals and provide accurate estimates of 

risk are growing in popularity. We have, for example, recently developed a statistical model—a 

penalized logistic regression model—to classify patients as “unlikely,” “pos- sible,” “probable,” or 

“definite” FH based on the same criteria as the DLCN, but learning the variable weights from EHR 

data. Our model augments the DLCN criteria with variables that quantify health system utilization 

and sum- mary statistics of cholesterol levels and achieves an AUC of 95% with 82% precision and 

86% recall. Other approaches have yielded comparable results for predicting FH (Weng et al., 2015; 

Besseling et al., 2016) and have signif- icant potential cost savings by reducing unnecessary genetic 

testing and simultaneously ensuring that true cases are not missed. 

 

Using a similar approach, researchers in Canada updated and reevaluated the CCI with more recent 

administrative data and larger more diverse patient populations, and without relying on chart review 

(Quan et al., 2011). Rather than replacing the CCI altogether with a statistical model, they used 

statisti- cal models to assign new weights to comorbidities used in the CCI. Doing so resulted in a 

decrease in the number of conditions included in the Index from 17 to 12. This simpler index achieved 

comparable performance to the CCI, based on evaluation with data from six economically developed 

countries. Other risk models learned using EHR data include PhysiScore (Saria et al., 2010), a system 

that predicts preterm infant morbidity using similar physio- logical features as the Apgar score, and 

TrewScore (Henry et al., 2015), an early warning system for sepsis. Both achieved improved 

performance com- pared to traditional point-based scoring systems. Numerous other examples exist 

for models that predict sepsis (Gultepe et al., 2014), delayed wound healing (Jung et al., 2016), risk 

of being depressed (Huang et al., 2014), and cardiovascular adverse events (Ross et al., 2016). 

 

These studies demonstrate that using machine learning approaches to do the “heavy lifting” of 

deriving appropriate variable weights (and in many cases, performing automated variable selection) 

can produce a model that outperforms the corresponding expert-derived scoring system and can 

update existing scoring models as data change over time (Jung and Shah, 2015). Proper use of 

machine learning methods that can handle large numbers of sparsely measured variables and that can 

identify variables with the most sig- nificant effect on model performance are crucial to the success 

of models built from heterogeneous and often messy EHR data. 

 

3. CHALLENGES IN BUILDING AND DEPLOYING EHR-BASED MODELS 

 

The challenges inherent in retrospectively analyzing EHR data collected for administrative and 

clinical purposes to do research have been well character- ized (Hersh et al., 2013). They include 

biases due to using data from indivi- duals generated only when they visit their healthcare provider 

(and are therefore likely ill), incomplete records (and the related issue of missing data violating the 

missing-at-random assumption), loss to follow-up, the modifica- tion of records for billing purposes, 
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and potential errors introduced to a patient’s record as they move through a healthcare system such 

as inaccurate coding or data entry (Table 19.2). Statistical methods commonly employed to address 

these difficulties include imputation to fill in missing data and propensity score based matching, 

weighting or stratification to select patient samples as controls (Schneeweiss et al., 2009; Brookhart 

et al., 2010; Toh et al., 2011; Patorno et al., 2013). These challenges and biases that affect ret- 

rospective studies also impact the use of machine learning to build models based on EHR data. The 

effectiveness of methods that minimize biases in retrospective studies when applied to high-

dimensional EHR data is an area of active research. 

 

A recent systematic review of published research on developing predic- tive models using EHR data 

(Goldstein et al., 2016) found that most predic- tive models developed for healthcare applications 

did not take advantage of the wealth of EHR data available. For example, only about half of the 60 

studies that predicted a clinical outcome used information beyond diagnosis codes to define the 

outcome, and only eight studies used longitudinal mea- surements. The task of accurately ascertaining 

whether a specific outcome occurred (or not) is called electronic phenotyping (Richesson et al., 

2016) and is the most important step in any statistical modeling exercise done with EHR data. A 

related study (Wei et al., 2016) found that in 4 out of 10 medi- cal conditions examined, the medical 

records of less than 10% of sampled patients known to have the condition contained the International 

Classification of Diseases diagnosis codes necessary to identify the condi- tion. For the remainder, 

data derived from clinical notes or medication records (just two of many possible EHR-derived 

sources) were required to determine the diagnosis. In light of the importance of accurate phenotype 

determination—both for the outcome as well as for the presence of comorbidities—several 

research efforts are focused on employing machine learning methods for the purpose of phenotyping 

itself (Agarwal et al., 2016; Halpern et al., 2016). 

 
TABLE 2 Types of Errors in EHR and Claims Data, and Possible Causes 

Type of Error Definition Possible Causes 

Missing data A patient’s record is 

incomplete and has gaps in 

time when they received 

healthcare but it was not 

recorded 

— Patient does not seek care 

because they lack healthcare 

insurance coverage 

— Loss to follow-up—a 

patient leaves their insurer or 

stops seeing their healthcare 

provider 

— Lag time or mistake in 

insurance claim processing 

— Error when populating 

insurance claims database 

— Incomplete record 

linkage—records belonging 

to a single patient are not 

linked 

Missing data not 

missing at 

random 

The reason data is missing from 

a patient’s record is related to 

unobserved environmental or 

patient- specific factors 

— Patient does not seek 

healthcare because they are 

very sick or healthy 

— Healthcare provider 

misdiagnoses a patient, 

makes an error when writing 

a note for a patient visit, or 

does not include all 

information in their note 

— Hospital/clinic staff 

miscodes diagnoses and/or 

medical procedures, or does 

not file insurance claim 

Outcome or 

exposure 

misclassification 

Incorrect labeling of patients 

who have a disease or do not, 

or who had an exposure (e.g., a 

medical treatment, a risk 

factor for a disease) or did not 

 

 

Another significant issue faced by researchers using machine learning to derive insights from EHR 
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data is that of external validity or generalizability (Iezzoni, 1999)—the performance of learned 

models at sites other than the that which sourced the data used for training. One prevailing opinion 

is that models not validated on data from an external site (or sites) are not useful, and that models 

lacking external validity have failed in their task. Such thinking affects model design decisions and 

evaluation; for example, a model with fewer variables is often considered more generalizable, and 

therefore more useable, than one with more variables. We posit that one of the benefits of machine 

learning is that a model can be trained with data from any local site and evaluated using data from 

that site itself. Therefore, if a model achieves sufficient performance at a local site then it has achieved 

its pur- pose. So the discussion should be about sharing the model building workflow to retrain a 

model at a new site, rather than about “external validity.” Indeed, learning a model using site-specific 

data and updating its parameters as a dataset changes over time will produce a model that is best 

suited for predic- tion at that site and with that data (Lee and Maslove, 2015). The success of such an 

approach across multiple sites (Peck et al., 2013) is evidence that the model building approach is 

valid. 

The success of building and deploying a statistical model at a new site rests on the availability and 

consistent representation of data across sites. The Observational Health Data Sciences and 

Informatics (OHDSI) network is an international collaboration of observational health researchers 

that has developed a Common Data Model (CDM) for EHR data currently used to structure hundreds 

of millions of patient records from more than 50 sites in 12 countries. A query to a CDM-compliant 

database to construct a cohort at one site can be deployed at any other OHDSI site, without 

modification. Such portability has already facilitated large-scale research into treatment pathways 

(Hripcsak et al., 2016) and presents the opportunity to develop sta- tistical models that are portable 

across sites. Researchers can share the work- flow used to construct and train a model, such that it 

can be retrained using data from a new site and deployed locally. 

In addition to technical challenges around data models, external validity, and the need to use multiple 

data types, operational challenges also exist for the construction and deployment of a statistical model 

in a clinical setting. These challenges include data access, availability of personnel with the nec- 

essary skills to develop a model and interpret its output, and, perhaps most essential, a system for 

integrating the model into the healthcare practitioner’s workflow it is designed to inform. For 

effective integration into the clinical workflow it is essential that the model’s output be actionable, 

that is, that there are concrete interventions that can be executed in response to the model output. 

For example, if a model predicts a high risk of delayed wound healing, a physician can opt to begin 

hyperbaric oxygen therapy early (Jung et al., 2016). The availability of an effective intervention is a 

key consider- ation in assessing the utility of a predictive model built using EHR data. 

The success of models deployed for practice management therefore depends on more than just model 

performance—additional factors such as the cost of deploying the model and the effectiveness of any 

action triggered by the model are also necessary to consider. For example, factors to consider include 

the size of the patient population where intervention is possible, the prevalence of the outcome being 

predicted, the expected number of patients with the predicted outcome, the cost savings per patient 

exposed to the intervention, the estimated cost of implementing the intervention, the total target 

savings, and the number of patients subjected to the intervention required to meet that target. If 

deploying a model is expensive, or the affected population too small to result in cost savings for the 

practice in question, the model will not be “useful” even if its performance as measured in terms of 

precision, recall and calibration is exceptional. 

 

4.OPPORTUNITIES FOR MACHINE LEARNING IN HEALTHCARE 

 

Despite the   methodological   challenges   of   working   with   EHR   data and that researchers have 

yet to take full advantage of the universe of EHR-derived variables available for predictive modeling, 

there are many exciting opportunities for machine learning to improve health and healthcare delivery. 

Models that stratify patients into different risk categories to inform practice management have 

enormous potential impact on healthcare value (see Chapter 8: Health Information Technology and 

Value) (Parikh et al., 2016), and methods that can predict outcomes for individual patients bring 



 

2454 

— 

— 

clinical practice one step closer to precision medicine (see Chapter 11: Bioinformatics and Precision 

Medicine) (Pencina and Peterson, 2016). Identifying high-cost and high-risk patients (Bates et al., 

2014) in time to attempt targeted intervention will become increasingly necessary as healthcare 

providers take on the financial risk of treating their patients. 

Machine learning approaches have already been used to characterize and predict a variety of health 

risks. Recent work in our group using penalized logistic regression to identify patients with 

undiagnosed peripheral artery dis- ease and predict their mortality risk found that such an approach 

outperforms a simpler stepwise logistic regression in terms of accuracy, calibration, and net 

reclassification (Ross et al., 2016). Such predictive models have been implemented in medical 

practice, resulting in more efficient and better qual- ity care. For example, a predictive model to 

stratify newborns’ risk of sepsis decreased antibiotic prescribing by 33% 60% when deployed by 

Kaiser Permanente (Escobar et al., 2014). Recent work to learn reference ranges for pediatric heart 

and respiratory rates from EHR data resulted in a decrease in heart rate alarms in a pediatric acute 

care unit following implementation of the learned ranges in unit monitors (Goel et al., 2015), 

potentially reducing alarm fatigue. 

Machine learning has also been applied to hospital and practice manage- ment, to streamline 

operations and improve patient outcomes. For example, models have been developed to predict 

demand for emergency department beds (Peck et al., 2012) and elective surgery case volume (Tiwari 

et al., 2014), to inform hospital staffing decisions. The Veterans Health Administration’s Clinical 

Data Warehouse, which houses clinical data for more than 20 million patients, was used to develop 

models for risk of hospitalization and death of individual patients with AUC values ranging from 

0.81 to 0.87 (Fihn et al., 2014). The risk scores calculated by these models are presented to Patient-

Aligned Care Teams and are accessed by more than 1200 healthcare providers per month as part 

of their routine prac- tice. In another successful example, a 30-day readmission risk score for heart 

failure patients at the Parkland Health and Hospital System, called e-Score, was implemented in a 

prospective study to assess the effectiveness of a tar- geted intervention (involving intensive follow-

up care) in patients with a high predicted risk of readmission (Amarasingham et al., 2013). The study 

found that the intervention, triggered by the predicted risk score, resulted in significantly reduced 30-

day readmission compared to a control group. These examples demonstrate that predictive models 

can be deployed in healthcare settings and used effectively to improve resource allocation and patient 

care. 

Finally, machine learning is not a panacea, and not all things that can be predicted will be actionable. 

For example, we may be able to accurately pre- dict progression from stage 3 to stage 4 chronic 

renal failure. In the absence of effective treatment options—besides dialysis and kidney transplant—

the prediction does not do much to improve the management of the patient. As another extreme 

example, imagine a model that predicts that treatment of a particular cancer (say lung cancer) will be 

ineffective based on the genotypic profile of the tumor. Would we withhold treatment based on such 

a predic- tion? Such extreme situations aside, there is ample middle ground where the use of 

predictive modeling in healthcare will enable proactive treatment, more efficient use of resources, 

and deliver better care at lower cost. Multiple other industries—such as finance, retail, aviation, 

web commerce, and election campaigning—have made the transition to incorporate machine 

learning, and the resulting predictive models, into their respective workflows. It is time for healthcare 

to make that transition. 

 

5.CONCLUSIONS 

 

Machine learning techniques applied to EHR data can generate actionable insights, from improving 

upon patient risk score systems, to predicting the onset of disease, to streamlining hospital operations. 

Statistical models that leverage the variety and richness of EHR-derived data (as opposed to using a 

small set of expert-selected and/or traditionally used features) are still rela- tively rare and offer an 

exciting avenue for further research. New types of data, such as from wearables, bring their own 

opportunities and challenges. Challenges in effectively using machine learning methods include the 

avail- ability of personnel with the skills to build, evaluate, and apply learned mod- els, as well as the 
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assessing the real-world cost benefit trade-off of embedding a model in a healthcare workflow. 

As machine learning using EHR data touches a large number of healthcare problems, it will motivate 

applied research in statistics and computer science. Best practices informed by the success (and 

failure) of machine learning models will move clinical informatics forward as a field and continue to 

transform medicine and the delivery of clinical care. 
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