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Abstract 

In this study, we propose a method for the classification of T1-weighted Magnetic Resonance Images (MRI) of 

the Brain in case of Alzheimer’s disease based on extraction of different features. The dataset used comprises of 

right handed females of age group 18-96 years and is helpful to determine the onset and early detection of the 

disease. The processed MR images are used to obtain different features for training of classifiers. The whole 

Grey matter is considered as the Region of Interest (ROI) because it contains the Amygdala and Hippocampus, 

the regions most affected due to Alzheimer’s. The features used for this study are some of the crucial second 

order features derived from Grey Level Co-occurrence Matrix (GLCM) such as Entropy, Energy, Homogeneity 

and Correlation and also the ratio of the Grey Matter Volume and the White Matter Volume to the Volume of 

the Cerebrospinal Fluid. An accuracy of 84% has been achieved with a sensitivity of 100%. This proves to be a 

better method than Voxel Based Morphometry extraction method which is cumbersome but has been proved to 

be more accurate but not as sensitive. 

Keywords:  

 

1. Introduction 

A different neural network, consisting of multiple nerves and blood vessels forming the human brain, is the 

central nervous system. It weighs roughly 1 kilo and comprises of billions of synaptic structures comprising the 

Central Nervous System that governs all body movements (Mai et al. 2016). Neurons function as a contact 

pipeline for separate body parts. The effective handling of the brain depends on its neural connection efficiency. 

The brain accomplishes various activities, from thinking to walking and often helps to maintain hormonal 

equilibrium to help body movement (Durston et al. 2001). 

The four lobes which make up the cortex are the frontal, occipital, parietal and temporal lobs. The front lobe 

regulates the decision-making and problem solving capability of an individual. The motor cortex of the frontal 

lobe uses the reaction to control data from various lobes Biological variations in the frontal lobe may often 

induce shifts in emotion and actions (Hall 2015; Bostan et al. 2013). 

The temporal lobe at the base of the brain is responsible for the cognitive and retrieval skills of a person. 

Audience and sensory responses are tracked throughout the tempo lobe systems. Damage to the lobe creates 

complications with vision, hearing and voice (Jeneson & Squire 2012). The hippocampus, amygdala, entorhinal 

cortex and parahippocampal cortex are all on the inner side of the temporal lobe, responsible for the thinking, 

memory and emotional ability of the person. The centre for vision perception is the occipital lobe located at the 

rear of the brain. Occipital cortex biological disruptions lead to vision deficiencies (Raz & Levin 2015). The 

lobe is close to the centre of the brain. It makes communication with the brain and other parts of the body 



Anshu Rani , Dr. Amit Garg  

6336 

smoother. It also helps to understand the spatial-visual relationship. The deficiency of this lobe affects changes 

in eye control and vocal power (Cappelletti et al. 2013). 

The cerebellum under the occipital lobe tends to sustain the body's location by coordinating and controlling 

the activity of limbs. The brain stem links the brain and spinal cord and serves as a brain and body relay station. 

The brain has a defensive cloth consisting of bones such as the skull and a colourless substance called the 

cerebral fluid to cover the subanatomic components (CSF). Includes coating, mechanical protection and brain 

buoyancy. This safety case (Damasio 1995; Ungerleider & Haxby 1994). 

1.1 Neurodegenerative Diseases 

Irrespective of the defensive insulation, brain regions are susceptible to damage that can lead to many 

diseases similar to dementia (Bigler 2001). Diseases, including infection, pathology and brain lesions related to 

strokes and blood clots, can be caused by many factors. The regeneration ability of neurons is very little and 

they are more susceptible to damage. The origin of damage to neurons is neuronal loss and tissue deterioration. 

NEIMANN-PICK DISORSIONS, ADD, Fronto-temporal Dementia, Parkinson's disease, Amyotrophic lateral 

sclerosis and other diseases, such as Huntington's disease, tend to degenerate brain tissues (Parikshak et al. 

2015). 

Behavioral changes, cognitive loss and gait disorders are all manifestations of neurological illnesses, which 

are lethal if not early detected, assessed and treated (Mattson et al. 2001). Alzheimer's disease is one of the most 

prominent types of dementia and it progresses steadily and gradually. It induces multiple levels of cognitive 

impairment in a person (Prince et al. 2015; Ferreira et al. 2014). 

The accumulation of tau-beta and amyloid-beta in the brain triggers the condition of Alzheimer. Plaques of 

amyloid develop in the MTL and cortex regions due to the excessive presence of amyloid-beta proteins, which 

cause neuronal problems and inhibit interaction between the brain regions (Brunnstrom & Englund 2010). 

Neurofibrillary tangles (NFTs), which cause neuronal breakdown and neuronal mortality of brain tissues, are 

produced in irregular deposition of tau proteins. Neuronal cells death induces morphological modifications in 

brain regions, which ultimately helps to shrink the brain. 

The three stages of the disease pathway include preclinic Alzheimer's (preclinical AD), Mild Cognitive 

Impairment (MCI), and Alzheimer's (AD). There are multiple signs at each point that decide the magnitude of 

this illness (Amieva et al. 2008). The participants had longer periods of pre-existing Alzheimer's disorder before 

clinical symptoms are present. No noticeable memory failure or behavioural changes are present at this point 

(Petersen et al. 2001; Reisberg and Franssen 1999). Over this time the participants exhibit no symptoms of 

dementia, but the progressive deposition of abnormal proteins is causing neuropathological improvements in 

some subsound anatomical areas of the brain (Dubois et al. 2010). The two conditions consistent with this stage 

are aphasia and cortical atrophy. These persons are at substantial risk of psychological problems, which include 

preventive care (Dubois et al. 2010). 

The second stage of Alzheimer's disease is miniature brain impairment in which the usual habits and 

processing capability of patients are not impaired. It is triggered by the transition from age to Alzheimer's 

disease (Ewers et al. 2012). Since Alzheimer's disease currently has little effective therapies, it is vital to 

recognise this disease at an early stage (da Silva Lopes et al. 2010; Dubois & Albert 2004). The participants 

have a variety of cognitive abilities and difficulties coping through language use efficiently (Nestor et al. 2004). 

Services suggest the early detection and action of cognitive and neuropsychiatric shifts at this period. 

Alzheimer's participants have a brain dysfunction that impacts their daily lives (Dubois et al. 2010). Patients 

currently experience significant difficulties with carrying out personal activities such as feeding, listening and 

walking. The episodic deterioration of memory in typical Alzheimer cases, which increases as the disease 

progresses (Jellinger 2014). In both the neocortex and other regions of the brain, NFTs is discovered. Functions 

related to cognitive capacities for the performance of daily activities are of considerable difficulty for fully-

developed AD sufferers. When Alzheimer's disorder advances, their reflexes get worse (Merriam et al. 1988). 

1.2 Disease Diagnosis 

A brain autopsy is the only traditional gold protocol to establish the origin of Alzheimer's disease. A rapid 

loss of the recollection is the strongest indication of Alzheimer's disorder (Petersen et al. 2014; Ewers et al. 

2012). Among the measures that were used for diagnosis of Alzheimer's disorder are mini-mental status 

(Folstein et al. 1975), Clinical Dementia Rating (CDR) (Hughes et al. 1982), Montreal cognitive analysis 

(Nasreddina etal. 2005), geriatric distress scale(Yesavage et al. 1983). (Lawton & Brody 1970). During these 

tests, short-term memory, problem solving skills, alerting and language capacity are normally tested. The 

MMSE scale is between 27 and 30 and the average is taken into account. On average, the MMSE values are 
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reduced by 2 to 4 points a year (Kukull et al. 1994). The overvalued average of the total CDR score is 0 for 

healthy people, 0,5 for preclinical dementia, 1, 2 for scientifically verified dementia, and 3 for clinically 

established dementia. 

In diagnosing Alzheimer's disorder, the cognitive test itself was found to be ineffective. For effective 

diagnosis of Alzheimer's disease it is important to identify biomarkers susceptible to brain changes linked with 

disease progression. Irregular protein accumulation causes chemical difference in the brain's CSF. CSF is 

therefore considered a possible biomarker for neurological disorders diagnosis (Susanto et al. 2015). The 

heterogeneity analysis of the CSF involves a lumbar puncture, on the other side. It has been found that the 

subject has several side effects following the operation. As a result, progress in the development of noninvasive 

testing approaches for Alzheimer's disease (Welge et al. 2009; Delano-Wood et al. 2008). 

Neuroimaging is a successful instrument for early detection of Alzheimer's disease. Neuronal loss is 

observed through imaging methods in multiple systemic brain areas (Norfray & Provenzale 2004). Imaging 

techniques such as positron emission tomography, MRI, and computerised tomography can diagnose and 

quantify certain changes arising from multiple neurodegenerative diseases (Mueller et al. 2005; Soucy et al. 

2012). Neuroimaging-based biomarkers may detect dementia well before clinical symptoms arise. It helps to 

improve strategies of prevention to reduce Alzheimer's symptoms. 

Structural resonance imaging (SMRI), which allows non-invasive analysis of brain structures, is recognised 

for the higher tissue contrast and resolution (Bozzao et al. 2001; Vemuri & Jack 2010; Johnson et al. 2012). 

Structural MRI identifies the brain areas affected by Alzheimer's disease, and follow their progress in 

neuropathology (McEvoy & Brewer 2010; Chou et al. 2010). Data concerning anatomical brain deformation 

was obtained (Du et al. 2001). Appropriated comparison to brain anatomy view is given by T1 weighted MRI 

(Harper et al. 2013). Lesions are identified through axial perception, while a coronal view is used to analyse the 

internal structure of subcortical tissues (Konrad et al. 2009; Frisoni et al. 2010). 

Since atrophy is reflected in MR images in sub-anatomic areas, measures taken from MR images are used in 

the evaluation of AD-binding neurosurgery (Holland et al. 2009; Lillemark et al. 2014). This regional 

neurodegeneration takes place during the early stages of Alzheimer's disease and helps with MCI diagnosis (Vos 

et al. 2012). GM atrophy is microscopically in line with MCI (Chou et al. 2010) and supports treatments that 

slow the rate of development of a disease a little (Zhang et al. 2011). 

The hippocampus and entorinal cortex are the first brain regions in which Alzheimer's disorder is atrophied. 

There are differences of GM tissue in the temporal lobe, ganglia and thalamus. In addition to the temporal lobe, 

the frontal and parietal lobes display volumetric deformation to differentiate MCI and AD patients (Duara et al. 

2008; Duara et al. 2013). Study into the regions of subcortical grey matter is therefore anticipated (Ryan et al. 

2013). 

Studies show a substantial increase in ventricular volumes in the case of Alzheimer's disease. Consequently, 

shifts in the ventricle influence the surrounding structures of white and grey matter according to AD (Carmichal 

et al. 2007). The Callosum corpus is part of the Callosum corpus 

The (CC), adjacent to and above the brain ventricles, changes due to the ventricular dilation which signify 

the overall atrophic process of the brain (Ardekani et al. 2014). Aggregating AD condition, like cortical NFT, 

amyloid plaques and cognitive dysfunction, contributes to gradual dilution of the ventricular system (Chou et al. 

2009; Chou et al. 2010). 

Regional tests derived from ventricle enlargement and callosal atrophy characterise the essential 

morphometric measurements in neuropathological changes caused by AD and MCI (Pennanen et al. 2004; 

Ferrarini et al. 2008; Cho et al. 2014). Ventricular volume measurements are very sensitive to the prevalence of 

illness. Since the boundaries of cortical structures are freely defined, it is more accurate than measuring cortical 

structure to measure ventricular variations. 

1.3 Brainstem Deformation 

Alteration of the prefrontal system during development of the condition is consistent with cognitive 

impairment. In the fourth stages of seven-stage AD progression model, the incide of cognitive impairment is 

shown (Brodaty et al. 2003). However, like neurodegenerative illnesses, AD has an extended preclinical 

prodromal period marked by non-cognitive traits such as diminished physical capacities and behavioural 

difficulties. 

Neuropsiatric symptoms (NSP) such as depression, apathy, turmoil, illusions and cognitive symptoms are 

present in the demented subjects (Ismail et al. 2016). Similar to the occurrence of AD, there is a very sparse 

perception that NPS incidence is involved with physiological causes. In neuropsychiatry, the emphasis is also on 
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the prefrontal areas that encourage a person's comportemental and cognitive ability. (APA 1994; Jayakar & 

Huang 2010; Morris 1993; Slats et al. 2013). More detail from APA 1994. Neuropathological findings have 

associated brainstrokes with different cognitive and behavioural disorders (Simic et al. 2009). 

The brainstem consists of long axons and dispersed nuclei which bind several cortical structures and rule 

various cognitive functions and is an extremely complex neuronal structure. The brain stem consists of nerves 

that regulate many autonomous functions such as muscle control, pain modulation, autonomous reflection, 

excitement and awareness. The brainstem midbrain is susceptible to injuries of people that are malnourished. 

Atrophy of the brainstem, owing to its neuropatological modifications, is known to be a major pathological 

centre in the growth of AD. 

For the performance of the executive tasks are accountable the prefrontal and anterior corticulate linked to 

the brainstem. Disorder in the frontal subcortical system influences the individual's concentration and 

management process. Differences in the dorsal raphe nucleus synthesis of serotonin and acetylcholine are 

responsible for disturbing mood and sleep throughout the existence and development of AD. The brainstem also 

remains a thoroughly researched organ, despite its considerable effect on neurodegenerative processes, since it 

has trouble overcoming the brainstem's design (Grinberg et al. 2011; Lee et al. 2015). In order to delineate the 

brainstem it is essential to accurately segment an algorithm to acquire the moral variance during development of 

disease. 

1.4 Need for Shape Analysis 

Shape measurements are gaining interest in neuroimaging analysis due to its ability in extracting the intrinsic 

morphometric changes of brain structures due to the incidence and progression of AD (Styner et al. 2006; 

Racine et al. 2014). Regionwise structural variations are not sufficiently depicted in the volume measurement as 

there exists a large overlap between normal and abnormal values. The accurate delineation of brainstem is 

essential to analyze its morphometric changes (Ng et al. 2014). Characterization of shape variation in brainstem 

region is possible by using shape measures (Wachinger et al. 2015). The identification of the local shape 

variations provides new insights about the underlying biological processes related to neurological disorders, and 

leads to accurate treatment and also help for developing better treatment strategies (Ng et al. 2014; Styner et al. 

2003). Hence, this kind of analyses could further be involved for automatic diagnosis of diseases 

2. Literature Review 

Research has been carried out for detection of Alzheimer’s disease from structural as well as functional MRI. 

In case of structural MRIs there has been a prime focus on the extraction of structures where maximum atrophy 

is seen in case of AD. These atrophies can be compared with perfectly normal brain structures and the disease 

can be detected. 

A lot of work has been carried out by Voxel Based Morphometry (VBM) using Brain MRI. VBM 

preprocesses the images by standardizing images to same stereotactic space using linear affine transformation 

and further warps, smoothens and performs a statistical analyses. This has been carried out using different 

software on different kind of MR images of different age groups and interesting results have come up. The 

optimized VBM (SPM2) on cross sectional data (Good CD et al.)[7] showed a reduction in parietal and medial 

temporal gray matter structures as well as in white matter volume. The SPM99 on longitudinal (Resnick UM et 

al) and cross sectional (Matsuda H et al) proved a reduction in gray matter but in different regions. Savio et al. 

[8] obtained SPM using VBM extraction of two kinds of features: Mean and Standard Deviation of voxel values 

of Gray Matter (GM) and a high dimensional vector for GM segmentation values for different voxel locations. 

Research not involving VBM has not been that popular but the few existing works have given concrete 

results. Saima et al proposed extraction by defining a rectangular ROI mask derived from manual segmentation 

of the hippocampal region on one half of the images which served as a training set for hippocampus area 

calculation. [9] These left as well as right hippocampal regions along with the GM, WM and CSF areas were fed 

as features to different classifiers and their performance was compared. SVM and J48 showed best results with 

an ensemble of features. 

Another fascinating approach to the problem is by using second order features of Gray Level Co-occurrence 

Matrix. Daniela et al [10] calculated features like Entropy, Energy, Homogeneity and Correlation from the 

Hippocampus as an ROI to use as a basis for classification. 

3. Methodology 

In this approach, we simplify things and reduce computational time and instead of the cumbersome VBM 

approach, we try to improve the results by feeding a promising ensemble of features to the classifier – a 
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combination of textures extracted using GLCM, the ratio of the Gray Matter volume and the White Matter 

Volume to the Cerebrospinal Fluid Volume. Literature says atrophies are also seen in the CSF and other areas of 

GM apart from the Hippocampus. [4] Since concentrating just on the hippocampal region for volume calculation 

is narrow in approach and tedious because it cuts down the chances of other atrophies and also involves accurate 

extraction and subsequent calculation and cannot be done without help from a Neuro-radiologist, we can make 

use of the a ratio with the gray matter and the CSF and a similar ratio of the white matter and CSF and hence 

assure a more intensive learning, therefore, better results due to a reduced dataset. 

3.1 Preprocessing 

The dataset was processed so that it could properly cater to the method requirements. Each dataset consists 

of 3D MR images from the sagittal, coronal and transversal views. After acquisition, the images were first 

defaced and then ATLAS registered gain field corrected and motion corrected. Because brain scans may differ 

in size and shape for individual subjects, wrapping these to same template will help in identification of the 

anatomical structures. In our approach we used most widely used brain template, that is, Talairach and 

Tournoux coordinate system.[11] 

The brain image primarily consists of the White Matter (WM), the Grey Matter (GM) and the Cerebrospinal 

Fluid (CSF). These important tissue intensities may overlap with the other regions of the head after thresholding 

like the bone and skin. Therefore, there is a strong chance that the presence of these non-brain pixels in MR 

image may reduce the reliability of identifying interested brain regions. For this purpose we require that non-

brain pixels be trimmed off the MR image. Brain surface extraction [13] is a preprocessing step in which non-

brain tissue is removed from the MRI. The extraction parameter is set to 0.5 for optimal results. 

A subsequent step included increasing the contrast in the images such that there is a clear distinction between 

the WM, GM and CSF. The Finite Fixture Method has simple mathematics but is ineffective with high noise. 

Thus the Hidden Markov Random Field 

Model and Expectation Maximization (HMRF-EM) [21] algorithm after Otsu’s Thresholding [22] was used. 

- The maximum interclass variance is the desired threshold. This gives us initial parameter set Θ(0) and 

initial labels x(0). 

- In an HMRF-EM segmentation implementation, if 

y=[y1, y2,….yn] represents an image where yi is the intensity of pixels, 

x=[x1, x2,….xn] are all possible labels for classes 

With the EM algorithm using Θ, a parameter set is obtained iteratively till Q(Θ|Θ(t) ) maximizes. 

For each parameter set, label sets are obtained. This repeats till total posterior energy is 

minimized i.e x* = argmin x∈χ {U(y|x, Θ) + U(x)} (Hammersley–Clifford theorem). 

The three intensities were labelled 1, 2 and 3 for White Matter, Gray Matter and CSF respectively. 

4. Results 

4.1 Case 1: 

The MRI images are of 176 X 208 X 176 pixels. In the first case, we take 11 slices of the MR images, i.e. 

every 16 pixels, we take one slice and extract GLCM features. Then we average the features over all 11 slices. 

The Grey Matter and White Matter volume ratios are taken over the entire MR of the brain. 

A 2-fold, 5-fold and 10 –fold cross validation process is carried out. The samples are divided into 5 (or 2 or 

10) subsamples. One of the subsamples is retained as the testing data and the remaining 4 (or 1 or 9) subsamples 

are used as the training data. This is repeated for 5 (or 2 or 10) iterations, using one of the subsamples as testing 

data each time. 

Average accuracy calculated was recorded as follows: 

 

Folds 

 

Accuracy 

 

2 

 

82% 

 

5 

 

73% 

 

10 

 

76% 
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4.2 Case 2: 

In the second case, we only take the slices of the MR Images that contribute to the hippocampal and 

amygdala regions. The GLCM from these slices are averaged and fed to the classifier along with the Grey and 

White Matter volume ratios. 

2-fold, 5-fold and 10-fold cross validations are carried out again and average accuracy was recorded as 

follows: 

 

Folds 

 

Accuracy 

 

2 

 

83% 

 

5 

 

73.3% 

 

10 

 

75% 

 

4.3 Case 3: 

In the third case, we only take 1 slice of the MR image, i.e. the centre slice. The hippocampal and amygdala 

regions are clearly visible in this slice. GLCM was calculated and fed to the classifier along with Grey and 

White Matter volume ratios. 

2-fold, 5-fold and 10-fold cross validations are carried out again and average accuracy was recorded as 

follows: 

 

Folds 

 

Accuracy 

 

2 

 

84% 

 

5 

 

73.3% 

 

10 

 

78% 

 

5. Conclusion 

The results had a perfect sensitivity of 100% in each case. The accuracy is the highest in the 2-fold cross 

validation for Case 3 where only one slice of the MR image was considered. The high sensitivity shows that 

even though all cases were detected with dementia during the first MRI session, some were declared as non-

cognitive after the subsequent session. The method proved to be 100% effective for diagnosing the patients 

based on their MR. The method has a higher efficiency as compared to the VBM method which has shown a 

sensitivity of 85% [16], although VBM helps show the comparison of MRI of patients with early and late onset 

of AD. The method although performs worse than methods which have used features localized to the 

Hippocampal area also, which have shown an accuracy of 87.5% with SVM. They have shown an accuracy of 

93.75% when they have used an ensemble of classifiers like SVM, MLP and J48. [4]The same experiment was 

carried out with a limited dataset of female right handed patients between the ages 18-30 years. It showed an 

accuracy of 86.36% when 90% of the data was used for training and 10% for testing. The brain size and 

dementia levels do get affected with age. This shows that accuracy of classification increases when dataset 

within similar age group in taken. The limitations were in getting only the regions from the MR images that 

were atrophied in case of Alzheimer’s. This is only possible if we have annotations by doctors. The closest we 

could get in this study was only considering the slice with the maximum hippocampal and amygdala regions 

(case 3) and it does show a higher accuracy in that case. 
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