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Abstract 

 

Standalone or residential microgrids (MG) are becoming increasingly common.  Their 

success is premised on optimal operational strategies like demand side management (DSM). 

It is not uncommon in optimization problems to deal with competing objectives in the context 

of multi-objective optimization. In a domestic MG, optimization objectives may encompass 

minimization of OPEX, maximization of consumers’ utility, and minimization of CO2 

emissions etc. This article employs a technique which transforms a bi-objective energy 

optimization problem into a single objective problem then solving the problem using the 

heuristic technique of binary particle swarm optimization (BPSO). The random phenomena 

associated with the statistical load profiles and multiple renewable energy sources (RESs) are 

modelled using established statistical ap-proaches. Results obtained using simulation show 

that the pro-posed model can minimize the OPEX of isolated MG whilst sim-ultaneously 

meeting the utility expectations of consumer. 
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Introduction 

 

Many countries are grappling with increasing demand for electricity whiles facing 

diminishing fossil fuels reserves, aging transmission and distribution infrastructure, the need 

for energy conservation, imperatives to reduce 𝐶𝑂2 emissions levels and general 

minimization of environmental impact of energy generation [1][2]. Technologies to extract 

electrical energy from abundant and freely available solar and wind energy have advanced to 

the level that for their energy demand some e.g.,  the Nordic countries in Europe target to 

have 100% RESs, [3][4][5] in the near future.  

Intelligent microgrid technologies incorporating distributed energy resources (DERs) are one 

of the possible means to mitigate energy demand challenges [6]. Typically, a microgrid 

consists of loads, battery energy storage systems (BESS), Renewable Energy Generators 

(REG) such as wind turbine (WT), photovoltaic (PV) modules, Diesel Generators (DGs), 

Fuel Cells (FC) etc.  A MG can operate in grid tied mode or in isolated mode [7]. The major 

shortcoming of RESs is their intermittency [8], [9] and  stochastic behavior. Due to this 

stochasticity in both output and load, the uncertainties that impact the operation of MG 

emanate from both supply and demand side. Within such an environment balancing supply 

and demand requires systematic control and regulation [5][10]–[12].   

 

Review of Previous Work 

 

DSM has become a crucial methodology to balance supply and demand in MGs.  This helps 

to mitigate microgrid instability that can be induced when demand is more than generation or 

the reverse. Excess energy supply can also result in “spill-over” problems which induce 

instability in QoS parameters such as voltage profile and frequency. The enabler of DSM is 

information and communication technologies (ICT), as well as advanced smart metering 

technologies (ASMT) [2]. For successful implementation, DSM depends on pricing models 

that incentivize optimal usage of electrical power according to on-peak or off-peak demand 

times. Tariffs such as Critical Peak Pricing (CPP), Real Time Pricing (RTP), Inclining Block 

Rate Tariff (IBRT) and Time of Use (ToU) are commonly used,[13]. Without energy 

management in MGs reliability, power quality, sustainability will suffer impairing the very 

growth of these environmentally friendly technologies. 

  System that manage customer consumption of power in response to supply conditions 

are generally referred to as Demand Response (DR). DSM is a broader concept than DR as it 
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encompasses techniques that include energy efficiency whereby energy consuming devices 

automatically adjust their operating regimes within the order of seconds with the objective of 

increasing the diversity factor for a given set of  loads [14].  The literature [15][16][17][18] 

give expositions of  developments in pricing signals for electricity distribution systems and 

reviews some of the available demand-response programmes. Studies on relevant DR smart 

technologies and markets are covered in [19] [20]. The authors demonstrate the extent of 

energy savings and other efficiencies. attainable Traditionally DSM was applied to energy 

consuming loads with the SG hosting easily controllable energy sources such as PV, WT and 

BESS. More flexibility for DR is introduced from the generation side. The operational 

strategy of MGs in the context of DR involves optimization, which considers all the 

components in addition to the traditional loads.  Optimization simulations [21] using GA 

algorithm have shown that DR based on traditional load curtailment can achieve reduction of 

grid power whiles simultaneously increasing RES supply to the grid.  

A critical analysis of state-of-the-art techniques for power scheduling in smart homes is 

provided in [22][23] with  possible future directions for research. Of the many exact, games 

theory approach and metaheuristic DR algorithms techniques [24][25], the literature lacks 

clarification on the suitability of methods  applicable to specific real practical problems.  For 

simpler models focusing on a single time instant optimization, the optimal solution can be 

found easily in closed form or by polynomial algorithms [26]. However,  optimization 

problems that investigate discrete time horizon consisting of none homogeneous time periods, 

use heuristics solvers which sometimes result in suboptimal solutions,  [26].  

With DSM, the focus is the interaction between the overall microgrid control vs demand 

experienced by different end-user sub-microgrids.  Exact load demands are hard to know, yet 

the elasticity of the systems will be low without demand management and QoS may also 

worsen [27]. Direct load control methods can deal with unpredictable load changes, but they 

compromise users’ comfort [16], [28]–[31]. Various microgrid control methodologies have 

been enunciated in the literature [32][33]. Heuristic techniques [34] dominate the landscape. 

Demand compensation and proper energy marketing models are still subjects of much active 

research [35].    

The development of smart ways of energy utilization at the consumer end  is a top priorities 

across the globe  e.g., the European Strategic Energy Technology Plan [36] and by extension 

realization of Renewable Energy Directive II [37]. The concept of Smart Home (SH) towards 

energy efficiency has gained global traction. SH refer to residences, apartments, etc. [38] 

equipped with smart meters, controllable loads, RES or BESS systems making-up 
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autonomous, and reliable energy supply systems [39] [40][41].  Key variables in these 

systems i.e., RES yield, electricity market price and residential consumers’ energy demand 

are stochastic in nature. Home Energy Management Systems (HEMS) to schedule local 

generation and consumption are therefore imperative. [42]. Some of the energy management 

algorithms are  explored in [43]. 

Various DR methods targeted at load flatting and peak clipping, have made it feasible for 

prosumers in the  residential and other sectors to accrue financial benefits by selling 

electricity to the grid or optimizing usage of costly grid electricity [44]. An algorithm for 

utilities and prosumers to reduce  demand at specific times when aggregate network load 

demand is high is presented in [45].  The algorithm is based on Day Ahead (DA) energy cost 

minimization via optimizing energy consumption in SHs equipped with AMI and smart 

appliances.  In this instance the optimization algorithms only flatten the load curves, the duel 

problem of cost reduction still requires matching ToU tariffs carefully designed by the 

electricity utility. Success of the optimization plus attractive tariffs can entice consumers into 

flexible and pay less energy saving DSM schemes. 

The contributions of this paper is that a grid-tied microgrid       under DSM is modelled 

subject to load uncertainties and REGs. Binary particle swarm optimization is used on the 

dual probabilistic problem involving both load and RES generation uncertainty.  Dynamic 

Weighted Aggregation (DWA) is applied to deal with dual-objectivity of the optimization 

problem  [46]. Constraints of power-shiftable appliances, time-shiftable appliances are 

subject to user choices.   

The subsequent sections of the paper are organized as follows; Section III illustrates structure 

of a radial grid-tied residential MG architecture and model elements. Section IV formulates 

the mathematical optimization problem and outlines the solution technique. This is followed 

by section V and VI where simulation results and conclusions are done. 

 

Grid-Connected Residential MG 

 

Fig.1 shows a schematic of a typical MG model. The MG has WTs, PV generating modules, 

DEs, MTs, BESS, and smart households where each household has AMI. The microgrid has a 

central Microgrid Network Controller (MGNC) that co-ordinates the ICT infrastructure. The 

model considered in this paper has 𝑁  smart prosumers. Each prosumer has installed a smart 

meter (SM) to which various smart appliances connect. A network aggregator links all 𝑁 

smart meters in a neighborhood. It receives consumption information from all households and 
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forwards the same data to Central Control algorithm for optimization of the MG operation. 

Optimization and optimal scheduling of household appliances is done by the aggregator. 

𝛼𝑖
𝑐, 𝛼𝑗

𝑑 , 𝐶𝑗
𝑒, 𝐷𝑗

𝑓
 etc. are unit consumption parameters for each MG. 

 

A. WTs and PV Stochastic Power Generation 

Both the WTG and PV output power depend on stochastic wind velocity and solar radiation 

phenomenon. Due to this behavior, the power output of the two RES are represented by 

stochastic models such as Weibull, Beta, and Log-normal pdf. Wind and solar power 

generation are modeled by the Weibull distribution function  [47] and Beta distribution 

function respectively [48][49]. In each hour the required pdf parameters of wind variation and 

solar irradiation are estimated from the previously hourly data. The models of wind and solar 

power generation are given by (1)-(3). The Weibull pdf distribution function 𝑓𝑤(𝑤) at the tth  

hour and wind speed  𝑤 is mathematically represented as; 

                     𝑓𝑤(𝑤) = {
𝑣

𝜆
(

𝑤

𝜆
)

𝑣−1

. 𝑒−(
𝑤

𝜆
)

𝑣

,      𝑤 ≥ 0  

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
               (1) 

𝜐 is the shape, and 𝜆 the scale parameters respectively at time t. The Weibull distribution 

interpolates between the exponential and Rayleigh distributions and for certain shape values 

of 𝜐 and 𝜆, the Rayleigh distribution is closer to the wind distribution function. Based on 

estimated speeds the generated power from the wind can be estimated by (2). 

              𝑃𝑤 = {

0,      𝑣 ≤ 𝑣𝑖𝑛,   𝑣 > 𝑣𝑜𝑢𝑡

𝑃𝑟 (
𝑣−𝑣𝑖𝑛

𝑣𝑟−𝑣𝑖𝑛
),    𝑣𝑖𝑛 ≤ 𝑣 ≤ 𝑣𝑖𝑛

𝑃𝑟 ,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                         (2) 

Pr is the rated WT power output. 𝑣𝑟 rated speed,  𝑣𝑛 is rated cut-in and 𝑣𝑜𝑢𝑡  is rated cut out 

wind turbine speed.  

The Beta probability density function  (3) [2], is a continuous 

distribution function characterized by  shape parameters. It is used to model uncertainty of 

success of an event of which there are two outcomes, either success expressed by  x or failure 

expressed by 1 − x. In (3), the beta density function, a and b are the lower and upper limits of 

the solar irradiance data respectively. 𝑝 and q  are shape parameters of the Beta distribution 
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Fig. 1. Configuration of the residential MG model 

function. 𝑥 is the variable under analysis i.e. solar irradiance. The estimation of the shape 

parameters 𝑝 and 𝑞 given solar irradiance data is done from the moments’ method[5], 

  𝑔(𝑥′) =
1

B(𝑝,𝑞)

(𝑥′−𝑎)
𝑝−1

(𝑏−𝑥′)
𝑞−1

(𝑏−𝑎)𝑝+𝑞−1 ,          

  𝑥′ =
𝑥 − 𝑎

𝑏 − 𝑎
 

                       B(𝑝, 𝑞) = ∫ 𝑥′𝑝−1
∙ (1 − 𝑥′)𝑞−11

0
d𝑥′               (3) 

where 0 < 𝑥′ < 1  for 𝑝 > 1  and 𝑞 > 1. Integration of (3) configures the probability 

distribution function of solar irradiance for the occurrence for any value of irradiance, 𝑥 

within the considered interval. The hourly produced energy 𝑃𝑝𝑣 from the PV module is 

expressed as, 

               𝑃𝑝𝑣 = η𝑃𝑃𝑉,𝑟 ∙ 𝑓𝑃𝑉 (
𝐺𝑇

𝐺𝑇,𝑆𝑇𝐶
) ∙ (1 − α𝑝(𝑇𝑐(𝑡) − 25𝑜))           (4)  

 𝜂 is efficiency and  𝑃𝑃𝑉,𝑟 is rated power output of PV panel under STC.  𝑓𝑃𝑉(∗) is the 

derating factor of panel, 𝐺𝑇 is solar radiation on a tilted surface,  𝐺𝑇,𝑆𝑇𝐶 is radiation under 

STC.  T𝑐(𝑡) is the PV cell temp temperature at time t. The power from the PV station will be 

the integral of  (4) multiplied by the Beta (3) pdf. Over a period, the average PV energy is 

average power times the number of hours. 

 

B. Uncertainty modelling of Non-Shiftable Loads (NSA). 

One of the main hurdles of modelling home electricity load curves is availability of load data 

for given occupancy. The demands of data requirement has limited the implementation of 

current approaches [50]. Load curves depend on occupancy and consumption activities. Over 

prolonged time periods, electricity consumption dependents on external variables that 
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evidently have similar diurnal patterns over successive years such as the mean outside 

temperature and daylight hours [3]. The domestic daily electricity consumption is easily 

obtained from household monthly/seasonal energy bills. Over 24 hours, the load pattern has 

generally four identifiable zones, [50] [51][52][53]. 

Kernel estimators smooth out the effect of each detected data point within a local region of 

that point.  The influence of the actual data point 𝑥𝑖 to the estimate at a point �̂�𝑖 depends on 

how far apart  𝑥𝑖 and �̂�𝑖 are. The degree of this influence is dependent upon the shape of the 

kernel function adopted and the bandwidth it is accorded. The Kernel Density Estimation 

(KDE)[54] is a nonparametric estimation technique[2] whose pursuit is to approximate a pdf 

 Ψ(𝑥)from data observation barring assumptions on prior knowledge of shape of the data 

distribution. This estimate Ψ̂(𝑥) of  Ψ(𝑥) is constructed from 𝑛 data points as; 

 

                      Ψ̂(𝑥) =
1

𝑛𝜆
∑ 𝐾(𝑢)𝑛

𝑖=1 ,  𝑢 =
𝑋−𝑋𝑖

𝜆
                      (5) 

 

Where  𝑋𝑖 = 𝑋1, 𝑋2, … , 𝑋𝑛 are 𝑛 sample observed data points λ ∈ (0, ∞) is bandwidth. The 

kernel function K(∗) is a non-negative function such that ∫ 𝐾
∞

−∞
= 1.  A number of choices 

for the Kernal function exist such as uniform, triangle, epanechnikov but the gaussian kernel 

(6) is used. 

                                K(𝑢) =
1

√2π
Exp(−𝑢2)                      (6) 

 

The value of the bandwidth 𝜆 is estimated using Scott’s rule of thumb[55].  The bandwidth of 

the kernel is a free parameter  with  a strong influence on smoothness of the resulting 

estimate.  Small 𝜆 leads to spiky estimates (not much smoothing) while larger 𝜆 lead to over 

smoothing. 

                                      𝜆 = (
4�̂�5

3𝑛
)

0.2

                                   (7) 

σ̂  is standard deviation and n is size of observed data [2].  Optimal bandwidth is commonly 

chosen using Asymptotic Mean Integrated Squared Error method (AMISE).  Power 

demanded from a MG is uncertain given the random daily demand of various prosumers and 

weather elements.  
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C. Uncertain MG load Model 

Currently, it is often difficult to obtain private domestic energy consumption demand data. 

House electricity usage depends on activities of the occupants and appliances that are 

switched on at a given time. Load models of domestic electricity consumption can be derived 

from active occupancy patterns, and activity profiles. A synthetic and reconfigurable high 

resolution electricity load demand generator accounting for  main home appliances freely  

downloadable[56] was used. This model can be re-configured to own requirements.  

Other load modeling methodologies underpinned by requiring smaller samples of individual 

demand profiles can be processed with highly-efficient synthetic demand simulation models 

[57]. Such methods can be applied to yield high-resolution individual synthetic profiles, 

which in turn can be used to generate aggregated demand profiles. Prediction engines like 

ANN can self-learn then carry out prediction upon training. In smart homes they can be used 

to forecast the PV power yield and load demand. The literature has many types of ANN for 

such applications [58]. 

The uncertain hourly load for both time shiftable appliances(TSA) and power shiftable 

appliances (PSA) can be represented by normal distribution [50]. The total load demand of 

none-shiftable loads (NSA) imposes the most random constraints in the model. For a variable 

𝑥, with mean 𝜇 ̅and standard deviation 𝜎 the normal distribution function is;  

                                   𝑓(𝑥) = 𝛼
1

√2πσ
𝑒

−
(𝑥−μ̅)2

2𝜎2                          (8) 

For a given MG, if the corresponding half hourly normal distribution parameters are �̅�𝑖 and  

𝜎𝑖  then the overall MG daily load can be formulated as; 

  (9) 

𝛽𝑖 is a base load peak shifting parameter and 𝛼𝑖  is the peak scaling factor of the synthesized 

load, Figure 1. 
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Figure 1.House synthesized Load using Gaussian pdf Kernel 

From the top in Figure 1, the total, morning and afternoon synthesized loads using normal 

distribution kernel.  

Optimization Formulation 

A. MG Cost function 

The optimal strategy is formulated with dual objectives i.e. minimization of daily operational 

cost and minimization of consumers’ discomfort each day. The cost is made up from REGs 

and costs elements from energy trading with   the main grid as the MG can be buying or 

selling electrical energy. This objective function is formulated as; minimize, 

  (10) 

𝑃𝑖
ℎ , Ω𝑖

ℎ and Ω𝑠𝑡𝑜
ℎ  are the output power, generation and storage costs of ith dispatchable REG 

at time instant ℎ.  𝑃𝑓𝑔
ℎ   and  𝑃𝑡𝑔

ℎ  represent power  sold to and bought from the main grid at 

time ℎ.  ℯ𝑐 (R/kWhr) is the maintenance cost of the ith REG.  H is the number of time slots in 

a day,  𝑒𝑏
ℎ  and 𝑒𝑠

ℎ are unit buying and selling energy price.  𝐸𝑆𝑡𝑠,𝑑𝑖𝑠
ℎ   is discharge rate over 

time ℎ of storage systems and 𝑚𝐸 is the unit maintenance cost. 

 

B. Consumers’ Comfort Index Formulation  

To the consumer, satisfaction in the DSM process means acceptable levels of comfort due to 

delayed appliances on-time. The mathematical measure of this comfort is normally an index 

whose value lies between 0 and 1.  Zero means complete discomfort, and 1 the opposite. For 

an appliance with 𝑥𝑘,𝑎𝑖

ℎ  nominal power consumption, and 𝑥′
𝑘,𝑎𝑖

ℎ
 curtailed power during the hth 

time interval,  discomfort or dis-utility function can be formulated as (11) or (12).  The 
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parameter, 𝜔𝑥  depends on type of appliance and the function has a minimum of zero when 

they is no deviation meaning power is supplied as demanded.    

                         υ = ω𝑥(𝑥𝑘,𝑎𝑖

ℎ − 𝑥′
𝑘,𝑎𝑖

ℎ
)

2
           or              (11) 

                        υ = |𝑇𝑠𝑡𝑎𝑟𝑡,𝑎𝑖

ℎ − 𝑇𝑒𝑛𝑑,𝑎𝑖

ℎ |                           (12) 

 Υ = ∑ ξ|𝑇𝑠𝑡𝑎𝑟𝑡,𝑎𝑖

ℎ − 𝑇𝑒𝑛𝑑,𝑎𝑖

ℎ |
𝜇𝑁

𝑖=𝑛                      (13) 

 

The comfort function due to an appliance on-delays [30] at 𝑡 = ℎ can be formulated as in 

(12).  For all the 𝑁 appliances of a household in each interval, this can be re-formulated as 

(13).  An alternative formulation [59] of user comfort as a function of delay is according to 

(14). 

           Υ =
∑ ξ|𝑇𝑢𝑛𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑠𝑡𝑎𝑟𝑡,𝑎𝑖

ℎ −𝑇𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑠𝑡𝑎𝑟𝑡,𝑎𝑖
ℎ |

μ
𝑁
𝑖=𝑛

∑ 𝑡𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑 𝑠𝑡𝑎𝑟𝑡,𝑎𝑖
ℎ𝑁

𝑖=1

,         (14) 

Where μ = 1,     ξ = 1  are design cost factors per choice. 

Combining (12) and (13) gives the discomfort due to appliances switch-on delays and power 

curtailment as,  

Discomfort  =  υ + Υ                           (15) 

 

B. DSM load shifting 

Table 1. Appliances Loading details 

 

 

CLASS OF 

APPLIANCE Hour

Rating, 

kW t_ON t_OFF LOT Diversity

Lighting: Single x 20 0.8 18:00 6:00 5 1.00

Fridges 0.7 1:00 0:00 12 1.00

PC's 0.3 1:00 24:00:00 8 0.83

Stove:Large Plates 2.1 6:00 22:00 3 0.83

Washing Machine 2.3 1:00 22:00 2.5 0.33

Audio  Sets 0.45 1:00 24:00:00 5 1.00

TV 0.1 1:00 24:00:00 6 1.00

Microwave 1 6:00 22 1 0.67

Dishwasher 1.5 15:00 22:00:00 2.5 0.83

Oven:Bake Element 1.5 14:00 16:00 0.5 0.67

Oven:Grill Element 1.5 14:00 16:00 0.5 0.50

Oven:Warmer 0.4 16:00 22:00 0.8 0.83

Kettel 2 6:00 23:00 0.5 1.00

Tooster 0.8 6:00 18:00 1 0.53

Cell Phone Chargers 0.084 1:00 24:00:00 5 0.17

Washing Dryer 1.2 18:00 6:00 4 0.13

Heater 1 18:00 23:00 5 0.33

Geysor 3 5:00 20:00 6 1.00

Ironing 1.5 6:00 16:00 3 0.20

Vacuum Cleaner 2 6:00 15:00 2 0.17

Pool Pump 0.75 1:00 12:00 8 1.00

Air Con 2.5 10:00 23:00 12 0.67

Others 0.25 1:00 24:00:00 8 1.00

None 

Interuptable 

Appliances 

Interruptable 

Appliances, <= 1 

Hour.

Flexible 

Appliances,  =>2 

Hr Interruption

El
as

ti
c 

Eq
u

ip
m

en
t

Operating Interval
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Home appliances can be shifted in time(TSA) or power(PSA) level or both.  In each 

MG/home identify 𝑁𝑡,𝑠ℎ  and 𝑁𝑝,𝑠ℎ as the number of TSAs and PSAs. The set of shiftable 

appliances can be  defined as 𝐴𝑠ℎ = {1,2,3, . . . , 𝑁𝑡,𝑠ℎ, 𝑁𝑡,𝑠ℎ + 1, 𝑁𝑡,𝑠ℎ + 2, . . . , 𝑁𝑡,𝑠ℎ + 𝑁𝑝,𝑠ℎ}. 

Only the sequencing is represented here. For each appliance, the power consumption vector 

over an 𝐻-hour period is defined by; 

𝒙𝑘,𝑎 = [𝑎𝑘,𝑎
1 , 𝑎𝑘,𝑎

2 , … , 𝑎𝑘,𝑎
𝐻 ]  for all appliances in 𝐴𝑠ℎ        (16) 

The start and stop time of shiftable appliances for the kth consumer are confined to the time 

window, 𝑇𝑎
𝑘 = [𝒯ℯ𝓃𝒹,𝒾 𝒯𝓈𝓉𝒶𝓇𝓉,𝒾].  The daily energy consumption 𝐿𝑘 over the operation time 

window 𝑇𝑎
𝑘of each appliance is given by (17), 

𝐿𝑘 = ∑ 𝑥𝑘,𝑎
𝑖𝑇𝑒𝑛𝑑,𝑖

𝑘

𝑖=𝑇𝑠𝑡𝑎𝑟𝑡,𝑖
𝑘                                      (17) 

The time constraints over which the 𝑖𝑡ℎ appliance can be scheduled is expressed as (18); 

𝑥𝑘,𝑖
ℎ   = {

0  𝑖𝑓  ℎ ≤ 𝒯𝑒𝑛𝑑,𝑖

   0    𝑖𝑓  ℎ ≥𝒯𝑠𝑡𝑎𝑟𝑡,𝑖
,   0 < ℎ < H      (18) 

 h ∈ [𝒯𝓈𝓉𝒶𝓇𝓉,𝒾 𝒯ℯ𝓃𝒹,𝒾]  

Depending on the type of appliance, they is a general delay of  ∆𝑡𝑑 , a multiple of the 

stepping operational time interval, ℎ.  For each appliance they is an upper and lower bound to 

the power consumption according to (19),  

    λ𝑘𝑖
𝑚𝑖𝑛 < 𝑥𝑘𝑖

ℎ < λ𝑘𝑖
𝑚𝑎𝑥,   i = 1,2, … , n;                  (19) 

 

Each 𝑘𝑡ℎ consumer′s 𝑖𝑡ℎ appliance,  𝑎𝑘,𝑖 has a  scheduling horizon between the time interval 

[𝒯ℯ𝓃𝒹,𝒾 𝒯𝓈𝓉𝒶𝓇𝓉,𝒾]. However, the actual scheduling range of each appliance depends on its 

LOT. We can denote scheduling horizon of any of the appliances by (19). ToU tariff is 

applicable in this model such that cost of a unit of energy consumed in each time interval h −

1 < t < h  changes but it’s known a priori to the HEMS. If ℯ 𝒽 represents this unit cost of 

energy per hour for the kth household, then the total hourly load 𝑙𝑘
ℎ, for all n-appliances is  

𝑙𝑘
ℎ = ∑ 𝑎𝑖𝑘

ℎ𝑛
𝑖 .    The total daily load ℒ𝓀, for the  kth  household is given by (17).   The 

corresponding hourly and daily costs of  

energy consumption of all appliances are given by (21) and (22) respectively. 

       ℒ𝓀 = ∑ ∑ 𝑎𝑖𝑘
ℎ𝑛

𝑖
𝐻
ℎ=1       (20) 

The corresponding hourly 𝒞𝑘
ℎ, and daily costs 𝒞𝓀, for the kth consumer are; Hourly cost for 

all n-appliances, 

                  𝒞𝑘
ℎ = ∑ ℯ𝒽 ∙ 𝑎𝑖𝑘

ℎ𝑛
𝑖                                        (21) 
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               𝒞𝓀 = ∑ ∑ ℯ 𝒽 ∙ 𝑎𝑖𝑘
ℎ𝑛

𝑖
𝐻
ℎ=1                                  (22) 

We consider the 𝑘𝑡ℎ  smart home with smart appliances  𝒂𝓀 ∈ {𝑎𝑖𝑘}𝑖=1,2,…,𝑛 where each 

appliance has its LOT, 𝒯𝒾.  Using  𝒯𝒾’s flexibility and operating time constraints, we can 

divide these appliances into categories or operational regimes for better scheduling and 

energy management, [60][61].  

 

C. Appliance Scheduling Algorithm 

The objective is to minimize the electricity cost given in (10) subject to a tolerable maximum 

switch delay time in (18).  𝜁𝑚𝑎𝑥,𝑎𝑖
≤ 𝐻 − 𝛽𝑎𝑖

. The on or off state of an appliances is 

represented by, 

                               𝛼𝑎𝑖
= {

    0  𝑖𝑓  𝑜𝑓𝑓
   1    𝑖𝑓  𝑜𝑛

                                  (23) 

PSO is a heuristic optimization technique based on swarm intelligence concepts. It is used 

solve high dimensional NL optimization problems where analytical methods experience slow 

convergence due to high dimensionality. Binary Particle Swarm Optimization (BPSO) is a 

discrete domain version of PSO.   BPSO depends on four parameters i.e. the particle initial 

position, velocity, best position, and global best position among rest of the particles. 

Initialization parameters were adopted from[12].  In general, we take each particle or feasible 

solution as being associated with N variables. The optimum point is tested by moving the 

particle in N-dimension space. Each particle can take the binary value 0 or 1. For a swarm 

with 𝑀 particles, each particle’s initial position vector 𝑃𝑖 and velocity vector  𝑉𝑖 are random.  

Each particle/feasible solution looks for the best feasible solution/particle in the vicinity 

according to valuation of objective function, this is the local best particle/feasible solution 

with co-ordinate, 𝜒𝑏 = {𝜒𝑏1, 𝜒𝑏2, . . . , 𝜒𝑏(𝑀−1)1, 𝜒𝑏𝑀}.  The most optimal of the positions or 

feasible solutions is called the global best and its co-ordinate is designated 𝜒𝑔𝑏 =

{𝜒𝑔𝑏1, 𝜒𝑔𝑏2, . . . , 𝜒𝑔𝑏(𝑀−1)1, 𝜒𝑔𝑏𝑀}. Each of the two positions particle update their velocity 

using (24); 

𝑉𝑖
ℎ+1(𝑗) = 𝜌𝑉𝑖

ℎ(𝑗) + 𝑐1𝑟1𝜒𝑏(𝑗) − 𝑆𝑖
ℎ(𝑗)(𝑐2𝑟2)𝜒𝑔𝑏(𝑗) − 𝑆𝑖

ℎ(𝑗)     (24) 

Where 𝑉𝑖
ℎ+1(𝑗) is the jth element of the velocity vector of the ith particle in the (h+1)th 

iteration.  𝑆𝑖
ℎ(𝑗)  is the position of the jth element of the ith feasible solution/particle in the hth 

iteration and 𝑟1 and 𝑟2 are random numbers with magnitude not greater than 1.  𝑐1  and 𝑐2  are 

pulls for the local and global best solutions respectively.  ρ  is the weight of the particle’s 

momentum and it is calculated as; 
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                            ρ = ρ𝑖𝑛𝑖𝑡𝑖𝑎𝑙 +
𝑡

𝑡𝑚𝑎𝑥
(ρ𝑓𝑖𝑛𝑎𝑙 − ρ𝑖𝑛𝑖𝑡𝑖𝑎𝑙)           (25) 

The parameter 𝑡  represents the current iteration and 𝑡𝑚𝑎𝑥 is maximum number of iterations.  

𝑆𝑖
ℎ(𝑗) is a binary function which in unity when , 𝑆𝑖𝑔 (𝑉𝑖

ℎ+1(𝑗)) > 𝑟𝑖  otherwise its zero. The 

sigmoid function is defined by [62],  

 

Sig (𝑉𝑖
ℎ+1(𝑗)) =

1

1 + 𝑒−𝑉𝑖
ℎ+1(𝑗)

                   (26) 

The velocity of the feasible point is confined to some maximum and minimum speed. The 

fitness for each feasible point is computed from the objective function (10). Feasible 

solutions are ordered in accordance with their fitness. When  𝑡𝑚𝑎𝑥 iterations have expired, the 

best feasible solution 𝑋𝑖,𝑏𝑒𝑠𝑡 is chosen as the optimal solution. 𝑋𝑖,𝑏𝑒𝑠𝑡 is a binary code that 

specifies on/off status of appliances for optimality in every period ℎ . Every instance the 

algorithm tries to utilize the RESs to minimize costs. 

 

Simulation Results 

 

The sizes of DG REGs used are adapted from [10]. The respective capacities of PV, WT, DE, 

MT and BESS are 2kW, 3.2kW, 4kW, 4.4kW and 4.8kW i.e. combined capacity of 18.3kW 

or 60A single phase load limited system. ToU tariff employed in the model is depicted in . In 

this simulation, each smart home has 2 PSAs and 3 TSAs. From the data in Table 1, those 

appliances are randomly selected. 

In Figure 3 is shown a typical day’s consumption load curves under various optimized 

scheduling. For the unscheduled scenarios as expected consumption is high during in the 

morning and evening hours resulting in high energy cost.  Once scheduling is introduced 

using BPSO, PSO  or IBFO, consumption and hence cost in the same order. Shifting of peak 

load in the optimized cases is also evident.  Clearly the DSM algorithms reduce the cost. Of 

the three techniques the BPSO is more promising.  

 



On Demand and Supply Management in Domestic Microgrids 

6538 

0
0
:0

0

0
2
:0

0

0
4
:0

0

0
6
:0

0

0
8
:0

0

1
0
:0

0

1
2
:0

0

1
4
:0

0

1
6
:0

0

1
8
:0

0

2
0
:0

0

2
2
:0

0

2
4
:0

0

50

100

150

200

250

300

350

T
a
ri
ff
, 
T

o
U

 (
Z

A
  
c
/k

W
r)

Time (Hrs)

 High Demand

 Low Demand

 Normal

 

Figure 2.  ToU Tariff Structure 
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Figure 3.  Simulated Results with and without DSM with different techniques 

 

Conclusion 

The benefits of optimization for the MG optimal has been simulated on three scenarios with 

and the other without demand side management scheme. In each case we seek to 

simultaneously optimize MG operational costs and consumers’ utility.  

This problem is cast as a multi-objective optimization problem subject to uncertain load and 

renewable energy generation. DSM can potentially mitigate operational costs incurred 

without bit.  However, there is a significant reduction in the operational costs with PSO 

compared to the uncontrolled case. The consumer sacrifices some comfort, nevertheless.  The 

PSO and IBFO techniques give somewhat convergent results.  The microgrid OPEX  reduces 

by a margin of 7.3% compared to uncontrolled case and the utility index(UI) improves by 

13.5%. The simulated scenarios show that the controlled microgrid with DSM can enable 

lower OPEX with maximized utility given the stochastic nature of the problem. 
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This article utilizes optimization techniques for MG with RES.  The random nature of both 

RESs and load are jointly considered with the help of statistical paradigms. When DSM is 

introduced different categories of appliances are included with hard constraints of different 

smart home appliances. The paper concludes by looking at the DSM effectiveness of three 

different heuristic techniques which clearly show the potential cost serving under such DSM 

regimes.  The optimization problem is solved using heuristic techniques. In terms of 

performance of the scheduling algorithms is seen that it tries to shift load from peak to toff-

peak periods. Simulation results show that, the electricity load is substantially reduced 
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