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Abstract 

 

A mathematical model is presented to describe the analytical solutions of the linearized 

Boussinesq equation of the non-linear Boussinesq equation to study transient and steady-state 

water rise in a homogeneous, isotropic and incompressible unconfined sloping aquifer where 

recharge is applied from two canals. The rise in the water table was due to seepage from two 

canals located at different elevations above the sloping impermeable barrier. Proposed 

analytical solutions were verified with analytical solutions for a horizontal aquifer and were 

found in close agreement. Thus, the time varying recharge rate is approximated of different  

slopes depending on the nature of the recharge rate. Application of the prediction of the water 

table fluctuation and sensitivity analysis of various controlling parameter on the aquifer 

response is demonstrated. 
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List of symbols 

D = Average saturated depth of the aquifer 

h(x, t) = Water head height measured from sloping bed 

h0= Initial water levels in the drain 

ℎ̂(x, t) = Variable water head height measured from horizontal datum 

K = Hydraulic conductivity 

L = Lateral extant of the unconfined aquifer 

q = Flow rate per unit area of the aquifer 

R(x, t) = Resource term in the domain 

S = Specific yield 

t = Time 

x = Horizontal x axis (space coordinate) 

z = Werner’s transformation 

𝛽 = Sloping angle measured in radian 

 𝛼 =  
𝑡𝑎𝑛 𝛽

𝐾 𝐷 𝑐𝑜𝑠2𝛽
 

1

𝛾
=

𝑆

𝐾 𝐷 𝑐𝑜𝑠2𝛽 
 

𝑄 =  
𝑅(𝑥, 𝑡)

𝐾 𝐷 𝑐𝑜𝑠2𝛽 
 

 

Introduction 

Canal irrigation has been growing efficiently in many parts of the countries. It is not only 

providing water for irrigation but also, they act as a source of intensive seepage below the 

ground in highly pervious tract. Due to continuing seepage from canals as well as percolation 

losses from irrigation field, water table have highly risen in some areas over the years. This 

water table build up has created the problem of water logging and salinity and ultimately 

leading to land degradation in many regions.  

In the areas where water table is accompanied with salinity it may not be possible to construct 

wells for irrigation purposes, the only alternate for such areas is subsurface drainage. In order 

to accompany any subsurface drainage scheme, it is necessary to understand the temporal 

variation of groundwater table. The spatial and temporal variation of the water table may be 

obtained by representing the physical situation in mathematical terms and solving the partial 
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differential flow equation with appropriate initial and boundary conditions by applying 

analytical and numerical method. 

Mathematical model play, a key role in assessing the future behavior of the ground water 

system to various operational schemes of recharging for sustainable development of the 

ground water system. A number of investigators have studied the effect of recharge due to 

canal seepage and field irrigation leading to water table rise in the affected areas. Many 

mathematical models have been developed to predict water table fluctuations in response to 

recharge from basins and canals.  

Werner (1969) studied groundwater flow in an unconfined aquifer receiving recharge and 

developed expressions that include the effect of different levels of water level in the drains. 

Maasland (1958) presented a detailed analysis of the effect on the water table of intermittent 

recharge. Studies have been carried out by Kraijenhoff van de Leur (1958), Schmid and 

Luthin (1964), Mustafa (1987), Marino (1974), Gill (1884), Rai and Singh (1992, 1995), Ram 

et. al (1994). Evolution and stabilization of the free surface in unconfined semi-infinite 

aquifer subject to rectangular recharge at uniform rate was analyzed by Hantush (1967). 

Mangalik et. al (1997) proposed a new method for simulating the discontinuous cycles of 

recharge operation by a sequence of line segment of varying length and slope. Most of these 

studies relate to obtaining analytical solutions of the 1D linearized Boussinesq equation with 

certain initial and boundary conditions to describe the water table fluctuation due to 

replenishment and through seepage from canals overlying a horizontal aquifer. 

In some situations, aquifers are located on the ridge line, on the side slopes below the ridge or 

on the inclined planes. Upadhyay and Chauhan (1998, 1999, 2000, 2002) reviewed and 

presented the theories related to drainage and water table fluctuations in sloping aquifer. 

There are also chances of overestimations and under estimation of water table rise in the 

process of linearization of nonlinear Boussinesq equation. The effect of linearization of the 

flow governing equation may be studied by obtaining numerical solutions to nonlinear 

Boussinesq equation and comparison of results with those obtained from an analytical 

solution of the linearized Boussinesq equation.  

The objective of present paper is to study an analytical solution of the linearized Boussinesq 

equation and a numerical solution of the nonlinearized Boussinesq equation. These two 

solutions are used to describe the transient and steady state water table rise in the sloping 

unconfined aquifer lying between two parallel canals located at different elevations above the 

impermeable barrier. Application of the prediction of the water table fluctuation and 

sensitivity analysis of various controlling parameter on the aquifer response is also 

demonstrated in this paper. 

Mathematical formulation 
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Initially the water table was at the elevation h0 above the impermeable barrier. Due to seepage 

from two canals separate by a distance L and located at elevations h1and h2 respectively, the 

groundwater table gradually rises and assumes a steady state condition after some time. The 

assumptions considered for the formulation of the mathematical problem are given below: 

1. The aquifer is unconfined, homogenous, isotropic and incompressible, overlying an 

impermeable barrier that is inclined with a small slope 𝛽. 

2. The aquifer is being replenished by two parallel canals acting as a line source. The 

heights of the canals are h1and h2. h represents the height of the groundwater table 

above the horizontal axis. 

3. Effects due to capillary rise and evaporation due to water table are ignored. 

4. Water through deep percolation moves vertically downward until it joins the 

groundwater. 

5. Flow is characterized by a 1D continuity equation as derived by Boussinesq (1904) 

using Darcy’s law and Dupuit’s assumption. 

 

An unconfined aquifer of lateral extent L overlaying an impermeable bed with an upward 

slope tan 𝛽  is considered. With Dupuit- Forchheimer assumptions that the streamline is 

nearly parallel to the sloping impervious bed, the discharge rate per unit width of the aquifer 

along x axis can be approximated by following relation (Chapman 1980): 

𝑞 = −𝐾ℎ 𝑐𝑜𝑠2𝛽
𝜕

𝜕𝑥
ℎ̂     (1) 

where ℎ̂ is the variable water head height measured in vertical direction from horizontal 

datum and h(x,t) is the water head height measured in the vertical direction from the 

impermeable sloping bed. K is the hydraulic conductivity, tan 𝛽 is the bed slope, t = time and 

x = space coordinate. Applying the principle of mass balance across a vertical slice, the 

equation of subsurface seepage flow over sloping bed is given by: 

𝜕𝑞

𝜕𝑥
+ 𝑆

𝜕

𝜕𝑥
ℎ̂ = 𝑅(𝑥, 𝑡)     (2) 

where S is the specific yield of the aquifer, and R(x,t) are spatial and temporal varying net 

rates of the vertical accretion to the free surface. If the spatial variations in K and S are 

neglected, then eqns. (1) and (2) imply that  

𝐾𝑐𝑜𝑠2𝛽 
𝜕

𝜕𝑥
{ℎ 

𝜕

𝜕𝑥
ℎ̂} + 𝑅(𝑥, 𝑡) = 𝑆  

𝜕ℎ̂

𝜕𝑡
  (3) 

 

Since ℎ̂ = ℎ + 𝑥 𝑡𝑎𝑛 𝛽 after rearranging eqns. (1) and (3) can be written as, 

𝑞 = −𝐾ℎ 𝑐𝑜𝑠2𝛽 {
𝜕ℎ

𝜕𝑥
+ 𝑡𝑎𝑛 𝛽 }   (4) 

𝐾𝑐𝑜𝑠2𝛽 {
𝜕

𝜕𝑥
(ℎ 

𝜕ℎ

𝜕𝑥
) + 𝑡𝑎𝑛 𝛽 (

𝜕ℎ

𝜕𝑥
)}   + 𝑅(𝑥, 𝑡) = 𝑆 

𝜕ℎ

𝜕𝑡
 (5)

   

The initial and boundary conditions are 

ℎ(𝑥, 𝑡 =  0)  =  ℎ0;  0 <  𝑥 < 𝐿   (6) 

ℎ(0, 𝑡 ) =  ℎ1;  𝑡 > 0    (7) 
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ℎ(𝐿, 𝑡 ) =  ℎ2;  𝑡 > 0    (8) 

Eqn. (5) is a second order parabolic partial differential equation, analytic solution of which is 

not tractable. However approximate analytic solutions can be obtained by taming the non-

linearity around some mean saturated depth D. Rewrite eqn. (5) as 

𝜕2ℎ

𝜕𝑥2  +
𝑡𝑎𝑛 𝛽

𝐾 𝐷 𝑐𝑜𝑠2𝛽

𝜕ℎ

𝜕𝑥
 +  

𝑅(𝑥,𝑡)

𝐾 𝐷 𝑐𝑜𝑠2𝛽 
 =

𝑆

𝐾 𝐷 𝑐𝑜𝑠2𝛽 

𝜕ℎ

𝜕𝑡
, 0 ≤  𝑥 ≤ 𝐿  (9) 

In fact, this technique invokes linearization of the flow rate q around D, given by 

    𝑞 = −𝐾 𝑐𝑜𝑠2𝛽 {𝐷
𝜕ℎ

𝜕𝑥
+ ℎ 𝑡𝑎𝑛 𝛽 }   (10) 

The average saturated depth D of the aquifer is approximated using an iterative formula 𝐷 =
ℎ0+ ℎ𝑡

2
, where ℎ0 is the initial water table height and ℎ𝑡 is the varying water table height at 

time t, at the end of which D is approximated (Marino 1974).  

 

Analytical solution for transient water table rise in sloping aquifer 

Applying Werner’s (1946) transformation z = h2 – h0
2, and replacing h associated with the 

equation by D, average depth of flow equations can be written as  

𝜕2𝑧

𝜕𝑥2 −
𝑡𝑎𝑛 𝛽

𝐾 𝐷 𝑐𝑜𝑠2𝛽

𝜕 𝑧

𝜕𝑥
+  𝑄 =

𝑆

𝐾 𝐷 𝑐𝑜𝑠2𝛽 

𝜕𝑧

𝜕𝑡
  

    

𝜕2𝑧

𝜕𝑥2 − 𝛼 
𝜕 𝑧

𝜕𝑥
 +  𝑄 =

1

𝛾

𝜕𝑧

𝜕𝑡
   (11) 

where 𝛼 =  
𝑡𝑎𝑛 𝛽

𝐾 𝐷 𝑐𝑜𝑠2𝛽
,  

1

𝛾
=

𝑆

𝐾 𝐷 𝑐𝑜𝑠2𝛽 
and 𝑄 =  

𝑅(𝑥,𝑡)

𝐾 𝐷 𝑐𝑜𝑠2𝛽 
 

The corresponding initial and boundary conditions become 

𝑧(𝑥, 𝑡 =  0)  =  0 ;  0 <  𝑥 < 𝐿  (12) 

𝑧(0, 𝑡 ) =  𝑧1;  𝑡 > 0   (13) 

𝑧(𝐿, 𝑡 ) =  𝑧2;  𝑡 > 0   (14) 

The solution to this boundary value problem is given as: 
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𝑧(𝑥, 𝑡)

=  
1

𝛼(𝑒𝐿 𝛼 − 1)
(𝛼 (8𝑒𝐿 𝛼

− 8) (∑(−
1

(𝑒𝐿 𝛼 − 1)(𝐿2𝛼2 + 4𝜋2𝑛2)
(4(− 𝑠𝑖𝑛ℎ (

(𝐿2𝛼2 + 4𝜋2𝑛2)𝛾𝑡

4𝐿2
)

∞

𝑛=0

+ 𝑐𝑜𝑠ℎ (
(𝐿2𝛼2 + 4𝜋2𝑛2)𝛾𝑡

4𝐿2
)) 𝜋𝑛 (𝑐𝑜𝑠 ℎ (

𝑥𝛼

2
) + 𝑠𝑖𝑛ℎ (

𝑥𝛼

2
) ) ((−1)𝑛𝑒

−𝛼𝐿

2 ((
𝛼2𝑧2

4

+ 𝑄)𝐿2+ 𝜋2𝑛2𝑧2) − (−1)𝑛𝑒
𝛼𝐿

2 ((
𝛼2𝑧2

4
+ 𝑄)𝐿2+ 𝜋2𝑛2𝑧2) + (𝑒𝐿 𝛼 − 1)((

𝛼2𝑧1

4

+ 𝑄)𝐿2+ 𝜋2𝑛2𝑧1)𝑠𝑖𝑛(
𝑛 𝜋 𝑥

𝐿
)))) 

         + (𝑄𝑥 + 𝛼𝑧1)𝑒𝐿 𝛼 + ((−𝑧1 + 𝑧2) 𝛼 − 𝑄𝐿) 𝑒𝑥𝛼 − 𝑧2 𝛼 +  𝑄(𝐿 − 𝑥)) (15) 

In a specific case of an analytical solution, if the impermeable barrier is horizontal z(x, t) can 

be obtained from eqn. (11) by substituting  𝛽 = 0 that implies 𝛼 =  
𝑡𝑎𝑛 𝛽

𝐾 𝐷 𝑐𝑜𝑠2𝛽
=

0 ℎ𝑒𝑛𝑐𝑒  𝑡𝑎𝑛 𝛽 = 0. So, above equation takes the form, 

𝑧(𝑥, 𝑡) = (∑ −
 2 

𝑛3𝜋3 (− 𝑠𝑖𝑛ℎ (
𝜋2𝑛2𝛾𝑡

𝐿2 ) + 𝑐𝑜𝑠ℎ (
𝜋2𝑛2𝛾𝑡

𝐿2 ))( (𝑄𝐿2 + 𝜋2𝑛2𝑧1)∞
𝑛=0 sin (

𝜋𝑥𝑛

𝐿
)))(16) 

ℎ2(𝑥, 𝑡) − ℎ0
2(𝑥, 𝑡)

= (∑ −
 2 

𝑛3𝜋3
(− 𝑠𝑖𝑛ℎ (

𝜋2𝑛2𝐾 𝐷 𝑐𝑜𝑠2𝛽𝑡

𝑆 𝐿2
)

∞

𝑛=0

+ 𝑐𝑜𝑠ℎ (
𝜋2𝑛2𝐾 𝐷 𝑐𝑜𝑠2𝛽𝑡

𝑆 𝐿2
))( (𝑄𝐿2 + 𝜋2𝑛2𝑧1) sin (

𝜋𝑥𝑛

𝐿
))) 

So,  

ℎ2(𝑥, 𝑡) = ℎ0
2(𝑥, 𝑡) + (∑ −

 2 

𝑛3𝜋3
(− 𝑠𝑖𝑛ℎ (

𝜋2𝑛2𝐾 𝐷 𝑐𝑜𝑠2𝛽𝑡

𝑆 𝐿2
) +∞

𝑛=0

𝑐𝑜𝑠ℎ (
𝜋2𝑛2𝐾 𝐷 𝑐𝑜𝑠2𝛽𝑡

𝑆 𝐿2
))( (𝑄𝐿2 + 𝜋2𝑛2𝑧1) sin (

𝜋𝑥𝑛

𝐿
)))     

 (17) 

Steady State Solution 

Steady state solution for eqn. (15) can be obtained by substituting 
𝜕𝑧

𝜕𝑡
= 0 on the right side. 

The solution of the equation for the boundary conditions in eqns.  (13) and (14) is obtained 

as, 
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𝑧 =  
(𝑄𝑥 + 𝛼𝑧1 )𝑒𝛼 𝐿 + ((−𝑧1 +𝑧2 )𝛼 − 𝑄𝐿)𝑒𝛼 𝑥 − 𝑧2 𝛼 + 𝑄(𝐿 − 𝑥)

(𝑒𝐿 𝛼−1)𝛼
    (18) 

Thus eqn. (18) gives the steady state water table profile in a sloping aquifer with canals at 

two ends. 

For horizontal aquifer, a steady state solution can be obtained from eqn. (18) after expanding 

the exponential terms 𝒆𝜶 𝑳 and 𝒆𝜶 𝒙 in the series form. After neglecting the greater than 2nd 

order term and putting 𝜷 = 𝟎, above eqn. reduces to  

𝑧 = 𝑧1 (1 −
𝑥

𝐿
) + 𝑧2 

𝑥

𝐿
    (19) 

which is similar to the solution obtained by Mustafa (1987) for prediction of the steady-state 

water table profile in a horizontal aquifer. 

Numerical solution of the non-linear flow equation 

In order to examine the validity of linearization technique, analytic solution of the linearized 

Boussinesq equation in compared with the numerical solution of the corresponding non-linear 

equation. For this purpose, a fully explicit Mac Cormack finitedifference computational 

scheme (Mac Cormack 1969) is employed. To use this scheme, eqn. (5) is written as  

𝐶1
𝜕

𝜕𝑥
(ℎ 

𝜕ℎ

𝜕𝑥
) + 𝐶2 (

𝜕ℎ

𝜕𝑥
)   +

𝑅(𝑥,𝑡)

𝑆
=  

𝜕ℎ

𝜕𝑡
  (20) 

 

where 𝐶1  =  
𝐾𝑐𝑜𝑠2𝛽

𝑆
 and 𝐶2  =

𝐾 𝑠𝑖𝑛 2𝛽

2 𝑆
 

R. K. Bansal (2015), gave the corrected value of ℎ𝑘 ,𝑛+1 which is given as an arithmetic mean 

of ℎ ∗𝑘 ,𝑛+1and ℎ ∗∗𝑘,   𝑛+1 i.e., 

 

ℎ𝑘,   𝑛+1  =  
1

2
[ℎ𝑘,   𝑛 +  ℎ ∗𝑘,   𝑛+1 + 𝐶2

∆𝑡

∆𝑥
 (ℎ ∗𝑘,   𝑛+1 −  ℎ ∗𝑘−1,   𝑛+1 )  +

 𝐶1
∆𝑡

(∆𝑥)2  {ℎ ∗𝑘,   𝑛+1 (ℎ ∗𝑘+1,   𝑛+1 − ℎ ∗𝑘,   𝑛+1 )  −  ℎ ∗𝑘−1,   𝑛+1 (ℎ ∗𝑘,   𝑛+1 −

 ℎ ∗𝑘−1,   𝑛+1 )}] +  
𝑅(𝑥,𝑡)∆𝑡

𝑆
       (21) 

 

Mac Cormack scheme is conditionally stable. It is not possible to obtain a simple stability 

criterion for Mac Cormack scheme (Tannehill et al. 1975). Numerical experiments are carried 

out with various values of ∆𝑡 and ∆𝑥, and it is observed that the stability of the numerical 

solution requires 

∆𝑡 ≤ 0.06
(∆𝑡)2

𝐶1
; ∆𝑡 ≤ 0.9

∆𝑥

𝐶2
. 

Analytical Solution for Mustafa 

 

Mustafa (1987) proposed an analytical solution to describe spatial and temporal variation of 

the water table in a horizontal aquifer considering seepage from two canals and a constant 

recharge from the land surface. The solution by Mustafa is given as: 
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𝑧(𝑥, 𝑡)  =  𝑄 𝛾 𝑡{1 − [∑ ((−1)𝑛4 𝑖2𝑒𝑟𝑓𝑐(
𝑛𝐿+𝑥

√4 𝛾 𝑡
)∞

𝑛=0  +

∑ ((−1)𝑛4 𝑖2𝑒𝑟𝑓𝑐(
𝑛𝐿+𝐿 − 𝑥

√4 𝛾 𝑡
)∞

𝑛=0 ]}  +  𝑧1 ∑ (𝑒𝑟𝑓𝑐(
2𝑛𝐿+𝑥

√4 𝛾 𝑡
)  −  𝑒𝑟𝑓𝑐(

2𝑛𝐿+2𝐿 − 𝑥

√4 𝛾 𝑡
)) +∞

𝑛=0

  𝑧2 ∑ (𝑒𝑟𝑓𝑐(
2𝑛𝐿+𝐿 − 𝑥

√4 𝛾 𝑡
) −  𝑒𝑟𝑓𝑐(

2𝑛𝐿+𝐿 +𝑥

√4 𝛾 𝑡
))∞

𝑛=0      (22) 

 

Result and Discussion 

To demonstrate the combined effects of bed slopes and time varying localized charges, 

recharge variation is considered here to test the validity of the model and demonstrate its 

application in the prediction of water table fluctuation due to time varying recharge. The 

numerical values of various parameters are L=1,000 m, z0 = 0, z1 = (10.995)2, z2 = 

(10)2,
𝐾𝐷

𝑆
= 12,000

𝑚2

𝑑
, 𝐷 = √

(𝑧1+𝑧2)

2
= 5.244 𝑚 and S = 0.30. Numerical values of the 

slopes and intercepts for these linear elements are obtained by fitting elements of different 

segments of the exponential curves as shown below in fig 2(a, b and c). 

 

Fig 2(a) Illustrates the comparison of the water table profile for 𝜷 =  −𝟏𝟎𝒐 𝒇𝒐𝒓 𝑸 = 𝟎 

 

 

Fig 2(b) Illustrates the comparison of the water table profile for 𝜷 =  𝟎𝒐 𝒇𝒐𝒓 𝑸 = 𝟎 
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Fig 2(c) Illustrates the comparison of the water table profile for 𝜷 =  𝟏𝟎𝒐 𝒇𝒐𝒓 𝑸 = 𝟎 

It is observed that for horizontal aquifer the dynamic profile of mound evolved symmetrically 

about the center of the basins. 

Three different values of the sloping angle are considered, namely, 𝛽 =  10𝑜 , 0𝑜 𝑎𝑛𝑑 −
10𝑜 .Analytic values of water head are computed using eqn. (17) in which the mean saturated 

depth D of the aquifer is successively approximated using an iterative formula 𝐷 =  
(ℎ0+ ℎ𝑡)

2
,  

where ℎ𝑡 is the water table height at time t at the end of which D is approximated. Numerical 

experiments of various values of aquifer parameters indicate that the infinite sequence in the 

right-hand side of eqn. (17) converges very fast to a final value. We have taken 50 terms of 

the sequence to represent the sum of the whole infinite series. 

Performance of analytic solution is tested at 200 equally spaced grid points of length 1m for t 

= 2, 5, 10, 20 and 50 days as shown in fig 3(a, b, c and d). It is observed that the two 

solutions are in excellent agreement during the initial stages (t = 2, 5, 10, 20 days). As time 

increases e. g. 50 days, analytic solutions marginally underestimate the numerical solutions. 

In numerical solution the dimensionless time increment ∆𝑡 = 0.00001and ∆𝑥 =  0.01. 

 

Fig 3(a) Illustrates the comparison of the water table profile for t = 2 days 
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Fig 3(b) Illustrates the comparison of the water table profile for t = 5 days 

 

Fig 3(c) Illustrates the comparison of the water table profile for t = 10 days 

 

Fig 3(d) Illustrates the comparison of the water table profile for t = 50 days 

Distributions of water head for t = 2, 5, 10 and 50 days in 10o, 0o and − 10osloping aquifers 

are plotted against the spatial coordinate x in Fig 2(a, b and c), Fig 3(a, b, c and d), Fig 4(a, b 

and c) and Fig 5(a, b, c and d). The profiles of free surface develop in the form of 

groundwater mound which expands with time at varying rates. The water table height 

h2(x, t) − h0
2(x, t) at x = 5, 10, 15, 20….50. from the origin at time t = 2, 5, 10and 50is 
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calculated for Q= 0 (Fig 2(a, b and c) and Fig 3(a, b, c and d)and Q = 2 Fig 4(a, b and c) and 

Fig 5(a, b, c and d). 

 

Fig 4(a) Illustrates the comparison of the water table profile for 𝜷 =  −𝟏𝟎𝒐 𝒇𝒐𝒓 𝑸 = 𝟐 

 

Fig 4(b) Illustrates the comparison of the water table profile for 𝜷 =  𝟎𝒐 𝒇𝒐𝒓 𝑸 = 𝟐 

 

Fig 4(c) Illustrates the comparison of the water table profile for 𝜷 =  𝟏𝟎𝒐 𝒇𝒐𝒓 𝑸 = 𝟐 
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Fig 5(a) Illustrates the comparison of the water table profile for t = 2 days 𝒇𝒐𝒓 𝑸 = 𝟐 

 

Fig 5(b) Illustrates the comparison of the water table profile for t = 5 days 𝒇𝒐𝒓 𝑸 = 𝟐 

 

Fig 5(c) Illustrates the comparison of the water table profile for t = 10 days 𝒇𝒐𝒓 𝑸 = 𝟐 
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Fig 5(d) Illustrates the comparison of the water table profile for t = 50 days 𝒇𝒐𝒓 𝑸 = 𝟐 

In sloping aquifers, the profile remains symmetric during initial stages, however for large 

values of time, the phreatic surface becomes asymmetric and drifts along the bed slope 

justifying the extended Dupuit- Forchheimer assumptions. 

Initial discharge rate in the drains can be obtained by setting t = 0. With initial water head 

height h(0,t) = h1and h(L,t) = h2 for horizontal aquifer there is no exchange of water at the 

initial stage. 

 

Fig 6(a) Illustrates the comparison of the water table profile for t = 2, 5, 10, 20 and 50 

days 𝒇𝒐𝒓 𝑸 = 𝟎  𝒇𝒐𝒓 analytical solution for Mustafa 
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Fig 6(a) Illustrates the comparison of the water table profile for t = 2, 5, 10, 20 and 50 

days 𝒇𝒐𝒓 𝑸 = 𝟐  𝒇𝒐𝒓 analytical solution for Mustafa. 

Conclusion 

A new analytic solution of the Boussinesq equation was used to characterize water table rise 

between two canals in a sloping homogeneous, isotropic, unconfined aquifer receiving 

constant recharge. The new mathematical model presented here is based on Dupuit-

Forchheimer assumptions in which spatial coordinates of recharge basins are treated as 

additional parameters. Unlike existing studies restricted to Laplace transform which leads to 

solutions in terms of error function with complex argument, the present method includes the 

substitution with eigen value-eigen function method which produces the analytic solution for 

water head and flow rate in the form of fast converging infinite sequence. A computational 

example is considered to simulate the combined effects of bed slopes (upward, zero and 

downward). The study takes into consideration the following facts: 

 Analytical solutions of the linearized Boussinesq equation and the fully implicit finite 

difference numerical solution of the nonlinear Boussinesq equation were obtained to 

describe the transient water table rise between two canals.  

 The water table rise between two canals computed by the proposed analytical solution for 

the horizontal aquifer with or without recharge from land surface was closely compared 

with the values obtained from Mustafa’s(1987) solution.  

 With constant recharge the water table noticed a rise as compared to the case of no 

recharge. With increase in the slope of impermeable barrier, the minimum water table rise 

was found to shift towards the lower canal in the direction of the down slope.  

 The comparison of water tables computed from analytical and fully implicit finite 

difference numerical solutions shows that the difference in the values of water tables in 

the middle region decreases with the increase in time.  

 

This indicates that linearization of the governing equations results in over-estimation of the 

water table which is larger initially but decreases with time. 
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