
Seong-Yeon Park, Hyun-Kyung Noh, Seung-Yeon Hwang, Jae-Kon Oh, Jeong-Joon Kim

1224

Turkish Online Journal of Qualitative Inquiry (TOJQI)

Volume 12, Issue 6, June 2021: 1224-1237

Classification of Texts Using LSTM and LDA

Seong-Yeon Parka, Hyun-Kyung Nohb, Seung-Yeon Hwangc, Jae-Kon Ohd, Jeong-Joon Kime

aDept of Computer Engineering, Korea Polytechnic University
bDept of Computer Engineering, Korea Polytechnic University

cDept of Computer Engineering, University of Anyang
dDirector of JINWOO INDUSTRIAL SYSTEM CO.,LTD

eDept of Software, University of Anyang

Abstract

With the approach of the Fourth Industrial Revolution, information has become a powerful resource for society

and the economy to operate and develop. In particular, as customized algorithms have become an essential

service in most systems, the importance of big data-based information processing technology is also deepening.

However, human languages have extreme variability compared to programming languages, so interpretation and

processing are difficult. Efficient measures need to be taken to extract the desired information from these

unstructured data. Therefore, in this paper, we identify and develop a more effective analytical system by

classifying papers that are subdivided into five categories within the topic of 'technique' into LSTM and LDA

techniques after learning.

Keywords: LSTM, LDA, NLP, Text Classfication

1. Introduction

Since the Fourth Industrial Revolution, the world has changed rapidly, and technologies such as big data

analysis, artificial intelligence, and natural language processing have become the basis for information

processing. Among these, natural language processing boasts a much higher level of difficulty than in other

fields. This is because human languages have extreme variability compared to programming languages. The

programming language has a strict grammatical structure that is intuitive, clear, and easy to process. By

comparison, human language is ambiguous, and the meaning changes continuously over time, making the

process complicated and relatively less accurate. However, most of the data recently utilized are unstructured

data that do not have a certain format, such as e-mail, SNS, etc. In order to extract and process useful

information from these data, there is an increasing need to efficiently analyze and classify those resources.

Natural language processing refers to the process by which computers interpret human language. The areas

in which this is utilized vary widely. It is possible to analyze the emotions revealed in posts on SNS and other

sites, and it can be seen commonly in translators. Furthermore, it is also used to analyze documents and classify

them into specific categories. Document classification can also be done in a variety of ways. Among them,

many well-known methods are Latent Dirichlet Allocation (LDA) and Long Short Term Memory (LSTM), a

type of Recurrent Neural Networks (RNNs). LDA is a type of unsupervised learning that classifies document

content, while LSTM is supervised learning using a neural network. To compare the two performances, in this

study, we classify papers that are subdivided into five categories again within a category called 'technique'.

This paper consists of the following. Chapter 2 describes the relevant research, Chapter 3 describes the

implementation of the system, and Chapter 4, conclusion according to the results of the implementation.

Classification of Texts Using LSTM and LDA

1225

2. Related Work

2.1 Text preprocessing

The process of preprocessing text before analyzing a document is essential. In the case of English, there is a

‘lowering technique’ that converts capital letters into lowercase letters. When processing data, computers can

distinguish uppercase and lowercase letters, and thus need to unify texts. In addition, there is a ‘lemmatizing

technique’ for regularizing refractive words, i.e., extracting basic dictionary words. For example, when there are

words such as ‘studies’, ‘studying’, ‘studies’, the root verb ‘study’ is extracted from these. In addition, plural

nouns can be replaced with singular nouns. Punctuation also affects data analysis, so preprocessing is necessary.

Finally, we need to remove the words that do not have a special meaning, called ‘stopwords’, such as ‘and’,

‘you’, and ‘not’.

2.2 LSTM

Long Short-Term Memory (LSTM) is a deep learning technique used during natural language processing,

especially for sentence learning, similar to RNN techniques that remember previously entered data and assign

weights when multiple data are entered in order. However, LSTM is a model (Bengio et al., 1994) designed to

solve the long-term dependency problem of RNNs (which using only one recursive layer), thus controlling

information transfer and propagation through four layers: Forget, Input, Update, and Output. Thanks to these

algorithms, LSTM has the advantage of being able to arrange given words sequentially to be predictable in

advance, and is actively applied to language models that need previous data to process with current information.

2.3 LDA

Text mining process is required to derive meaningful information from unstructured data. Among text

mining techniques, topic modeling is a method of extracting information from documents and then collecting

words containing similar topics to find embedded topics in texts and the most algorithm of this is the Latent

Dirichlet Allocation (LDA). LDA is also a model that can generate arbitrary documents, given the probability

distribution of topics for a given document and the probability distribution of words for each topic, by repeating

the probability choice of the topic and the probability selection of words present in the selected topic. LDA

algorithms have been most commonly used in recent studies utilizing topic modeling, requiring text

preprocessing to detect meaningful patterns in large text.

3. System Implementation

Fig 1: System Diagram

As shown in Figure 1, the system in this paper is proceeded by analyzing the results after data collection,

data preprocessing, and data injection into LSTM and LDA.

1. Big Data Processing

1 import spacy

import gensim

import pandas as pd

from textblob import Word

Seong-Yeon Park, Hyun-Kyung Noh, Seung-Yeon Hwang, Jae-Kon Oh, Jeong-Joon Kim

1226

from nltk.corpus import stopwords

from gensim.parsing.preprocessing import STOPWORDS

2 file = 'total.xlsx'

df = pd.read_excel(file, 'Sheet1', header=0,

engine='openpyxl')

print(df.category.value_counts())

df

Fig 2: Call Modules and Collected Data

Networks and Communications 3417

Information Systems, Search, Information Retrieval, Database Systems, Data Mining, Data Science 3376

Artificial Intelligence, Machine Learning, Computer Vision, Natural language processing 3240

Web, Mobile and Multimedia Technologies 3127

Security and Privacy 3092

Name: category, dtype: int64

Fig 3: Collected Data Data Frame

Figure 2 is the process of 1) importing of all the modules needed and 2) calling the collected data. Figure 3

shows the information used in the file. There are 3,417 papers in ‘Networks and Communications’ category,

3,376 in ‘Information Systems, Information Retrieval, Database Systems, Data Mining, Data Science’ category,

3,240 papers in ‘Artificial Intelligence, Machine Learning, Computer Vision, Natural language processing’,

3,127 in ‘Web, Mobile and Multimedia Technologies’, and 3,092 in ‘Security and Privacy’ categor─ a total of

16,252 categories and abstracts of papers.

1 def singularize(words):

 word = Word(words)

 word = word.lemmatize()

 return word

2 def make_bigrams(texts):

 return bigram_mod[texts]

3 def make_trigrams(texts):

 return trigram_mod[bigram_mod[texts]]

4 ss = spacy.load('en_core_web_sm')

sp_stopwords = ss.Defaults.stop_words

gensim_stopwords = STOPWORDS

stopwords = stopwords.words('english')

stopwords.extend(sp_stopwords)

Classification of Texts Using LSTM and LDA

1227

stopwords.extend(gensim_stopwords)

stop_words = list(set(stopwords))

Fig 4: Data Preprocessing Preparation

Figure 4 is a preparation process for data preprocessing. 1) Using the textblob module in ‘Word’ class,

lemmatize each word to create a function that changes the plural form to singular form. Bigram refers to two

frequently attached words in a document, and Trigram refers to three frequently attached words. 2) Bigram_mod

and 3) trigram_mod functions are made to extract bigrams and trigrams. 4) Finally, create a set of stopwords.

 # title + abstract

df['data'] = df['title'] + ' ' + df['abstract']

lowercase

df['data'] = df['data'].str.lower()

tokenize

df['data'] = df['data'].map(gensim.utils.simple_preprocess)

remove punctuations

df['data'] = df['data'].apply(lambda x: [item.replace("[^a-zA-Z]", "") for item in x])

remove too short words (less than 3 letters)

df['data'] = df['data'].apply(lambda x: [w for w in x if len(w) > 3])

texts = df['data']

texts = texts.apply(lambda x: [item for item in x if item not in stop_words])

texts = texts.apply(lambda x: [singularize(item) for item in x])

bigram = gensim.models.Phrases(texts, min_count=5, threshold=100)

bigram_mod = gensim.models.phrases.Phraser(bigram)

texts = texts.map(make_bigrams)

trigram = gensim.models.Phrases(texts, threshold=100)

trigram_mod = gensim.models.phrases.Phraser(trigram)

texts = texts.map(make_trigrams)

Fig 5: Data Preprocessing

Figure 5 is a process of data preprocessing. First, combine the title and abstract and add them to a new

column called 'data'. Then replace the uppercase letters to lowercase letters, and tokenize the sentence into

words. Remove punctuation marks and words of less than three letters. Extract only the words that are not in the

following set of stopwords and change the plural to singular with the singularize function. Then combine the

words with make_bigram and make_trigram written in Figure 4. The sentence that completes the process is

shown in Figure 6.

['replicated', 'computation', 'result', 'report', 'holistic', 'approach', 'collaborative', 'workload', 'execution',

'volunteer', 'cloud', 'holistic', 'approach', 'collaborative', 'workload', 'execution', 'volunteer', 'cloud', 'proposes',

Seong-Yeon Park, Hyun-Kyung Noh, Seung-Yeon Hwang, Jae-Kon Oh, Jeong-Joon Kim

1228

'novel', 'approach', 'task', 'scheduling', 'volunteer', 'cloud', 'volunteer', 'cloud', 'decentralized', 'cloud', 'system',

'based', 'collaborative', 'task', 'execution', 'client', 'voluntarily', 'share', 'unused', 'computational', 'resource',

'simulation', 'based', 'statistical', 'analysis', 'technique', 'particular', 'statistical', 'model', 'checking', 'author',

'approach', 'outperform', 'existing', 'distributed', 'task', 'scheduling', 'algorithm', 'case', 'computation', 'intensive',

'workload', 'analysis', 'considered', 'realistic', 'workload', 'benchmark', 'provided', 'google', 'replicated',

'computation', 'result', 'report', 'focus', 'prototypical', 'tool', 'implementation', 'article', 'perform', 'analysis',

'software', 'straightforward', 'install', 'representative', 'experimental', 'result', 'article', 'reproduced', 'reasonable',

'time', 'standard', 'laptop']

Fig 6: First Value of ‘data’ Column

1 clean = []

for text in texts:

 sentence = ' '.join(text)

 clean.append(sentence)

2 new_df = pd.DataFrame(columns=['category', 'content'])

new_df['category'] = df.category

new_df['content'] = clean

new_df.to_excel('LSTM.xlsx', index=False)

Fig 7: Preprocessed Data to New Data Frame

Finally, Figure 7 shows 1) data stored in the form of a list are combined into a single string, and 2) stored as

a new Excel file.

2. LSTM

We now proceed with classifying the above preprocessed data with LSTM.

1 import pandas as pd

import numpy as np

import tensorflow as tf

from collections import Counter

import matplotlib.pyplot as plt

from tensorflow.keras.optimizers import Adam

from sklearn.preprocessing import LabelEncoder

from tensorflow.keras.models import Sequential

from tensorflow.keras.utils import to_categorical

from sklearn.model_selection import train_test_split

from tensorflow.keras.preprocessing.text import Tokenizer

from tensorflow.keras.preprocessing.sequence import pad_sequences

from tensorflow.keras.layers import Dense, Flatten, LSTM, Dropout, Activation, Embedding,

Bidirectional, Conv1D, MaxPooling1D

2 file = 'LSTM.xlsx'

df = pd.read_excel(file, header=0, engine='openpyxl')

content = df.content

Classification of Texts Using LSTM and LDA

1229

label = df.category

Fig 8: LSTM Preparation

Modules and file required for LSTM are imported. When implementing code with supervised learning, such

as LSTM, it is necessary to change the label of the data to an integer. This can be solved by the LabelEncoder

function as shown in Figure 9.

 categories = np.unique(np.array(label))

label_encoder = LabelEncoder()

label = label_encoder.fit_transform(label)

for i in categories:

 labeled = label_encoder.transform([i])

 print(labeled, '<--', i)

Fig 9: Label Encoder

After converting categories to integers, we can see that the results have changed as follows.

[0] <-- Artificial Intelligence, Machine Learning, Computer Vision, Natural language processing

[1] <-- Information Systems, Search, Information Retrieval, Database Systems, Data Mining, Data Science

[2] <-- Networks and Communications

[3] <-- Security and Privacy

[4] <-- Web, Mobile and Multimedia Technologies

Fig 10: Result of Label Encoder

The following train_test_split function divides documents into learning sets and test sets.

 X_train, X_test, Y_train, Y_test = train_test_split(content,label, shuffle=True, random_state=100,

test_size=0.1)

Fig 11: Split Train Set and Test Set

As a result of separating the test set to 0.1, the train set is divided into 14,626 and the test set into 1,626.

 tokenizer = Tokenizer(filters='#')

tokenizer.fit_on_texts(X_train)

threshold = 2

total_cnt = len(tokenizer.word_index) # number of unique words

rare_cnt = 0 # words appearing less than threshold

total_freq = 0 # total word frequencies in train set

rare_freq = 0 # total frequency of appearance of words less than threshold

word: key, number of appearance: value

for key, value in tokenizer.word_counts.items():

 total_freq = total_freq + value

Seong-Yeon Park, Hyun-Kyung Noh, Seung-Yeon Hwang, Jae-Kon Oh, Jeong-Joon Kim

1230

 if (value < threshold):

 rare_cnt = rare_cnt + 1

 rare_freq = rare_freq + value

vocab_size = total_cnt - rare_cnt + 2

print('size of vocabulary :',total_cnt)

print('words appearing only once (rare words) :', rare_cnt)

print('percentage of rare words in a word set: ', (rare_cnt / total_cnt)*100)

print('percentage of rare word appearance to total appearance frequency: ', (rare_freq /

total_freq)*100)

print('word set size :',vocab_size)

Fig 12: Tokenizing and Frequency of Words

size of vocabulary : 29556

words appearing only once (rare words) : 8565

percentage of rare words in a word set: 28.978887535525782

percentage of rare word appearance to total appearance frequency: 0.6329127954793843

word set size : 20993

Fig 13: Frequency of Words Result

Figure 12 is a code for analyzing the frequency of words, and the results are shown in Figure 13. There are

27,703 unique words and 8.472 sparse words, and the final number of words to be used is the number of unique

words minus the sparse words. The reason for subtracting sparse words is that they are not related to other

words, which can be nothing but noise.

1 tokenizer = Tokenizer(vocab_size, oov_token='OOV', filters='#')

tokenizer.fit_on_texts(X_train)

X_train = tokenizer.texts_to_sequences(X_train)

X_test = tokenizer.texts_to_sequences(X_test)

2 print('maximum length of document :', max(len(l) for l in X_train))

print('average length of document :', sum(map(len, X_train))/len(X_train))

plt.hist([len(s) for s in X_train], bins=50)

plt.xlabel('length of samples')

plt.ylabel('number of samples')

plt.show()

3 def below_threshold_len(max_len, nested_list):

 cnt = 0

 for s in nested_list:

 if(len(s) <= max_len):

 cnt = cnt + 1

 print('percentage of samples with length %s or less out of total samples: %s' % (max_len, (cnt /

len(nested_list))*100))

Classification of Texts Using LSTM and LDA

1231

max_len = 300

below_threshold_len(max_len, X_train)

Fig 14: Encoding of Train Set, Test Set and Graphing of Document Information

1) The following is the process of encoding the train set and the test set into vectors. It selects frequently

used words, builds indexes accordingly with the fit_on_texts function, and converts the words into a sequence of

numbers using the text_to_sequences function. 2) Also, a graph is printed to know the number of documents and

the length of each document. 3) With a maximum length of 300, documents not exceeding this value, i.e., all

documents, are included in the analysis. The results are shown in Figure 15.

maximum length of document : 285

average length of document : 92.52475044441405

percentage of samples with length 300 or less out of total samples : 100.0

Fig 15: Result of Fig. 14 (2) and (3)

1 X_train = pad_sequences(X_train, maxlen = max_len)

X_test = pad_sequences(X_test, maxlen = max_len)

2 Y_train = to_categorical(Y_train)

Y_test = to_categorical(Y_test)

Fig 16: Pad Sequence and One-Hot Encoding

Figure 16 shows 1) using the pad_sequences function from the sequence of integers (from Figure 14) that the

padding 0 is placed in the remaining text relative to the longest text and transformed into a sequence of equal

lengths. 2) In case of label, we transform the results of Label Encoder in Figure 9 into vectors using one-hot

encoding techniques.

 model = Sequential()

model.add(Embedding(vocab_size, 64, input_length=max_len)

model.add(Dropout(0.5))

model.add(Conv1D(64, 5, padding='valid', activation='relu', strides=1))

model.add(Dropout(0.5))

model.add(MaxPooling1D(pool_size=4))

model.add(Dropout(0.5))

model.add((Bidirectional(LSTM(100, recurrent_dropout=0.5))))

model.add(Dense(5, activation='softmax'))

model.summary()

Fig 17: Neural Network Model

Seong-Yeon Park, Hyun-Kyung Noh, Seung-Yeon Hwang, Jae-Kon Oh, Jeong-Joon Kim

1232

Figure 17 shows the steps to model generation. Embedding Layer works to make words into dense vectors. It

then extracts features with the Conv1D Layer and MaxPooling Layer, and uses the LSTM Layer to store

information over the long term. At this time, the Bidirectional Layer allows forward as well as backward

propagation. Finally, since it is classified into five categories, enter 5 as an argument in the Dense Layer and the

activation function softmax. The generated model is shown in Figure 18.

Fig 18: Created Model

We then run the train the model 20 times with Adam optimizer and store the results of each learning in a

history variable.

 optimizer = Adam(lr=0.001, decay=1e-6)

model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy'])

history = model.fit(X_train, Y_train, epochs=20, validation_data=(X_test, Y_test), batch_size=60)

Fig. 19. Train Set Fitting

Fig. 20. Train Set Fitting

For code visualizing Figure 20, see Figure 21.

1 test_loss = history.history['val_loss']

Classification of Texts Using LSTM and LDA

1233

train_loss = history.history['loss']

x_len = np.arange(len(train_loss))

plt.plot(x_len, test_loss, marker='.', c='red', label='test set loss')

plt.plot(x_len, train_loss, marker='.', c='blue', label='train set loss')

plt.legend(loc='upper right')

plt.grid()

plt.xlabel('epoch')

plt.ylabel('loss')

plt.show()

2 test_acc = history.history['val_accuracy']

train_acc = history.history['accuracy']

x_len = np.arange(len(train_loss))

plt.plot(x_len, test_acc, marker='.', c='red', label='test set accuracy')

plt.plot(x_len, train_acc, marker='.', c='blue', label='train set accuracy')

plt.legend(loc='upper right')

plt.grid()

plt.xlabel('epoch')

plt.ylabel('accuracy')

plt.show()

Fig. 21. Graphing Loss and Accuracy of Train Set and Test Set

Seong-Yeon Park, Hyun-Kyung Noh, Seung-Yeon Hwang, Jae-Kon Oh, Jeong-Joon Kim

1234

Fig. 22. Result of Loss and Accuracy

The results from Figure 22 show a typical overfitting graph despite training only 20 times, and its accuracy is

very low. Based on the process, it may be caused by incorrect model creation or less data used for learning.

3. LDA

1 import os

import gensim

import pyLDAvis

import pandas as pd

from gensim import corpora

from pyLDAvis import gensim as gensimvis

2 file = 'LSTM.xlsx'

df = pd.read_excel(file, 'Sheet1', header=0, engine='openpyxl')

Fig. 23. LDA Preparation

Call the modules required by the LDA, and retrieve preprocessed data.

 texts = df.content.str.split()

dictionary = corpora.Dictionary(texts)

corpus = [dictionary.doc2bow(text) for text in texts]

num_tokens = len(dictionary)

print('Number of unique tokens: %d' % num_tokens)

num_doc = len(corpus)

print('Number of documents: %d' % num_doc)

Fig. 24. Data Encoding and Word Frequency

Number of unique tokens: 30924

Number of documents: 16252

Fig. 25. Number of Unique Tokens and Documents

After each ID is given to the word, the frequency of word appearance in each document is determined. The

result of the code in Figure 24 is in Figure 25.

Classification of Texts Using LSTM and LDA

1235

 NUM_TOPICS = 5

ldamodel = gensim.models.ldamodel.LdaModel(corpus, num_topics=NUM_TOPICS,

id2word=dictionary, passes=120)

Fig. 26. Training LDA Model

The next step is to train the LDA model. The document data (corpus) and the number of categories are

passed by arguments, where corpus specifies 120 per batch.

 pyLDAvis.enable_notebook()

vis = pyLDAvis.gensim.prepare(ldamodel, corpus, dictionary)

pyLDAvis.save_html(vis, 'LDA_topic.html')

pyLDAvis.display(vis)

Fig. 27. Visualization of LDA Model

Figure 27 shows the code for visualizing LDA. Each circle represents five categories, and when clicking on

one circle shows information about the subject of the circle. A red bar graph represents the number of

appearances of terms generated by a given topic, while a blue bar graph represents the overall frequency of each

term within a document. If the circle is not selected, it shows the most important 30 words in the document, and

the lambda value in the upper right corner determines the weight given to the probability of the term in the

category. The closer the lambda value is to zero, the more words specialized for that topic.

Fig. 28. No Topic Selected

Fig. 29. Topic 1 Selected

Seong-Yeon Park, Hyun-Kyung Noh, Seung-Yeon Hwang, Jae-Kon Oh, Jeong-Joon Kim

1236

Fig. 30. Topic 2 Selected

Fig. 31. Topic 3 Selected

Fig. 32. Topic 4 Selected

Classification of Texts Using LSTM and LDA

1237

Fig. 33. Topic 5 Selected

The LDA only clusters documents and does not specify what category they are. However, if the clustering is

a well-established model, users can fully predict it. Topic 1 uses words such as ‘security’, ‘privacy’, and

‘authenticaiton’, thus one can predict that the category is ‘Security and Privacy’. Topic 2 corresponds to ‘Web,

Mobile and Multimedia Technologies’ because words such as ‘social_medium’, ‘twitter’, and ‘news’ appear.

One can know that Topic 3 corresponds to ‘Artificial Intelligence, Machine Learning, Computer Vision, Natural

Language Processing’ category through words like ‘image’, ‘classification’ and ‘recognition’. Topic 4 shows

‘Networks and Communications’ since ‘network’, ‘bandwidth’, and ‘wireless’ can be seen. Lastly, with the

words ‘graph’, ‘algorithm’ and ‘shortest_path’, one can see Topic 5 is about ‘Information Systems, Search,

Information Retrieval, Database Systems, Data Mining, Data Science’.

4. Conclusion

In this study, we compared the performance of LSTM and LDA with natural language processing

techniques. LSTM specifies which text and to what extent a text is predicted, but it is challenging and quite

difficult to make direct constructions of the model. In contrast, LDA requires users to match clustered text

directly to topics, but not much effort is needed when making a model.

References

[1] “Intelligent Records and Archives Management That Applies Artificial Intelligence,” Journal of Korean

Society of Archives and Records Management, vol. 17, no. 4, pp. 225–250, Nov. 2017.

[2] Kang Min-young. " Design and Implementation of Personal Talent Assessment System Based on Text

Mining" Domestic Master's thesis Gachon University, 2014. Gyeonggi-do

[3] H. Park and K. Kim, “Sentiment Analysis of Movie Review Using Integrated CNN-LSTM Mode,”

Korea Intelligent Information Systems Society, vol. 25, no. 4, pp. 141–154, Dec. 2019.

[4] Oh Young-taek, Kim Min-tae, and Kim Woo-joo (2019). Korean Movie-review Sentiment Analysis

Using Parallel Stacked Bidirectional LSTM Model. Journal of Korean Institute Information Scientists

and Engineers,

46(1), 45-49.

[5] Seo Yang-Mo. “Analysis of Prediction Accuracy of Fine Dust Concentration for Seoul Region Using

LSTM Model”, University of Sejong, 2019. Seoul

[6] S. Ahn, Y. Chung, J. Lee, and J. Yang, “Korean Sentence Generation Using Phoneme-Level LSTM

Language Model,” Korea Intelligent Information Systems Society, vol. 23, no. 2, pp. 71–88, Jun. 2017.

[7] Park Ja-hyun and Song Min. (2013). A Study on the Research Trends in Library & Information Science

in Korea using Topic Modeling. Journal of the Korean Society for Information Management, 30(1), 7-

32.

[8] Park Mi-sun. A Study on the Topic Analysis of the 4th Industrial Revolution News Articles using LDA

and Word2vec. Seoul National University of Science and Technology, 2018. Seoul

[9] T. Cho and J.-H. Lee, “Latent Keyphrase Extraction Using LDA Model,” Journal of Korean Institute of

Intelligent Systems, vol. 25, no. 2, pp. 180–185, Apr. 2015.

