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Abstract 

       A mathematical model for the dynamics of Lassa fever transmission and control is presented. 

The model is a modified form of the traditional SIR model for infectious disease. We employed 

the modified Homotopy perturbation method to solve and analyze the transmission of the SIR 

model of this disease. For all time values, the analytical expression of the population of the 

susceptible group S(t), the infected group I(t), and the recovered group R(t) is derived. The impact 

of various parameters is addressed. The numerical simulation is carried out using MATLAB and 

compared with our analytical results. 
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1. Introduction 

 

        Lassa fever is a zoonotic (animal-borne) acute viral illness. The disease originated in Nigeria 

in the 1950s, and It is widespread in parts of West Africa, including Sierra Leone, Liberia, 

Guinea[1,2]. It is an agent that causes infection to human with high death rates. The incubation 

period of Lassa fever ranges from 6–21 days. The disease's symptoms generally appear with fever, 

general fatigue, and malaise as the first signals. Headache, sore throat, muscle pain, chest pain, 

nausea, vomiting, diarrhoea, cough, and abdominal pain may occur within a few days. Facial 

swelling, lung problems, leakage from the lips, nose, vaginal or gastrointestinal tract, and low 

blood pressure can occur in extreme situations [3]. 
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Lassa fever is modelled by system of nonlinear equations.  Mathematical modelling has been one 

of the most effective methods for studying and controlling infectious diseases. According to 

Laarabi et al. [4], mathematical modelling has a significant value in understanding the 

underpinning mechanisms that affect disease transmission and propose control strategies. 

Bernoulli and Blower [5] state that mathematical models provide conceptual results such as 

thresholds, simple reproductive numbers, contact numbers, and replacement numbers. Modelling 
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infectious disease transmission helps researchers to evaluate the efficacy of control measures and 

establish more efficient strategies to prevent disease spread in the future. 

 

    In this paper, we apply the homotopy perturbation method to investigate the solution of the 

control of a mathematical model of Lassa fever proposed by Durojaye et al.[6], considering 

different parameters. We stated the SIR model of Lassa fever as proposed by Durojaye et al. deals 

with the analysis of numerical simulation applied to a system of ordinary differential equations. 

We presented the numerical results of the model with respect to various reproductive numbers 

using MATLAB ode 45. 

 

2. Mathematical Formulation of the Problem 

The dynamics of the population infected by an infectious disease is traditionally described 

mathematically by the system of differential equations. The SIR epidemic model, where the 

populationis divided into three groups: the susceptible group, denoted by 𝑆(𝑡), the infected group, 

denoted by 𝐼(𝑡), and the recovered group, denoted by 𝑅(𝑡). The total population is assumed 

constant during the short period of time under study, this is given by  

)()()( tRtItSN ++=        (1) 

A major strategy to control infectious diseases is through vaccination. Now our idea is to study the 

effect of vaccination on Lassa fever disease. In this section, we improve the SIR model described 

in equation and present the system of equations that describe the Susceptible- Infectious-Recovery 

(SIR) model with vaccination as [6]: 

( ) ( ) ( )tvStItS
dt

dS
−−= 

       

 (5) 

( ) ( ) ( )tItItS
dt

dI
 −=

       
(6) 

( ) ( )tvStI
dt

dR
+= 

        
(7) 

 

Initial conditions are 

S(0) = 0.5,I(0) =0.3226, R(0) = 0.1774     (8) 

Where 𝛽 the rate of infection, μ is is the rate of recovery, and 𝑣 is the percentage of 

individuals vaccinated every day. 

3. Approximate Analytical Expression of Susceptible Human, Exposed Human and 

Infected Human Using Homotopy Perturbation Method 

    Nonlinear equations play a significant role in modelling the many problems in physics, 

biology and engineering. Recently the nonlinear equations are solved by semi-analytical methods 

like the Adomian decomposition method [7], homotopy perturbation method [8], new iterative 

method[9], differential transform method[10], Green’s function iterative method [11,12], Agbari- 

Ganji method[13] and Taylor series method[14], among others. Among the methods mentioned 

above, the homotopy perturbation method is very simple in its principles and application to solve 

nonlinear differential equations.   

The Homotopy Perturbation method first proposed by et al. [15] has been demonstrated to be 

an effective technique in deducing analytical solutions of non-linear differential equations in a 
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hierarchical manner [16,17]. The basic concept of Homotopy Perturbation method is given in 

Appendix A.  

By solving Eqs. (5)-(7) using the homotopy perturbation method (Appendix  B) , we obtain 

the analytical expression of population of susceptible group 𝑆(𝑡), the infected group 𝐼(𝑡), and the 

recovered group 𝑅(𝑡)  as follows: 

( ) ( )( )vttvt eeetS +−− −+= 




1

1613.0
5.0)(       (9) 

( ) ( )( )vttvt ee
v

etI +−− −+=  
1

1613.0
3226.0)(      (10) 

( ) ( )( )( ) 


 vveeev
v

tR vtttv +−+−−= +−−− 1613.04839.05.01613.0
1

)(  (11) 

4. Numerical Simulation 

We simulate the SIR model with vaccination in order to predict the evolution of every 

group of individuals in case of vaccination. We consider different rates of vaccinations and their 

effect on the curve of every group. We adopt the data in [6] taking S(0) = 0.5, I(0) =0.3226, R(0) 

= 0.1774, 𝛽 = 0. 5 and 𝜇 = 0. 7, 1.0=v .This gives 𝑅0 = 0.71 such that 𝑅0 < 1. The analytical results 

are compared with simulation results the following figures1-2 and Tables 1-3. Satisfactory 

agreements is noted.   

 
 

Fig. 1. Comparison of )(),( tItS  and )(tR  with simulation results for several values 

of parameters 7.0,5.0 ==  and 1.0=v . Here 𝐑𝟎 =
𝛃

𝛍
= 𝟎. 𝟕𝟏.

 

5. Result and Discussion 

Equation 9 to 11 are the new simple expression of the population of susceptible group (𝑡), the 

infected group (𝑡), and the recovered group 𝑅(𝑡). Figs.1 describe the comparison of numerical and 

analytical expression of populations in SIR models. The figure is inferred that susceptible and 

infected people are decreasing function whereas recovered group (𝑡) is increasing function. The 

susceptible population reaches the minimum value when 

ts =   log { 0.1613β (µ+v) / v µ (0.1613 β – 0.5 µ) } 

Similarly, the infected population reaches the lowest value when 

tI =   log {0.1613β (µ+v) / vµ (0.3226v+0.1613 β) } 

The recovered group (𝑡) reaches the maximum when 

tR = (0.1613 β µ2 – 0.3226 β v2 + 0.5 µ v2 +0.4839 µ2 ) / (µ β v2(0.1613) – 0.5 µ2v2 – 0.4839 µ2v) 
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Fig. 2. Comparison of )(),( tItS  and )(tR  with simulation results for several values of 

parameters v  and  for some fixed values of 7.0,5.0 ==  . Here 𝐑𝟎 =
𝛃

𝛍
= 𝟎. 𝟕𝟏.

 
Figs (2) represent the population of )(),( tItS  and )(tR for various values of vaccination. From 

the figure 2 (a,b), it is inferred that an increase in vaccination leads to decrease  in both  

susceptible group 𝑆(𝑡) and  the infected group 𝐼(𝑡). From Figure 2(c), it is observed that an 

increase in vaccination number results in a increasing in recovered group (𝑡).  
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Fig. 3. Plot of )(),( tItS  and )(tR  with simulation results for several values of parameters 

1,7.0 == v . 

 

The  )(),( tItS  and )(tR profiles for different values of the  ( rate of infection) are displays in the 

Figs. 3(a-c). From this figure we observe that the ),(tS  and )(tR  is decreased by increasing the 

rate of infection. Also )(tI increase when rate of infection in increases. 
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Fig. 4.Plot of )(),( tItS  and )(tR  with simulation results for several values of parameters 

1,2 == v . 

 

The effect of different values of rate of recovery  for )(),( tItS  and )(tR  is shown in Fig. 4(a-

c). From these figures it is observed that an increase in    leads to decrease in )(tI  and increase 

in )(tS  and )(tR . 

 
Fig. 5. Plot of )(),( tItS  and )(tR for several values of parameters  , . 

The capacity of any infectious disease to infiltrate a community is one of the most severe 

worries about it. Many epidemiological models feature a disease-free equilibrium (DFE), which is 

the point at which the population remains disease-free. The fundamental reproductive number R0 

is typically used as a threshold parameter in these models.The basic reproductive number is a 

crucial notion in mathematical biology. It is described as the average number of secondary 

infections generated by a single infectious individual throughout their transferrable life. For the 

SIR model with vital dynamics, Ro is defined as 

R0 =
β

μ
    

where 𝛽 is the rate of infection and μ is the rate of recovery. It is a basic parameter that affects 

disease propagation and is related to long-term behaviors as well as the degree of immunization 

required for eradication. 

Fig. 5 shows the effect of reproductive number on the )(),( tItS  and )(tR for several values of 

parameters  , . If 𝑅0 < 1, each individual produces, less than one new infected individual, and 

the disease cannot invade the population and hence the disease dies out. If R0>1, each individual 

produces more than one new infected individual and hence the disease is able to invade the 

susceptible population and invasion is always possible.  

 

6. Conclusion 

In this study, we successfully solved the model of Lassa fever virus that arises from the ODE 

system using the h 

Homotopy Perturbation method. The analytical expression of the population of susceptible group 

(𝑡), the infected group (𝑡), and the recovered group 𝑅(𝑡), are obtained for all values time. The effect 
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of various parameter on  )(),( tItS  and )(tR    are discussed. Also, our analytical results are 

compared with simulation results, and satisfactory agreement is noted. 

 

Nomenclature 

Symbol Name 

S The susceptible group 

I The infected group 

R The recovered group 

  Rate of infection 

  Rate of recovery 

v  Percentage of individuals vaccinated every day 

t  Time 
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Table 1. Comparison of our analytical expression of S with the numerical result for various values 

of the parameter  and some fixed values parameter 7.0,5.0 ==  using Eqn. (9). Here R0 =
β

μ
= 0.71.

    
 

z  

0=v  05.0=v  1.0=v  1=v  

Nume

rical 

Result 

Our 

Eq.(

15) 

% of 

devia

tion 

Nume

rical 

Result 

Our 

Eq.(

15) 

% of 

deviat

ion 

Num

erical 

Resul

t 

Our 

Eq.(1

5) 

% of 

deviati

on 

Nume

rical 

Result 

Our 

Eq.(1

5) 

% of 

deviat

ion 

0 
0.500

0 

1.00

00 
0.00 

0.500

0 

0.50

00 
0.00 

0.500

0 

0.500

0 
0.00 

0.500

0 

0.500

0 
0.00 

2 
0.411

2 

0.41

32 
0.49 

0.370

8 

0.37

39 
0.83 

0.332

3 

0.329

7 
0.78 

0.055

9 

0.056

2 
0.54 

4 
0.379

8 

0.38

79 
2.13 

0.315

4 

0.32

08 
1.70 

0.252

6 

0.254

7 
0.82 

0.007

2 

0.007

2 
0.87 

6 
0.377

9 

0.38

65 
2.28 

0.278

9 

0.28

63 
2.67 

0.210

1 

0.204

1 
2.87 

0.001

0 

0.001

0 
1.25 

8 
0.374

8 

0.38

52 
2.78 

0.247

8 

0.25

42 
0.00 

0.169

1 

0.164

3 
2.83 

0.000

1 

0.000

1 
0.60 

1

0 

0.369

8 

0.38

49 
4.08 

0.229

2 

0.23

34 
1.85 

0.139

6 

0.134

2 
3.86 

0.000

0 

0.000

0 
2.29 

 
Average percentage 

error: 1.96 

Average percentage 

error: 1.18 

Average percentage 

error:1.86 

Average percentage 

error:0.98 
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Eq.(1
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Numer
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Result 

Our 

Eq.(1

6) 
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deviat

ion 

Numer
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Result 

Our 

eq.(

16) 
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deviat
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Nume

rical 

Result 

Our 

eq.(1

6) 

% of 

deviat
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Table 2. Comparison of our analytical expression of I with the numerical result for various values 

of the parameter and some fixed values parameter 7.0,5.0 ==  using Eqn. (10). Here R0 =
β

μ
= 0.71.

   
 

 

 

Table 3. Comparison of our analytical expression of R with the numerical result for various values 

of the parameter and some fixed values parameter 7.0,5.0 ==  using Eqn. (11). Here R0 =
β

μ
= 0.71.

   
 

 

t  

0=v  05.0=v  1.0=v  
1=v  

Numer

ical 

Result 

Our 

Eq.(

17) 

% of 

deviat

ion 

Numer

ical 

Result 

Our 

Eq.(1

7) 

% of 

deviat

ion 

Numeri

cal 

Result 

Our 

Eq.(1

7) 

% of 

deviat

ion 

Numeri

cal 

Result 

Our 

Eq.(1

7) 

% of 

deviat

ion 

0 0.1774 
0.17

74 
0.00 0.1774 

0.17

74 
0.00 0.1774 

0.17

74 
0.00 0.1774 

0.17

74 
0.00 

2 0.4776 
0.46

75 
2.12 0.5081 

0.50

87 
0.12 0.5379 

0.54

61 
1.52 0.8473 

0.85

23 
0.59 

4 0.5661 
0.56

90 
0.51 0.6529 

0.64

18 
1.70 0.7113 

0.70

16 
1.37 0.9684 

0.97

02 
0.18 

6 0.6096 
0.60

14 
1.35 0.7169 

0.70

26 
2.00 0.7833 

0.77

76 
0.73 0.9930 

0.99

33 
0.03 

8 0.6307 
0.61

12 
3.09 0.7470 

0.73

86 
1.12 0.8332 

0.82

41 
1.09 0.9984 

0.99

86 
0.02 

1

0 
0.6301 

0.61

41 
2.54 0.7783 

0.76

57 
1.62 0.8643 

0.85

76 
0.77 0.9996 

0.99

60 
0.36 

 
Average percentage 

error : 1.60 

Average percentage 

error :1.09 

Average percentage 

error : 0.91 

Average percentage 

error : 0.21 

 

Appendix A: Basic concept of homotopy perturbation method (HPM) 

0 0.3226 
0.322

6 
0.00 0.3226 

0.322

6 
0.00 0.3226 

0.32

26 
0.00 

0.322

6 

0.32

26 
0.00 

2 0.1024 
0.104

7 
2.24 0.1059 

0.104

7 
1.14 0.0830 

0.08

15 
1.76 

0.096

7 

0.09

73 
0.55 

4 0.0396 
0.039

2 
0.86 0.0289 

0.028

1 
2.81 0.0205 

0.02

01 
1.67 

0.024

4 

0.02

47 
1.14 

6 0.0132 
0.012

9 
2.14 0.0080 

0.007

9 
1.17 0.0052 

0.00

50 
3.87 

0.006

0 

0.00

60 
0.75 

8 0.0036 
0.003

6 
0.50 0.0019 

0.001

8 
3.22 0.0012 

0.00

12 
1.31 

0.001

5 

0.00

15 
1.74 

1

0 
0.0010 

0.001

0 
0.32 0.0004 

0.000

4 
3.25 0.0003 

0.00

03 
0.51 

0.000

4 

0.00

04 
1.04 

 
Average percentage 

error: 1.01 

Average percentage 

error:1.93 

Average percentage 

error:1.52 

Average percentage 

error:     0.87 
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To illustrate the basic ideas of this method, we consider the following nonlinear functional 

equation: 

( ) ( ) =− r,rfUA 0        (A1) 

With the following boundary condition: 

,r,
n

u
,uB =












0        (A2) 

where Ais a general functional operator, B a boundary operator, ( )rf is a known analytical 

function and  is the boundary of the domain . The operator Acan be decomposed into two 

operators Land N , where Lis linear, and N is nonlinear operator.  

Eqn. (19) can be, therefore, written as follows: 

( ) ( ) ( ) .rfUNUL 0=−+        (A3) 

Using the homotopy technique, we construct a homotopy ( )   ,R,:p,rU → 10 which 

 satisfies: 

( ) ( ) ( ) ( )  ( ) ( )    ,,1,0,01, 0 =−+−−= rprfUApULULppUH
 

(A4) 

 or 

( ) ( ) ( ) ( ) ( ) ( )  ,rfUNpUpLULULp,UH 000 =−++−=    (A5) 

where  10,p is an embedding parameter, 0u  is an initial approximation for the solution of Eqn. 

(SA2),which satisfies the boundary conditions. Obviously, from Eqns. (A4) and (A5) we will have: 

( ) ( ) ( ) ,ULUL,UH 00 0 =−=        (A6) 

( ) ( ) ( ) .rfUA,UH 01 =−=        (A7) 

The changing values of p from zero to unity are just that of ( )p,rU from ( )ru0 to ( )ru .In topology, 

this is called homotopy. According to HPM, we can first use the embedding parameter pas a small 

parameter and assume that the solution of Eqns. (A4) and (S5) as a power series in p: 

...UppUUV +++= 2

2

10
       (A8) 

Setting p = 1, results in the approximation to the solution of Eqn. (A8) 

...UUUVU lim
p

+++==
→

210

1

      (A9) 

The combination of the perturbation method and the homotopy method is called the homotopy 

perturbation method (HPM), which has eliminated limitations of the traditional perturbation 

techniques. The series Eqn. (A9) is convergent for more cases. 

Appendix B: Analytical solution on nonlinear Eqns. (11)-(13) using homotopy perturbation 

method (HPM). 

Consider the differential equation 

( ) ( ) ( )tvStItS
dt

dS
−−= 

        

(B1) 

( ) ( ) ( )tItItS
dt

dI
 −=

        
(B2) 

( ) ( )tvStI
dt

dR
+= 

         
(B3) 
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The initial conditions are 

( ) ( ) ( ) 1774.00,3226.00,5.00 === RIS       (B4) 

The homotopy form the Eqns. (B1)-(B3) can be constructed  as follows: 

( ) ( ) ( ) ( ) ( ) 01 =







+++








+− tvStItS

dt

dS
ptvS

dt

dS
p 

    

(B5)

 

( ) ( ) ( ) ( ) ( ) 01 =







+−+








+− tItItS

dt

dI
ptI

dt

dI
p 

    

(B6) 

where p  is the embedding parameter and  1,0p , The approximate solution of (B5) and (B6) 

are 

.......2

2

10 +++= SppSSS
        (B7)

 

.......2

2

10 +++= IppIII         (B8) 

Substituting Eqns. (B7) and (B8) into (B5) and (B6), gives the following result. 

( ) ( ) ( )

( ) ( ) ( ) ( ) 0.........

......1

102

2

102

2

10

2

2

102

2

10

=







+++++++++++









+++++++−

pSSvtISppSSSppSS
dt

d
p

SppSSvSppSS
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
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
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
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 (B10) 

Comparing the coefficients of like powers of p in Eqn. (B9) gives: 

0: 0
00 =+ vS

dt

dS
p

         
(B11) 

( ) ( ) ( ) 0: 001
11 =++ tItStvS

dt

dS
p 

       
(B12) 

The initial conditions are, 

( ) ( ) 00,5.00 10 ==== tStS
        

(B13) 

The solution of the Eqns. (B11) and (B12) are given by 
tveS −= 5.00
          (B14) 

( ) ( )( )vtt eeS +−−= 




1

1613.0
1        (B15) 

Comparing the coefficients of like powers of p in Eqn. (B10) gives: 
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( ) 0: 0
00 =+ tI

dt

dI
p 

         
(B16) 

( ) ( ) ( ) 0: 001
11 =−+ tItStI

dt

dI
p 

       
(B17) 

The initial conditions are, 

( ) ( ) 00,3226.00 10 ==== tItI
       

(B18) 

The solution of the Eqns. (B16) and (B17) are given by 
tetI −= 3226.0)(0          

(B19) 

( ) ( )( )vttv ee
v

tI +−−= 
1

1613.0
)(1

       

(B20) 

The concentration can be obtained by solving the (B3) as follows: 

( ) ( )( )( ) 


 vveeev
v

tR vtttv +−+−−= +−−− 1613.04839.05.01613.0
1

)(

  

(B21)  

With the use of these two iterations only, we obtain an approximate solution for the concentration 

given by  

( ) ( )( )vttvt eeeSStS +−− −+=+ 




1

1613.0
5.0)( 10

     (B22)

  

( ) ( )( )vttvt ee
v

eIItI +−− −+=+  
1

1613.0
3226.0)( 10     (B23) 

( ) ( )( )( ) 


 vveeev
v

tR vtttv +−+−− +−−− 1613.04839.05.01613.0
1

)(

 

(B24) 

Appendix B. Matlab program for the numerical solution of differential Eqns. (11) – (13) 

function graphmain3 

options= odeset('RelTol',1e-6,'stats','on'); 

X0=[0.5;0.3226;0.1774]; 

tspan=[0,100]; 

tic 

[t,X]=ode45(@TestFunction,tspan,X0,options); 

toc 

figure 

hold on 

plot(t,X(:,1),'*'); 

plot(t,X(:,2),'.'); 

plot(t,X(:,3),'+'); 

legend('x1','x2','x3','x4') 

ylabel('x') 

xlabel('t') 

return 
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function [dx_dt]=TestFunction(t,x) 

b=0.5,v=0.1,m=0.7; 

dx_dt(1)=-(b*x(1)*x(2)+v*x(1)); 

dx_dt(2)=b*x(1)*x(2)-m*x(2); 

dx_dt(3)=m*x(2)+v*x(1); 

dx_dt = dx_dt'; 

return 

 

 


