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Abstract 

With the approach of the Fourth Industrial Revolution, information has become a powerful resource for society 

and the economy to operate and develop. In particular, as customized algorithms have become an essential 

service in most systems, the importance of big data-based information processing technology is also deepening. 

However, human languages have extreme variability compared to programming languages, so interpretation and 

processing are difficult. Efficient measures need to be taken to extract the desired information from these 

unstructured data. Therefore, in this paper, we identify and develop a more effective analytical system by 

classifying papers that are subdivided into five categories within the topic of 'technique' into LSTM and LDA 

techniques after learning. 
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1. Introduction 

Since the Fourth Industrial Revolution, the world has changed rapidly, and technologies such as big data 

analysis, artificial intelligence, and natural language processing have become the basis for information 

processing. Among these, natural language processing boasts a much higher level of difficulty than in other 

fields. This is because human languages have extreme variability compared to programming languages. The 

programming language has a strict grammatical structure that is intuitive, clear, and easy to process. By 

comparison, human language is ambiguous, and the meaning changes continuously over time, making the 

process complicated and relatively less accurate. However, most of the data recently utilized are unstructured 

data that do not have a certain format, such as e-mail, SNS, etc. In order to extract and process useful 

information from these data, there is an increasing need to efficiently analyze and classify those resources. 

Natural language processing refers to the process by which computers interpret human language. The areas 

in which this is utilized vary widely. It is possible to analyze the emotions revealed in posts on SNS and other 

sites, and it can be seen commonly in translators. Furthermore, it is also used to analyze documents and classify 

them into specific categories. Document classification can also be done in a variety of ways. Among them, 

many well-known methods are Latent Dirichlet Allocation (LDA) and Long Short Term Memory (LSTM), a 

type of Recurrent Neural Networks (RNNs). LDA is a type of unsupervised learning that classifies document 

content, while LSTM is supervised learning using a neural network. To compare the two performances, in this 

study, we classify papers that are subdivided into five categories again within a category called 'technique'. 

This paper consists of the following. Chapter 2 describes the relevant research, Chapter 3 describes the 

implementation of the system, and Chapter 4, conclusion according to the results of the implementation. 
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2. Related Work 

2.1 Text preprocessing 

The process of preprocessing text before analyzing a document is essential. In the case of English, there is a 

‘lowering technique’ that converts capital letters into lowercase letters. When processing data, computers can 

distinguish uppercase and lowercase letters, and thus need to unify texts. In addition, there is a ‘lemmatizing 

technique’ for regularizing refractive words, i.e., extracting basic dictionary words. For example, when there are 

words such as ‘studies’, ‘studying’, ‘studies’, the root verb ‘study’ is extracted from these. In addition, plural 

nouns can be replaced with singular nouns. Punctuation also affects data analysis, so preprocessing is necessary. 

Finally, we need to remove the words that do not have a special meaning, called ‘stopwords’, such as ‘and’, 

‘you’, and ‘not’. 

2.2 LSTM 

Long Short-Term Memory (LSTM) is a deep learning technique used during natural language processing, 

especially for sentence learning, similar to RNN techniques that remember previously entered data and assign 

weights when multiple data are entered in order. However, LSTM is a model (Bengio et al., 1994) designed to 

solve the long-term dependency problem of RNNs (which using only one recursive layer), thus controlling 

information transfer and propagation through four layers: Forget, Input, Update, and Output. Thanks to these 

algorithms, LSTM has the advantage of being able to arrange given words sequentially to be predictable in 

advance, and is actively applied to language models that need previous data to process with current information. 

2.3 LDA 

Text mining process is required to derive meaningful information from unstructured data. Among text 

mining techniques, topic modeling is a method of extracting information from documents and then collecting 

words containing similar topics to find embedded topics in texts and the most algorithm of this is the Latent 

Dirichlet Allocation (LDA). LDA is also a model that can generate arbitrary documents, given the probability 

distribution of topics for a given document and the probability distribution of words for each topic, by repeating 

the probability choice of the topic and the probability selection of words present in the selected topic. LDA 

algorithms have been most commonly used in recent studies utilizing topic modeling, requiring text 

preprocessing to detect meaningful patterns in large text. 

3. System Implementation 

 

Fig 1: System Diagram 

As shown in Figure 1, the system in this paper is proceeded by analyzing the results after data collection, 

data preprocessing, and data injection into LSTM and LDA. 

1. Big Data Processing 

1 import spacy 

import gensim 

import pandas as pd 

from textblob import Word 



Seong-Yeon Park, Hyun-Kyung Noh, Seung-Yeon Hwang, Jae-Kon Oh, Jeong-Joon Kim 

1226 

from nltk.corpus import stopwords 

from gensim.parsing.preprocessing import STOPWORDS 

2 file = 'total.xlsx' 

df = pd.read_excel(file, 'Sheet1', header=0, 

engine='openpyxl') 

print(df.category.value_counts()) 

df 

Fig 2: Call Modules and Collected Data 

Networks and Communications 3417 

Information Systems, Search, Information Retrieval, Database Systems, Data Mining, Data Science 3376 

Artificial Intelligence, Machine Learning, Computer Vision, Natural language processing 3240 

Web, Mobile and Multimedia Technologies 3127 

Security and Privacy 3092 

Name: category, dtype: int64 

 

 
 

Fig 3: Collected Data Data Frame 

Figure 2 is the process of 1) importing of all the modules needed and 2) calling the collected data. Figure 3 

shows the information used in the file. There are 3,417 papers in ‘Networks and Communications’ category, 

3,376 in ‘Information Systems, Information Retrieval, Database Systems, Data Mining, Data Science’ category, 

3,240 papers in ‘Artificial Intelligence, Machine Learning, Computer Vision, Natural language processing’, 

3,127 in ‘Web, Mobile and Multimedia Technologies’, and 3,092 in ‘Security and Privacy’ categor─ a total of 

16,252 categories and abstracts of papers. 

1 def singularize(words): 

    word = Word(words) 

    word = word.lemmatize() 

    return word 

2 def make_bigrams(texts): 

    return bigram_mod[texts] 

3 def make_trigrams(texts): 

    return trigram_mod[bigram_mod[texts]] 

4 ss = spacy.load('en_core_web_sm') 

sp_stopwords = ss.Defaults.stop_words 

gensim_stopwords = STOPWORDS 

stopwords = stopwords.words('english') 

stopwords.extend(sp_stopwords) 
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stopwords.extend(gensim_stopwords) 

stop_words = list(set(stopwords)) 

Fig 4: Data Preprocessing Preparation 

Figure 4 is a preparation process for data preprocessing. 1) Using the textblob module in ‘Word’ class, 

lemmatize each word to create a function that changes the plural form to singular form. Bigram refers to two 

frequently attached words in a document, and Trigram refers to three frequently attached words. 2) Bigram_mod 

and 3) trigram_mod functions are made to extract bigrams and trigrams. 4) Finally, create a set of stopwords. 

 # title + abstract 

df['data'] = df['title'] + ' ' + df['abstract'] 

 

# lowercase 

df['data'] = df['data'].str.lower() 

 

# tokenize 

df['data'] = df['data'].map(gensim.utils.simple_preprocess) 

 

# remove punctuations 

df['data'] = df['data'].apply(lambda x: [item.replace("[^a-zA-Z]", "") for item in x]) 

 

# remove too short words (less than 3 letters) 

df['data'] = df['data'].apply(lambda x: [w for w in x if len(w) > 3]) 

 

texts = df['data'] 

texts = texts.apply(lambda x: [item for item in x if item not in stop_words]) 

texts = texts.apply(lambda x: [singularize(item) for item in x])  

 

bigram = gensim.models.Phrases(texts, min_count=5, threshold=100) 

bigram_mod = gensim.models.phrases.Phraser(bigram) 

texts = texts.map(make_bigrams) 

 

trigram = gensim.models.Phrases(texts, threshold=100) 

trigram_mod = gensim.models.phrases.Phraser(trigram) 

texts = texts.map(make_trigrams) 

Fig 5: Data Preprocessing 

Figure 5 is a process of data preprocessing. First, combine the title and abstract and add them to a new 

column called 'data'. Then replace the uppercase letters to lowercase letters, and tokenize the sentence into 

words. Remove punctuation marks and words of less than three letters. Extract only the words that are not in the 

following set of stopwords and change the plural to singular with the singularize function. Then combine the 

words with make_bigram and make_trigram written in Figure 4. The sentence that completes the process is 

shown in Figure 6. 

['replicated', 'computation', 'result', 'report', 'holistic', 'approach', 'collaborative', 'workload', 'execution', 

'volunteer', 'cloud', 'holistic', 'approach', 'collaborative', 'workload', 'execution', 'volunteer', 'cloud', 'proposes', 
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'novel', 'approach', 'task', 'scheduling', 'volunteer', 'cloud', 'volunteer', 'cloud', 'decentralized', 'cloud', 'system', 

'based', 'collaborative', 'task', 'execution', 'client', 'voluntarily', 'share', 'unused', 'computational', 'resource', 

'simulation', 'based', 'statistical', 'analysis', 'technique', 'particular', 'statistical', 'model', 'checking', 'author', 

'approach', 'outperform', 'existing', 'distributed', 'task', 'scheduling', 'algorithm', 'case', 'computation', 'intensive', 

'workload', 'analysis', 'considered', 'realistic', 'workload', 'benchmark', 'provided', 'google', 'replicated', 

'computation', 'result', 'report', 'focus', 'prototypical', 'tool', 'implementation', 'article', 'perform', 'analysis', 

'software', 'straightforward', 'install', 'representative', 'experimental', 'result', 'article', 'reproduced', 'reasonable', 

'time', 'standard', 'laptop'] 

Fig 6: First Value of ‘data’ Column 

1 clean = [] 

for text in texts: 

    sentence = ' '.join(text) 

    clean.append(sentence) 

2 new_df = pd.DataFrame(columns=['category', 'content']) 

 

new_df['category'] = df.category 

new_df['content'] = clean 

new_df.to_excel('LSTM.xlsx', index=False) 

Fig 7: Preprocessed Data to New Data Frame 

Finally, Figure 7 shows 1) data stored in the form of a list are combined into a single string, and 2) stored as 

a new Excel file. 

2. LSTM 

We now proceed with classifying the above preprocessed data with LSTM. 

1 import pandas as pd 

import numpy as np 

import tensorflow as tf 

from collections import Counter 

import matplotlib.pyplot as plt 

from tensorflow.keras.optimizers import Adam 

from sklearn.preprocessing import LabelEncoder 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.utils import to_categorical 

from sklearn.model_selection import train_test_split 

from tensorflow.keras.preprocessing.text import Tokenizer 

from tensorflow.keras.preprocessing.sequence import pad_sequences 

from tensorflow.keras.layers import Dense, Flatten, LSTM, Dropout, Activation, Embedding, 

Bidirectional, Conv1D, MaxPooling1D 

2 file = 'LSTM.xlsx' 

df = pd.read_excel(file, header=0, engine='openpyxl') 

 

content = df.content 
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label = df.category 

Fig 8: LSTM Preparation 

Modules and file required for LSTM are imported. When implementing code with supervised learning, such 

as LSTM, it is necessary to change the label of the data to an integer. This can be solved by the LabelEncoder 

function as shown in Figure 9. 

 categories = np.unique(np.array(label)) 

 

label_encoder = LabelEncoder() 

label = label_encoder.fit_transform(label) 

 

for i in categories: 

    labeled = label_encoder.transform([i]) 

    print(labeled, '<--', i) 

Fig 9: Label Encoder 

After converting categories to integers, we can see that the results have changed as follows. 

[0] <-- Artificial Intelligence, Machine Learning, Computer Vision, Natural language processing 

[1] <-- Information Systems, Search, Information Retrieval, Database Systems, Data Mining, Data Science 

[2] <-- Networks and Communications 

[3] <-- Security and Privacy 

[4] <-- Web, Mobile and Multimedia Technologies 

Fig 10: Result of Label Encoder 

The following train_test_split function divides documents into learning sets and test sets. 

 X_train, X_test, Y_train, Y_test = train_test_split(content,label, shuffle=True, random_state=100, 

test_size=0.1) 

Fig 11: Split Train Set and Test Set 

As a result of separating the test set to 0.1, the train set is divided into 14,626 and the test set into 1,626. 

 tokenizer = Tokenizer(filters='#') 

tokenizer.fit_on_texts(X_train) 

 

threshold = 2 

total_cnt = len(tokenizer.word_index) # number of unique words 

rare_cnt = 0 # words appearing less than threshold 

total_freq = 0 # total word frequencies in train set 

rare_freq = 0 # total frequency of appearance of words less than threshold 

 

# word: key, number of appearance: value 

for key, value in tokenizer.word_counts.items(): 

    total_freq = total_freq + value 
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    if (value < threshold): 

        rare_cnt = rare_cnt + 1 

        rare_freq = rare_freq + value 

 

vocab_size = total_cnt - rare_cnt + 2 

 

print('size of vocabulary :',total_cnt) 

print('words appearing only once (rare words) :', rare_cnt) 

print('percentage of rare words in a word set: ', (rare_cnt / total_cnt)*100) 

print('percentage of rare word appearance to total appearance frequency: ', (rare_freq / 

total_freq)*100) 

print('word set size :',vocab_size) 

Fig 12: Tokenizing and Frequency of Words 

size of vocabulary : 29556 

words appearing only once (rare words) : 8565 

percentage of rare words in a word set: 28.978887535525782 

percentage of rare word appearance to total appearance frequency: 0.6329127954793843 

word set size : 20993 

Fig 13: Frequency of Words Result 

Figure 12 is a code for analyzing the frequency of words, and the results are shown in Figure 13. There are 

27,703 unique words and 8.472 sparse  words, and the final number of words to be used is the number of unique 

words minus the sparse words. The reason for subtracting sparse words is that they are not related to other 

words, which can be nothing but noise. 

1 tokenizer = Tokenizer(vocab_size, oov_token='OOV', filters='#')  

tokenizer.fit_on_texts(X_train) 

X_train = tokenizer.texts_to_sequences(X_train) 

X_test = tokenizer.texts_to_sequences(X_test) 

2 print('maximum length of document :', max(len(l) for l in X_train)) 

print('average length of document :', sum(map(len, X_train))/len(X_train)) 

plt.hist([len(s) for s in X_train], bins=50) 

plt.xlabel('length of samples') 

plt.ylabel('number of samples') 

plt.show() 

3 def below_threshold_len(max_len, nested_list): 

    cnt = 0 

    for s in nested_list: 

        if(len(s) <= max_len): 

            cnt = cnt + 1 

    print('percentage of samples with length %s or less out of total samples: %s' % (max_len, (cnt / 

len(nested_list))*100)) 
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max_len = 300 

below_threshold_len(max_len, X_train) 

Fig 14: Encoding of Train Set, Test Set and Graphing of Document Information 

1) The following is the process of encoding the train set and the test set into vectors. It selects frequently 

used words, builds indexes accordingly with the fit_on_texts function, and converts the words into a sequence of 

numbers using the text_to_sequences function. 2) Also, a graph is printed to know the number of documents and 

the length of each document. 3) With a maximum length of 300, documents not exceeding this value, i.e., all 

documents, are included in the analysis. The results are shown in Figure 15. 

maximum length of document : 285 

average length of document : 92.52475044441405 

 
percentage of samples with length 300 or less out of total samples : 100.0 

Fig 15: Result of Fig. 14 (2) and (3) 

1 X_train = pad_sequences(X_train, maxlen = max_len) 

X_test = pad_sequences(X_test, maxlen = max_len) 

2 Y_train = to_categorical(Y_train) 

Y_test = to_categorical(Y_test) 

Fig 16: Pad Sequence and One-Hot Encoding 

Figure 16 shows 1) using the pad_sequences function from the sequence of integers (from Figure 14) that the 

padding 0 is placed in the remaining text relative to the longest text and transformed into a sequence of equal 

lengths. 2) In case of label, we transform the results of Label Encoder in Figure 9 into vectors using one-hot 

encoding techniques. 

 model = Sequential() 

model.add(Embedding(vocab_size, 64, input_length=max_len) 

model.add(Dropout(0.5)) 

model.add(Conv1D(64, 5, padding='valid', activation='relu', strides=1)) 

model.add(Dropout(0.5)) 

model.add(MaxPooling1D(pool_size=4)) 

model.add(Dropout(0.5)) 

model.add((Bidirectional(LSTM(100, recurrent_dropout=0.5)))) 

model.add(Dense(5, activation='softmax')) 

model.summary() 

Fig 17: Neural Network Model 
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Figure 17 shows the steps to model generation. Embedding Layer works to make words into dense vectors. It 

then extracts features with the Conv1D Layer and MaxPooling Layer, and uses the LSTM Layer to store 

information over the long term. At this time, the Bidirectional Layer allows forward as well as backward 

propagation. Finally, since it is classified into five categories, enter 5 as an argument in the Dense Layer and the 

activation function softmax. The generated model is shown in Figure 18. 

 
 

Fig 18: Created Model 

We then run the train the model 20 times with Adam optimizer and store the results of each learning in a 

history variable. 

 optimizer = Adam(lr=0.001, decay=1e-6) 

model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) 

history = model.fit(X_train, Y_train, epochs=20, validation_data=(X_test, Y_test), batch_size=60) 

Fig. 19. Train Set Fitting 

 

Fig. 20. Train Set Fitting 

For code visualizing Figure 20, see Figure 21. 

1 test_loss = history.history['val_loss'] 
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train_loss = history.history['loss'] 

 

x_len = np.arange(len(train_loss)) 

plt.plot(x_len, test_loss, marker='.', c='red', label='test set loss') 

plt.plot(x_len, train_loss, marker='.', c='blue', label='train set loss') 

 

plt.legend(loc='upper right') 

plt.grid() 

plt.xlabel('epoch') 

plt.ylabel('loss') 

plt.show() 

2 test_acc = history.history['val_accuracy'] 

train_acc = history.history['accuracy'] 

 

x_len = np.arange(len(train_loss)) 

plt.plot(x_len, test_acc, marker='.', c='red', label='test set accuracy') 

plt.plot(x_len, train_acc, marker='.', c='blue', label='train set accuracy') 

 

plt.legend(loc='upper right') 

plt.grid() 

plt.xlabel('epoch') 

plt.ylabel('accuracy') 

plt.show() 

Fig. 21. Graphing Loss and Accuracy of Train Set and Test Set 
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Fig. 22. Result of Loss and Accuracy 

The results from Figure 22 show a typical overfitting graph despite training only 20 times, and its accuracy is 

very low. Based on the process, it may be caused by incorrect model creation or less data used for learning. 

3. LDA 

1 import os 

import gensim 

import pyLDAvis 

import pandas as pd 

from gensim import corpora 

from pyLDAvis import gensim as gensimvis 

2 file = 'LSTM.xlsx' 

df = pd.read_excel(file, 'Sheet1', header=0, engine='openpyxl') 

Fig. 23. LDA Preparation 

Call the modules required by the LDA, and  retrieve preprocessed data. 

 texts = df.content.str.split() 

 

dictionary = corpora.Dictionary(texts) 

corpus = [dictionary.doc2bow(text) for text in texts] 

 

num_tokens = len(dictionary) 

print('Number of unique tokens: %d' % num_tokens) 

 

num_doc = len(corpus) 

print('Number of documents: %d' % num_doc) 

Fig. 24. Data Encoding and Word Frequency 

Number of unique tokens: 30924 

Number of documents: 16252 

Fig. 25. Number of Unique Tokens and Documents 

After each ID is given to the word, the frequency of word appearance in each document is determined. The 

result of the code in Figure 24 is in Figure 25. 
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 NUM_TOPICS = 5 

 

ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=NUM_TOPICS, 

id2word=dictionary, passes=120) 

Fig. 26. Training LDA Model 

The next step is to train the LDA model. The document data (corpus) and the number of categories are 

passed by arguments, where corpus specifies 120 per batch. 

 pyLDAvis.enable_notebook() 

vis = pyLDAvis.gensim.prepare(ldamodel, corpus, dictionary) 

pyLDAvis.save_html(vis, 'LDA_topic.html') 

pyLDAvis.display(vis) 

Fig. 27. Visualization of LDA Model 

Figure 27 shows the code for visualizing LDA. Each circle represents five categories, and when clicking on 

one circle shows information about the subject of the circle. A red bar graph represents the number of 

appearances of terms generated by a given topic, while a blue bar graph represents the overall frequency of each 

term within a document. If the circle is not selected, it shows the most important 30 words in the document, and 

the lambda value in the upper right corner determines the weight given to the probability of the term in the 

category. The closer the lambda value is to zero, the more words specialized for that topic. 

 

Fig. 28. No Topic Selected 

 

Fig. 29. Topic 1 Selected 
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Fig. 30. Topic 2 Selected 

 

Fig. 31. Topic 3 Selected 

 

Fig. 32. Topic 4 Selected 
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Fig. 33. Topic 5 Selected 

The LDA only clusters documents and does not specify what category they are. However, if the clustering is 

a well-established model, users can fully predict it. Topic 1 uses words such as ‘security’, ‘privacy’, and 

‘authenticaiton’, thus one can predict that the category is ‘Security and Privacy’. Topic 2 corresponds to ‘Web, 

Mobile and Multimedia Technologies’ because words such as ‘social_medium’, ‘twitter’, and ‘news’ appear. 

One can know that Topic 3 corresponds to ‘Artificial Intelligence, Machine Learning, Computer Vision, Natural 

Language Processing’ category through words like ‘image’, ‘classification’ and ‘recognition’. Topic 4 shows 

‘Networks and Communications’ since ‘network’, ‘bandwidth’, and ‘wireless’ can be seen. Lastly, with the 

words ‘graph’, ‘algorithm’ and ‘shortest_path’, one can see Topic 5 is about ‘Information Systems, Search, 

Information Retrieval, Database Systems, Data Mining, Data Science’. 

4. Conclusion 

In this study, we compared the performance of LSTM and LDA with natural language processing 

techniques. LSTM specifies which text and to what extent a text is predicted, but it is challenging and quite 

difficult to make direct constructions of the model. In contrast, LDA requires users to match clustered text 

directly to topics, but not much effort is needed when making a model. 
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