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Abstract 

Lung Cancer is one among deadly disease since it is aggressive in nature as well as deferred 

detections at advanced stages. The survival rate due to lung cancer mainly relies on prompt 

detection which is regarded as major challenge. Former approaches such as iW-Net based 

segmentation and Enhanced Inception-Residual Convolutional Neural Network (EIRCNN) based 

lung nodule detection are utilized for lung cancer detection. Though traditional iW-Net 

architecture outperforms in an improved way for CT medical images with challenging datasets 

through extensive experimentations, certain aspects are lagging pertaining to architecture. Yet 

further examination is required for optimal features selection in Lung nodule detection. To 

mitigate these issues, combination of Improved Stacked Autoencoder and Enhanced Pre-

Activation Residual Convolutional Neural Network (EPARCNN) is greatly utilized for 

pulmonary nodule detection. Also robust image enhancement in lung CT and X-ray is achieved 

by suggesting Fuzzy Normalized Gamma-Corrected Contrast-Limited Adaptive Histogram 

Equalization (FNGCCLAHE) with Nonsubsampled Contourlet Transform (NSCT) and 

segmentation through Sub-Intensity range-based Pulse-Coupled Neural Network (SIPCNN). 

LIDC-IDRI and X–ray image datasets are utilized for assessing suggested CoISAE-PARCNN 

system with respect to factors such as precision, recall, f-measure, Peak Signal-o-Noise Ratio 

(PSNR), time, error rate and accuracy. It is thereby validated through experimental outcomes that 

the proposed system outperforms well in contrary to various prevailing approaches like LOG, 

Fast-RCNN, EWRCNN and EIRCNN. 

Keywords: Computed Tomography, X-ray images, Stacked Autoencoder, Enhanced Pre-

Activation Residual Convolutional Neural Network, Fuzzy Normalized Gamma-Corrected 

Contrast-Limited Adaptive Histogram Equalization, Nonsubsampled Contourlet Transform. 

1. Introduction 

 Lung Cancer is one among dreadful cancers across world, but preliminary stage detection 

may help in improving survival rate. Generally small cell growth inside the lung corresponds to 

Cancerous (malignant) besides noncancerous (benign) pulmonary nodules. Crucial prognosis 

greatly necessitates malignant lung nodules detection at a preliminary stage [1]. Differential 
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diagnosis is highly demanded based on minor morphological changes, locations, besides clinical 

biomarkers since initial phase cancerous lung nodules are desperately alike to noncancerous 

nodules [2]. Malignancy probability is one of the greatest challenges for detecting primary 

cancerous lung nodules [3]. Several diagnostic techniques like clinical backgrounds, computed 

tomography (CT) scan exploration (morphological assessment), positron emission tomography 

(PET) (metabolic assessments), and needle prick biopsy analysis are deployed by physicians for 

diagnosing malignant lung nodules at preliminary stage [4]. The benign and malignant lung 

nodules differentiation is attained by typically aggressive approaches used by healthcare 

practitioners like biopsies or surgeries. Since lung is a fragile and sensitive structure, there arises 

high risk and increased patients’ anxieties. It is revealed from Globocan estimate of lung cancer 

that lung cancer in India is 70,275 (including all ages as well as both genders) with an age 

standardized incidence rate being 6.9 per 100,000 of population [5].Many research works has 

been carried out for CAD systems performance improvement of pulmonary nodule analysis. 

Conventional machine learning approaches like several gray-level thresholding, linear 

discriminate examination, distance transformation and Support Vector Machine (SVM)are 

utilized for lung nodules exploration while dealing with insufficient resources and dataset [6-7]. 

Conversely, Deep Learning approaches has grabbed the attention of many researchers over past 

ten years for medical imaging tasks. Lung nodule may vary in size, region cropping with a fixed 

size is not satisfactory which is mitigated by Faster R-CNN for lung nodule detection in [8].   

Faster R-CNN method is modified for realizing pulmonary nodules in precise and quick manner 

in hundreds of two-dimensional CT chest images in addition thereby mitigating radiologist 

burden and achieving performance improvement of pulmonary nodule detection. Solitary 

pulmonary nodules are differentiated from pulmonary nodules and small nodules by this model 

exhibiting definite clinical impact for lung cancer early screening. Nevertheless, authenticity is a 

vital issue though there still ensue multiple nodule candidates created through initial rough 

detection in this system.CT scans Radiological heterogeneity along with lung nodules variable 

sizes are the greatest challenge in this research which is addressed by multi-resolution 

convolutional neural network (CNN) for different levels feature extraction as well as resolutions 

from diverse depth layers in network for lung nodule candidate’s classification. Hence a robust 

nodule detection technique is always highly demanding for the reason of lung nodules 

heterogeneity as well surrounding background complexity. In [11],lung nodule detection is 

achieved using two-stage convolutional neural networks (TSCNN). There is no routine use of 

Computer-aided detection (CAD) systems by radiologists for pulmonary nodule recognition in 

medical practice regardless of their possible advantages. In [12], pulmonary nodules 

classification performance is enhanced in CT scans by suggesting a transferable texture 

Convolutional Neural Networks (CNN). This research integrates an Energy Layer (EL) for 

texture features extraction from convolutional layer by which network number of learnable 

parameters additionally decreases memory necessities besides computational complexity. CT 

scan analysis systems may succeed in huge number of false positive results in lung cancers 

diagnosis preliminary stage. Consequently, it is greatly necessitated for an effective and novel 

deep learning methodology for preliminary stage lung cancer diagnosis. Improved Stacked 

Autoencoder and Enhanced Pre-Activation Residual Convolutional Neural Network is greatly 

integrated in this research for lung pulmonary nodule recognition. The research contribution is 

listed below: 
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• A novel image enhancement technique termed as Fuzzy normalized gamma-corrected 

contrast-limited adaptive histogram equalization (FNGCCLAHE) with Nonsubsampled 

Contourlet Transform (NSCT) is introduced in this research. 

• Lung CT and X-ray images Segmentation is achieved greatly by proposing a novel 

segmentation method called sub-intensity range based simple pulse-coupled neural 

network (SISPCNN). 

• Feature representation learning  for accomplishing recognition termed as (CoISAE-

PARCNN) is presented by a novel deep learning framework which comprises Combined 

Improved Stacked AutoEncoder Deep Neural Network (ISAE-DNN) and Enhance Pre-

Activation Residual Convolutional Neural Network (EPARCNN). 

• In ISAE-DNN, three hidden layers are exploited for feature extraction followed through 

classification with EPARCNN at softmax classifier and feature reduction is completed by 

means of Intelligent Water Drop (IWD) optimization method.  

The paper organization is as follows: Proposed technique along with dataset description is 

presented in section 2. Investigational set-up and Outcomes are compared in Section 3.  

Summary of Inferences and forthcoming work are provided in Section 4. 

2. Proposed Methodology 

Fig 1 depicts the input original image. Initially, lung nodule image contrast is enhanced by 

suggesting a Fuzzy Normalized Gamma-Corrected Contrast-Limited Adaptive Histogram 

Equalization (FNGCCLAHE) with Nonsubsampled Contourlet Transform (NSCT).  High 

frequency noise removal is achieved using an adaptive threshold de-noising technique besides 

local image contrast enhancement is deployed at high-frequency sub-bands after de-noising. 

Over enhancement is evaded by maintaining low-frequency part deprived of being processed. 

Lung CT and X-ray images (as shown in Fig.1.) Segmentation is attained greatly by proposing a 

novel segmentation method called sub-intensity range based pulse-coupled neural network 

(SIPCNN). Feature representation learning for accomplishing recognition termed as (CoISAE-

PARCNN) is presented by a novel deep learning framework which comprises Combined 

Improved Stacked Auto Encoder Deep Neural Network (ISAE-DNN) and Enhance Pre-

Activation Residuel Convolutional Neural Network (EPARCNN). In ISAE-DNN, at softmax 

classifier three hidden layers are deployed for feature extraction subsequently classification with 

EPARCNN besides feature reduction is done via IWD. The Knowledge Discovery in Databases 

(KDD) is shown in Fig.2. 

 

 

 
CT-image 

 
X-ray image 

Fig.1. Input original image of CT and x-ray 
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Fig 2: overall KDD diagram of proposed CoISAE-PARCNN scheme 

2.1.LIDC-IDRI dataset 

 Lung Image Database Consortium image collection (LIDC-IDRI) dataset, which 

comprises of symptomatic and lung cancer screening thoracic registered tomography (CT) scans 

with marked-up annotated lesions and also X-ray imagesis utilized which comprises diagnostic 

as well as lung cancer screening thoracic computed tomography (CT) scans with marked-up 

annotated lesions. The CT image dataset is taken from the following link: 

https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI. And the X-ray image dataset 

is taken from the following link: https://www.kaggle.com/hmchuong/xray-bone-shadow-

supression. LIDC-IDRI is regarded as web-accessible international resource for computer-

assisted diagnostic (CAD) methods expansion, training, besides assessment for lung cancer 

recognition and identification. 

2.2.Image Enhancement 

The captured images contrast of lung CT and X-ray is likely to be low, which is considered as 

dominant artifact reducing image quality as well as obstructs extracting its beneficial information 

process. Histogram-based techniques are greatly deployed for artifact processing which is a 

common approach. Conversely, even if, contrast enhancement can be done by these techniques 

for dissimilar grayscale imaging applications, outcomes are not acceptable for CT images for 

reason of numerous faults, noise amplification, surplus brightness, and imperfect contrast. This 

work taking grayscale image then contrast enhancement is done using FNGCCLAHE where 

NGC is used for luminance reduction. Hence, Fuzzy Normalized Gamma-Corrected Contrast-

Limited Adaptive Histogram Equalization (FNGCCLAHE),an enhanced version is greatly 

utilized for offering improved brightness with better-quality contrast for CT images. An initial 

phase of a normalized gamma correction function is included for fine-tuning the processed image 

gamma which is regarded as the novelty part and thereby avoiding basic FNGCCLAHE common 

errors of excess brightness and imperfect contrast it yields. 

Input database 

Lung CT 

images 

Lung X-ray 

images 

Image Enhancement Process 

using FNGCCLAHE with 

NSCT 

Image segmentation for lung 

nodule prediction using 

SIPCNN 

Lung nodule Classification using CoISAEDNNEPARCNN 

Feature extraction 

using ISAEDNN 

  
  
  

  

  
  

  

  
      

  
  

  

  
  

  

  
  

Recognition using 

EPARCNN 

Performance comparison 

• Accuracy 

• Precision  

• Recall 

• F-measure 

• Error rate 

• Time 

• PSNR 

https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI
https://www.kaggle.com/hmchuong/xray-bone-shadow-supression
https://www.kaggle.com/hmchuong/xray-bone-shadow-supression
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FNGCCLAHE Method:FNGCCLAHE technique is greatly utilized for high contrast image 

generation when compared with original image. There are three stages in suggested fuzzy image 

enhancement specifically image fuzzification, membership values modification for image 

enhancement along with image defuzzification. The transformation of Gray level intensities to 

fuzzy plane is done amid 0 and 1 value range in image fuzzification. Set of fuzzy singletons in 

the fuzzy set notation is given by considering image f of size M × N and intensity level in range 

(0, L − 1). 

And it is indicated by membership function signifying certain gray level degree. The fuzzy 

matrix F conforming to this lung image is articulated as 

 

𝐹 = ⋃ ⋃
𝜇𝑖𝑗

𝑓𝑖𝑗

𝑁

𝑗=1

  0 ≤

𝑀

𝑖=1

𝜇𝑖𝑗 ≤ 1 

(1) 

where 𝑓𝑖𝑗  represents intensity of (𝑚, 𝑛)th pixel and its membership value. The conversion of 

original image f in spatial domain into fuzzy domain based on its region (i.e., dark or bright 

regions) is done through specific membership function. The values of above 0.5 is increased and 

decreasing those below 0.5 is done by reducing fuzziness of F Contrast intensification. For the 

reason of contrast intensification operator on fuzzy set F, alternative fuzzy set generation is done. 

Expression of membership function is as follows, 

𝑇(𝜇𝑖𝑗)

= {
2 ∗ (𝜇𝑖𝑗)

2
    0 ≤ 𝜇𝑖𝑗 ≤ 0.5 

1 − (2 ∗ (1 − 𝜇𝑖𝑗)
2

)    0.5 ≤ 𝜇𝑖𝑗 ≤ 1
 

(2) 

Lung image enhancement is the main target of this contrast enhancement which is greatly 

achieved through creating bright pixel brighter as well as dark pixel darker. The middle intensity 

valued pixels are not altered largely. Image enhancement pertaining to its respective region 

occurs when image conversion into fuzzy domain membership function modification is done. 

 NGCCLAHE is exploited for image F fuzzy plane. Poor contrast improvement is 

accomplished by  

CLAHE early application on low-contrast CT medical images and it can be used for clinical 

purposes [13]. Consequently, enhancing standard CLAHE performance is greatly desired in the 

meantime it has an abundant probable to be practical with present clinical routines comprising 

CT scans. 

Proposed NGCCLAHE:  

Gamma is regarded as significant property of all digital imaging system elucidating relationship 

amid a pixel’s luminance besides its numeric value. A gray-level transformation function applied 

on images for their imperfect luminance enhancement is regarded as gamma correction process. 

Power-law transformation function is greatly utilized for achieving this [14] and appropriate for 

multi-purpose function contrast manipulation in spatial domain [15]. The image imperfect 

intensity levels are greatly corrected by using this transformation [16]. The gamma γ value 

alterations varies input mapping to output intensities [17]. The power-law transformation is 

arithmetically characterized by: 

𝑅 = 𝐶𝑋γ (3) 

where R signifies gamma-corrected image; X denotes original image, in which X pixels values 

lies amid  0 to 1; c is  positive constant parameter controlling brightness; and γ is a positive 

constant parameter representing gamma value [18]. Nevertheless, parameter c is eliminated 
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because increasing its value may affect image details loss besides adverse brightness, which is 

not suggested for CT images. And so, optimized power-law P is deployed in this research, which 

is formulated as  

𝑃 = 𝑋γ (4) 

The controlling of transformation function can be done by changing gamma γ values which is 

main benefit of power-law transformation. But, the demerit is that increasing γ value may cause 

gamma image overcompensation as well as thereby darkening processed image despite the fact 

improving its contrast [19]. 

 

On the other hand, low-contrast images characterization is done through low-intensity dynamic 

range. As a result, this dynamic range expansion is greatly necessitated for fitting its full natural 

interval. In image processing background, dynamic range expansion also termed (normalization) 

is a process altering pixel intensity values range, where it is functional on images with reduced 

gray-level dynamic range. The term normalization is given since it takes image into a range 

which is quite common [20]. The subsequent normalization equation is exploited for  scaling 

linear pixels for suitable in its full natural range: 

𝑁 =
[𝑋 − min (𝑋)]

[max(𝑋) − min (𝑋)]
 

(5) 

Where X signifies input image, N denotes normalized image, min and max operators are utilized 

for getting maximum and minimum pixel values in a specified image, correspondingly. In this 

research, a recently established function titled Normalized Gamma Correction (NGC) is 

presented for exploiting gamma correction shortcoming as a crucial benefit aids in decreasing 

brightness as well as improving contrast while making an allowance for full dynamic range 

feature of normalization. The NGC equation is specified below 

𝑁𝐺𝐶 =
[𝑃 − min (𝑃)]

[max(𝑃) − min (𝑃)]
 

(6) 

Lastly, NGC function inclusion to CLAHE may suggestively enhances its performance, whereas 

this function aids in diminishing brightness besides enhancing degraded image contrast. 

Henceforth, CLAHE technique is greatly used for contrast improvement as well image 

brightness. Consequently, adjustments are done for  increasing brightness along with CLAHE 

unbalanced contrast for achieving an satisfactory visual superiority for processed images. The 

specified image contrast is enhanced by suggested NGCCLAHE in seven separate steps in 

Algorithm 1 and steps 2–7 have been formulated on basis of  [21, 22]. 

 

Algorithm 1: NGCCLAHE  

Step 1: NGC function is utilized in Equation 4 for image contrast adjustments as an initial 

processing phase.  

Step 2: The contrast adjusted image is divided into a number of equal-sized and non-overlapping 

regions entitled tiles, in which it possess M × N size: This division effects in three different 

groups of regions. The first group is termed as corner regions (CR), comprising four corner 

regions. Second group is termed border regions (BR), encompassing entire border regions, 

excluding corner regions. Third group is so-called inner regions (IR), containing remaining 

image regions. For instance, if a specified image size is 512 × 512, it can be allocated into 64 

regions with each possessing 8 × 8 size for decent statistical assessment attainment. Here, size of 

tiles is fixed to be 8 × 8. 
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Now, for every region, execute the succeeding: 

Step 3: Obtain region local histogram: In this step, number of grayscales possessing similar 

value is counted for every grayscale in region. The gathering process performs these counts for 

all grayscales is named histogram, which is attained through cumulative distribution function 

(CDF). For every region, consider M and N are number of pixels, ℎ𝑖,𝑗(𝑛) for 𝑛 =

 0, 1, 2, … , 𝑁 −  1 is (𝑖, 𝑗) region histogram. Now, conforming CDF is estimated as: 

𝑓𝑖,𝑗(𝑛) =
(𝑁 − 1)

𝑀
. ∑ ℎ𝑖,𝑗(𝑘)

𝑛

𝑘=0

 
(7) 

 

where ℎ𝑖,𝑗(𝑘) denotes pixel k histogram , and 𝑛 =  0, 1, 2, … , 𝑁 −  1.  

Step 4: Assess clip limit value: The clip limit 𝛽 can be obtained using ensuing equation: 

𝛽 =
𝑀

𝑁
(1 +

𝛼

100
 (𝑆max − 1) 

(8) 

where α denotes clip factor and its value lie amid 0 and 100. 𝑆maxsignifies maximum allowable 

slope, whose  value lie among 1 and 𝑆max.  

Step 5: Clip histogram that exceeding its related clip limit: This step alters histogram on basis of 

acquired clip limit via limiting maximum number of counts, for every pixel to β. This can be 

archived by retaining histograms that are less or equal to β, whereas clipping ones that exceed β.  

Step 6:Reorganize clipped histograms values to all histogram bins: A recursive uniform 

distribution of extra counts that exceeded clip limit is executed out between pixels with counts 

less than or equal to β. This once more shoves certain counts over clip limit. Consequently, 

resultant excess is redistributed again, and the process is repeated until clip limit is not exceeded 

through any counts (histogram bins) any more. Henceforth, redistribution of counts necessitates 

numerous iterations for every histogram.  

Step 7: Compute new pixel values by mapping functions according to new histogram 

redistribution: Here, three mapping functions are utilized for calculating new pixel values 

according to their locations for contrast-limited regions. For inner regions, four nearest 

neighboring regions mappings are used for obtaining mapping of each region quadrant. For 

instance, a definite pixel in quadrant 1 of (𝑖, 𝑗) region is mapped based on its horizontal and 

vertical distances from centers of (𝑖, 𝑗), (𝑖, 𝑗 −  1), (𝑖 −  1, 𝑗), 𝑎𝑛𝑑 (𝑖 −  1, 𝑗 −  1) regions. The 

new value  estimation of pixel p in quadrant 1 of (𝑖, 𝑗) region is given by: 

𝑝𝑛𝑒𝑤 =
𝑠

𝑟 + 𝑠
(

𝑦

𝑥 + 𝑦
𝑓𝑖−1,𝑗−1(𝑝𝑜𝑙𝑑) +

𝑥

𝑥 + 𝑦
𝑓𝑖,𝑗−1(𝑝𝑜𝑙𝑑))

+
𝑟

𝑟 + 𝑠
(

𝑦

𝑥 + 𝑦
𝑓𝑖−1,𝑗(𝑝𝑜𝑙𝑑) +

𝑥

𝑥 + 𝑦
𝑓𝑖,𝑗(𝑝𝑜𝑙𝑑)) 

(9) 

Where, r, s, x, and y represents definite distances. 𝑓𝑖,𝑗 (·) is a cumulative distribution function. In 

a similar way, new pixel values for quadrants 2, 3, and 4 of (i, j) region are also assessed. For 

border regions, neighborhood organization is divergent. Considering this, pixel neighborhood 

organization which is in quadrant 1 or 3 is alike to that of inner group regions, whereas it is 

diverse for quadrant 2 or 4 as one such situation of quadrant 2. The new pixel p value in quadrant 

2 of (𝑖, 𝑗) region is estimated as: 

𝑝𝑛𝑒𝑤 =
𝑠

𝑟 + 𝑠
𝑓𝑖,𝑗−1(𝑝𝑜𝑙𝑑) +

𝑟

𝑟 + 𝑠
𝑓𝑖,𝑗(𝑝𝑜𝑙𝑑) (10) 
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 In a similar manner, new pixel values for quadrant 4 of (i, j) region are assessed. For corner 

regions, diverse characteristics are perceived for dissimilar quadrants. Quadrant 4 has 

neighborhood organization like those of inner regions, while quadrants 2 and 3 have 

neighborhood organizations like those of border regions. Nevertheless, quadrant 1 is only one of 

its kind and there is no contact with other regions. The new value of pixel p in quadrant 1 of 

(𝑖, 𝑗) region is computed as: 

𝑝𝑛𝑒𝑤 = 𝑓𝑖,𝑗(𝑝𝑜𝑙𝑑) (11) 

where other corner regions mapping is done in a similar approach.  

Step 8:As a final point, recently found pixel values are kept in a new array in such a way that 

size of which is alike to original image to obtain new improvedimage. Then contrast limited 

adaptive histogram equalization is applied to new enhanced image fuzzy plane F as follows 

𝐹̅ = [𝑖𝑐−𝑚𝑎𝑥 − 𝑖𝑐−𝑚𝑖𝑛] ∗ 𝐹𝑘(𝑖𝑐−𝑖𝑛) + 𝑖𝑐−𝑚𝑖𝑛 (12) 

Where 𝑖𝑐−𝑚𝑖𝑛 and 𝑖𝑐−𝑚𝑎𝑥 be minimum and maximum permissible intensity levels, e optimal 

value of this clip limit is moreover fixed. 𝐹𝑘(𝑖𝑐−𝑖𝑛)be  cumulative distribution function (CDF) 

for input image 𝑖𝑐−𝑖𝑛which is specified as 

𝐹𝑘(𝑖𝑐−𝑖𝑛) = ∑ 𝑓𝑖(𝑖𝑗)

𝑘

𝑗=0

 

(13) 

where, probability density function is specified through 

𝑓𝑖(𝑖𝑘) =
𝑛𝑘

𝑁
 (14) 

Here N denotes total number of pixels and nk represents number of pixels with intensity level 𝑖𝑘 . 

As a final point, corresponding inverse membership functions are utilized for defuzzifying 

modified membership functions. 

𝐺(𝑥, 𝑦) = 𝑇−1(𝐹̅(𝑥, 𝑦)) = ⋃ ⋃ 𝐹̅(𝑥, 𝑦) ∗ (𝐿 − 1)

𝑁

𝑦=1

𝑀

𝑥=1

 

(15) 

where, G(x, y) represents (x, y)th pixels’ gray level in enhanced image. The inverse 

transformation of T is represented as 𝑇−1. It conforms to retransformation of membership values 

into gray‐level plane. 

NSCT based image denoising: NSCT is regarded as  

profound development of the contourlet transform (CT) which tend to possess shift invariant 

characteristic. Laplacian pyramid structure is greatly utilized by CT for multi-scale image 

decomposition that is achieved by directional filter banks (DFBs).NSCT comprises two 

components: nonsubsampled pyramid structure (NSP) and nonsubsampled Directional Filter 

Bank (NSDFB).  

NSCT helps in transformation of an image into a low-frequency lung image and: ∑ 2𝑙𝑗
𝑙=1 , where𝑙 

signifies number of decomposition level, high-frequency images. These images tend to possess 

similar size as original image. Proper threshold selection helps in image separation of high-

frequency sub-band comprising image noise. Different noise variance in both sub-band may 

ensue due to non-orthogonal NSCT. Correlation amid sub-bands plays a major role for 

maintaining more details when removing noise as well an adaptive thresholding is chosen in this 

research for denoising. The bayes shrink threshold is given by 

𝑇𝑏 = 𝑐
𝜎2

𝜎𝑥
2
 

(16) 
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Where c denotes constant amid 0 and 1. 𝜎2 represents noise variance, 𝜎𝑥
2 signifies signal 

variance  

𝜎 =
𝑚𝑒𝑑𝑖𝑎𝑛|𝑑𝑖,𝑗|

0.6745
 

(17) 

𝜎𝑥 = √max (
1

𝑚𝑛
∑ ∑ 𝑑𝑖,𝑗

2 (1, 𝑘) − 𝜎2, 0

𝑛

𝑗=1

𝑚

𝑖=1

) 

(18) 

The coefficients average in lth levels and kth direction is presented in Eq. 19. 

𝑆1,𝑘 =
1

𝑚 ∗ 𝑛
∑ ∑ 𝑑𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 
(19) 

once the decomposition level is 1, 21 sub-band coefficient matrices are acquired. The average is: 

𝑆1 = (∑ 𝑆1,𝑘

𝑛

𝑘=1

) /𝑛(𝑛 = 21) 
(20) 

Weighted factors computation in different directions are given by Eq.21: 

𝜆 = 𝑆1,𝑘/𝑆1 (21) 

Adaptive thresholding estimation in this research is given by: 

𝑇 = 𝜆𝑇𝑏 

 

(22) 

𝑑𝑖,𝑗
′ = {

𝑑𝑖,𝑗, 𝑑𝑖,𝑗 > 𝑇  

0,   𝑑𝑖,𝑗 ≤ 𝑇
 

(23) 

where, m denotes number of rows of sub-band coefficients matrix, n denotes  number of columns 

of sub-band coefficients matrix, 𝑑𝑖,𝑗 notates coefficient at (i,j) and 𝑑𝑖,𝑗
′  represents coefficient after  

lung image de-noising. 

2.3.Image segmentation using SIPCNN 

 Computational complexity is chiefly simplified through modulating internal activity and 

dynamic threshold which is achieved by novel PCNN image processing methods. It also obtains 

sub-intensity ranges for both segments through empirical or automatic parameter values. 

Yang et al. [23] suggested a new heterogeneous 

simplified pulse coupled neural network (HSPCNN) model  via three diverse SPCNN cells with 

diverse structures besides parameters. This approach is regarded as simple way for testing 

images segmentation into numerous regions based on their gray intensities. Automatic fixing of 

model parameters is done by simplified PCNN characteristics. The simple model PCNN is an 

artificial neural network possessing only a single layer besides no training is necessitated. The 

relation amid network neurons as well as image pixels is a one-to-one correspondence. In 

contradiction of other PCNN models, Chen et al.’s SPCNN model [24] resultant from Zhan et 

al.’s spiking cortical model (SCM) model [30] shows a substantial part for image segmentation 

in addition its dynamical equations expression is given by: 

𝐹𝑖𝑗[𝑛] = 𝑆𝑖𝑗 (24) 

𝐿𝑖𝑗[𝑛] = 𝑉𝐿 ∑ 𝑊𝑖𝑗𝑘𝑙𝑌𝑘𝑙[𝑛 − 1]

𝑘𝑙

 (25) 

𝑈𝑖𝑗[𝑛] = 𝑒−𝛼𝑓𝑈𝑖𝑗[𝑛 − 1] + 𝑆𝑖𝑗 (1 + 𝛽𝑉𝐿 ∑ 𝑊𝑖𝑗𝑘𝑙𝑌𝑘𝑙[𝑛 − 1]

𝑘𝑙

) 
(26) 
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𝑌𝑖𝑗[𝑛] = {
1, 𝑖𝑓 𝑈𝑖𝑗[𝑛] > 𝐸𝑖𝑗[𝑛 − 1]

0, 𝑒𝑙𝑠𝑒
 

(27) 

𝐸𝑖𝑗[𝑛] = 𝑒−𝛼𝑒𝐸𝑖𝑗[𝑛 − 1] + 𝑉𝐸𝑌𝑖𝑗[𝑛] (28) 

Where 𝑊𝑖𝑗𝑘𝑙 = [
0.5 1 0.5
1 0 1

0.5 1 0.5
] 

(29) 

𝛼𝑓 = log (
1

𝜎(𝑆)
) 

(30) 

𝛽 =
(

𝑆𝑚𝑎𝑥

𝑆′ ) − 1

6𝑉𝐿
 

(31) 

𝑉𝐸 = 𝑒−𝛼𝑓 + 1 + 6𝛽𝑉𝐿 , 𝑉𝐿 = 1 (32) 

𝛼𝑒 = ln (

𝑉𝐸

𝑆′

1−𝑒
−3𝛼𝑓

1−𝑒
−𝛼𝑓

+ 6𝛽𝑉𝐿𝑒−𝛼𝑓

) 

(33) 

In case of SPCNN, Neuron 𝑁𝑖𝑗 in position (𝑖, 𝑗) comprises two inputs: basic feeding input 𝐹𝑖𝑗[𝑛], 

representing an input stimulus 𝑆𝑖𝑗, linking input 𝐿𝑖𝑗[𝑛], representing eight neighboring 

outputsproducts, synaptic weight 𝑊𝑖𝑗𝑘𝑙as well as a weighing factor 𝑉𝐿. 𝑆𝑖𝑗 denotes original 

images normalized pixel intensities. Above inputs modulations are done by linking strength 𝛽 to 

obtain an internal activity 𝑈𝑖𝑗[𝑛]. It mainly comprises former internal activity modulated via 

decay factor𝑒−𝛼𝑓 . At this point, if internal activity 𝑈𝑖𝑗[𝑛] is more than dynamic threshold 

𝐸𝑖𝑗[𝑛 − 1], neuron 𝑁𝑖𝑗might fire (𝑌𝑖𝑗[𝑛]  =  1) as well as dynamic threshold abruptly rises by a 

weighing factor VE. Whenever internal activity 𝑈𝑖𝑗[𝑛] is less than dynamic threshold 𝐸𝑖𝑗[𝑛 − 1], 

(𝑌𝑖𝑗[𝑛] =  0)is not fired by neuron 𝑁𝑖𝑗,  dynamic threshold might fall via decay factor 𝑒−𝛼𝑒 . 

𝛼𝑓and 𝛼𝑒denote internal activity 𝑈𝑖𝑗[𝑛] and dynamic threshold 𝐸𝑖𝑗[𝑛] decay factors of 

respectively. More precisely, SPCNN comprises five significant parameters β, 𝛼𝑓, 𝛼𝑒, 𝑉𝐿, 𝑉𝐸 . 

These parameters can be fixed in an automatic way for object segmentation in multifaceted 

prospects. 

Image segmentation by using improved Sub-intensity range in SPCNN model: The simple 

pulse coupled neural network (SPCNN) dynamic properties can be clearly realized through final 

segmentation outcomes necessitating four iterations contained by first effective pulse cycle. 

SPCNN contains finite segmentation phases considerably when compared to preceding PCNN 

models in addition appropriate thresholds can be selected in automatic way for attaining regions 

segmentation at every iteration. 

The medical images using SPCNN helps in fragmenting object and background regions in third 

iteration as well as form segments in subsequent iterations additionally. Nonetheless, it yet 

necessitates for calculation of five key parameters besides definitely creates bad segmentation 

outcomes, specifically in high intensity regions. Consequently, a SIPCNN model is suggested for 

further computational complexity reduction as well enhancing image segmentation precision. 

SIPCNN model changes SPCNN five key parameters to three. Hence parameters combination αf 

and αe yield one parameter 𝛼, and parameter 𝑉𝐿 is eliminated on the basis of  a Parameter-

Adaptive (PA) -PCNN known as PA-PCNN[25]. Parameter 𝛽 only has a fine modification via 

comparing with SPCNN equation, parameter𝑉𝐸is altered to parameter V. The above three 
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adjusted parameters only comprises a  known variable 𝑆′, denoting  normalized Otsu 

thresholding. 

Parameter α  

𝛼𝑓and 𝛼𝑒signify SPCNN internal activity and dynamic threshold decay factors , correspondingly. 

The above two parameters combination in SIPCNN yields  one parameter α and its expression 

given by 

𝛼 = 𝛼𝑒 = 𝛼𝑓 = log (
1

𝑆′
) 

(34) 

In (33), parameter 𝑆 represents normalized OTSU thresholding. The distribution ranges of 𝑆′ and 

𝛼 are1 ≥  𝑆' > 0 and +∞ >  𝛼 ≥  0, respectively. Evidently parameter α increases with 

decrease in parameter 𝑆′. 
Parameter β  

To profoundly realise neuron firing settings, constant synaptic weight 𝑊𝑖𝑗𝑘𝑙in (29)  is reset as 

well as parameter β in (31), respectively. In SIPCNN, every neuron might get affected from its 

four neighboring neurons instead of eight in SPCNN, parameter 𝑊𝑖𝑗𝑘𝑙 is also rewritten as 

𝑊𝑖𝑗𝑘𝑙 = [
0 1 0
1 0 1
0 1 0

] 
(35) 

In contradiction of SPCNN, constant synaptic weight 𝑊𝑖𝑗𝑘𝑙 in SIPCNN is converted to four 

neighboring neurons sooner than eight by reason of lower computational complexity and 

smoother segmented contour for medical images. Since 𝑆𝑚𝑎𝑥 ≈  1in utmost images and 𝑉𝐿 = 1 

in (32), β value is reset as 

β =
1 − 𝑆′

4𝑆′
 

(36) 

Parameter v  

𝛽𝑉𝐿 would be an overall factor, conforming to (26). Simultaneously, parameter VL  valuein (10) 

is 1. Hence, parameter 𝑉𝐿 can be eliminated, and linking input expression is reformulated as 

follows, 

𝐿𝑖𝑗[𝑛] = β ∑ 𝑊𝑖𝑗𝑘𝑙𝑌𝑘𝑙[𝑛 − 1]

𝑘𝑙

 
(37) 

In SPCNN, 𝑉𝐸 can be reset as V by solely involving the normalized Otsu thresholding 𝑆′ since 

the parameter 𝑉𝐸 possesses a high computational complexity. Chen et al. [7] mathematical 

expression might be adopted as follows, 

{
𝑈𝑠ℎ𝑖𝑔ℎ[1 + 𝑙] ≤ 𝐸[1 + 𝑙 − 1]

𝑈𝑠𝑙𝑜𝑤[1 + 𝑙 + 1] > 𝐸[1 + 𝑙]
 

(38) 

In accordance with (37), internal activity highest value for unfired pixels in (1 + l)th iteration 

would be lower than dynamic threshold 𝐸[1 + 𝑙 − 1] in (1 +  𝑙 − 1)th iteration, conversely least 

value of  internal activity for fired pixels in (1 +  𝑙 +  1)th iteration would be greater than 

dynamic threshold 𝐸[1 +  𝑙] in the (1 +  𝑙)th iteration. Through this, the existence of a sub-

intensity range of firing pixels in the (1 + l + 1)th iteration is assured. As a result, 

𝑌[0], 𝑈[0] 𝑎𝑛𝑑 𝐸[0]initial values are fixed to 0. Instead of third iteration, if a normal image 

attains first segment in SPCNN second iteration, parameter l can be set as 0. Consequently, the 

firing neurons converge the criterion. 

{
𝑈ℎ𝑖𝑔ℎ[1] ≤ 𝐸[0]

𝑈𝑙𝑜𝑤[2] > 𝐸[1]
 

(39) 
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Nevertheless, under normal scenarios, 𝑈[1] is greater than 0 and 𝐸[0] is set to 0. This conforms 

first firing condition in (38). Consequently, the firing condition in (38) can be reset as follows, 

for acquiring the first image segment in second iteration. 

𝑈𝑙𝑜𝑤[2] > 𝐸[1] (40) 

 

With regard to (26), (34), (35) and (36), 𝑈𝑙𝑜𝑤[2] can be formulated as, 

𝑈𝑙𝑜𝑤[2] − 𝑆𝑙𝑜𝑤(1 + 𝑒−𝛼 + 4𝛽) = 𝑆𝑙𝑜𝑤𝑀[2] (41) 

 

In accordance with (28) and (34), E[1] = V. Hence the Eq. (41) can be reformulated as follows 

𝑆𝑙𝑜𝑤𝑀[2] > 𝑉 (42) 

Further, the normalized Otsu thresholding 𝑆′ that always produce a higher value than Slow is 

replaced by (43) as follows 

𝑆′𝑀[2] > 𝑉 (43) 

Additionally, V unique value is attained in light of maximum limiting in (43) 

𝑉 = 𝑆′𝑀[2] (44) 

In accordance with (36), (41) and (44), parameter V is simplified as 

𝑉 = 1 + 𝑆′2 (45) 

Subsequently, a small offset (−𝑆′8
) can be added further for enhancing the precision of image 

segmentation. Eventually, parameter V is expressed as follows, 

𝑉 = 1 + 𝑆′2 − 𝑆′8 (46) 

SPCNN and SIPCNN possess the similar expressions in the fundamental model, but they differ 

in terms of parameter setting procedures. In the SPCNN, Eqs. (24)–(28) remain unchanged, 

whereas Eqs. (29)–(33) is reformed to Eqs. (30)–(32), and (24) in MSPCNN. Consequently, the 

SIPCNN consists of Eqs. (1)–(5) on the basis of fundamental model, and Eqs. (12)–(14), and 

(46) from key setting parameters. Post-segmentation of lung image, the image is processed 

through feature extraction using ISAE-DNN. 

2.4.Feature extraction by using ISAE-DNN 

For lung nodule classification, this research study proposes the model that is based on Deep 

Neural Network using Improved Stacked Auto-Encoders (ISAE-DNN), since this work 

significantly engrossed by the valuable features of deep networks, as regards enhancing each 

evaluation metric of the classification issue. The Improved Stacked Auto-encoders accompanied 

by three hidden layer of feature extraction process and the softmax layer has employed to 

construct DNN classifier for lung dataset. To implement classification task, the softmax layer is 

attached to the final hidden layer. For the provided record, nodule class and non-nodule class 

probabilities are given by the output layer. 

Assume that ISAE network includes three layers, where the raw input is notated by 𝐼, the 

reconstruction of image is signified by 𝐼′, and the weights and bias terms for the 𝑙th layer 

encoder and decoder are denoted by 𝜔(𝑙,1), 𝜔′(𝑙,1), 𝑏(𝑙,1), 𝑏′(𝑙,1), correspondingly, i.e.𝑙 = 1, 2,3. 

As expressed in Eq. (47), initially ISAE maps input image into a hidden representation ℎ(𝑙). 

ℎ𝑖
(𝑙)

= 𝑓(𝐼′𝑖
(𝑙)

) 

𝑓(𝐼′𝑖
(𝑙)

) = 𝑠𝑓(𝜔(𝑙,1)𝐼′𝑖
(𝑙)

+ 𝑏(𝑙,1)) 

(47) 
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Subsequently, as defined in Eq. (48), the latent representation ℎ(𝑙) mapped back into a 

reconstruction ℜ from a corrupted version 𝐼′  as follows, 

𝑟 = 𝑔(ℎ𝑖
(𝑙)

) 

𝑔(𝐼𝑙) = 𝑠𝑔(𝜔′(𝑙,1)ℎ𝑙

+ 𝑏′(𝑙,1)) 

(48) 

in which, nonlinear activation function is defined as 𝑠𝑓and 𝑠𝑔. The reconstruction error ℜ𝑒(𝐼′, ℜ) 

between original input 𝐼′ and reconstruction ℜ represents the cost function for Stacked Auto-

Encoders (SAE),which can be expressed as,  

𝐽𝑆𝐴𝐸 = ∑ ℜ𝑒 (𝐼′(𝑙)
, 𝑔 (𝑓(𝐼′𝑖

(𝑙)
)))

𝑙=1,2,3

 
(49) 

Here, ℜ𝑒(𝐼′, ℜ) = ‖𝐼′ − ℜ‖2. Besides, hidden units of SAE have added with a sparsity 

constraints term ρ, and the objective function in Eq. (50) has presented with an additional penalty 

terms I. Consequently, the new cost function of ISAE can be revised as, 

𝐽𝑀𝑆𝐴𝐸(𝜃) = 𝐽𝑆𝐴𝐸 + 𝜒 ∑ 𝐾𝐿(𝜌 ∥ 𝜌𝑗)

𝑗=1 𝑡𝑜 𝑚 

 
(50) 

The cross-entropy within ρ and 𝜌𝑗 represents the additional penalty terms Kullback–Leibler 

divergence (KL) expressed in Eq. (6). 

𝐾𝐿(𝜌 ∥ 𝜌𝑗) = ∑ 𝜌 log
𝜌

𝜌𝑗

𝑚

𝑗=1

+ (1 − 𝜌) log
1 − 𝜌

1 − 𝜌𝑗
, 𝜌𝑗 =

1

𝑘
∑    ℎ𝑖

𝑘

𝑖=1

 

(51) 

 

In which, the target sparsity level for the 𝑗th unit is signified by 𝜌𝑗; the average activation rate is 

denoted by 𝜌𝑗; the number of hidden units is represented by m; and the weight for penalty terms 

is indicated by χ. Through identifying a set of over complete base vectors, the input data is 

represented, for which the sparsity dictionary encode is employed in all layers as regards 

attaining the optimal feature of image. Since the sparse feature representation created at the pixel 

level, the essential feature of an image is learned through the three hidden layer sparse coding 

approach [31]. Through cascading stacked auto-encoder using softmax classifier, the deep 

network classifier is created, during which the stacked auto-encoder may include two or more 

than two auto-encoders layers. The DNN classifier with ISAE includes three auto-encoders, 

which is depicted in Fig. 2. Consider the input vector fed into DNN as an input as {𝐼1, … , 𝐼𝑛}, 

variables as {𝑌1, … , 𝑌𝑛} and the corresponding output class. Specified training input image 

vectors, training approach tends to modify DNN parameters, as regards learning input vectors, 

and classifying respective output value accompanied by maximum accuracy. The following steps 

define method for the training of ISAE-DNN classifier. 

1. At first, the first autoencoder layer is trained with original input vector {𝐼1, … , 𝐼𝑛} with 

identical as target vector. This layer efforts for input reconstruction through deriving features 

{𝑐(1,1), … , 𝑐(1,𝑐)} with the structure of autoencoder.  

2. The second autoencoder layer training  is done by considering output vector as input vector 

and generates output vector of first autoencoder layer {𝑐(1,1), … , 𝑐(1,𝐶)} as input vector and 

generates output vector {𝑐(2,1), … , 𝑐(2,𝑅)}. Second autoencoder layer efforts to reconstruct input  

𝑐(1,𝐶); 𝑖 = 1,2, … , 𝐶. 
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3. The third autoencoder layer is trained by considering the output vector as input vector and 

generates output vector of the second autoencoder layer {𝑐(2,1), … , 𝑐(2,𝑅)} as input vector and 

generates output vector {𝑐(3,1), … , 𝑐(3,𝑈)}. The third autoencoder layer efforts for input 

reconstruction𝑐(2,𝑖); 𝑖 = 1,2, … , 𝑅. 

4. The stacked autoencoder is cascaded with softmax classifier layer. This layer is trained by 

considering third autoencoder layer's output, 𝑐(3,𝑖); 𝑖 = 1,2, … , 𝑈 as input vector and original 

class variables {𝑌(1), … , 𝑌(𝑁)} being target vector that is attained from training data.  

5. Ultimately, back propagation is applied for enhancing the efficiency of the DNN in terms of 

feature extraction, which is represented as fine tuning. Through retraing of the network alongside 

training data, this fine tuning is carried out in a supervised approach. Post-processing feature 

extraction and reduction, EPARCNN is exploited to classify the features. 

 

 
Fig.2.ISAE-DNN model 

 

2.5.Feature selection using IWD 

IWD based feature selection algorithm [29] is implemented to select best features to provide an 

accurate and fast classification. The IWD algorithm constructs an optimal solution through 

cooperation among a group of agents called water drops. The algorithm imitates the phenomena 

of a swarm of water drops flowing with soil along a river bed. Procedurally, each water drop 

incrementally constructs a solution through a series of iterative transitions from one node to the 

next until a complete solution is obtained. Water drops communicate with each other through an 

attribute called soil, which is associated with the path between any two points. The soil value is 

used to determine the direction of movement from the current node to the next, whereby a path 

with a lower amount of soil is likely to be followed as shown in Fig.3. 
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Fig.3. IWD path detection 

First, we construct a graph from our features to use IWD algorithms and then we set the initial 

soil (𝑆𝑜𝑖𝑙𝑖𝑛𝑖𝑡) of features, initial velocity of water drops (𝑉𝑒𝑙𝑖𝑛𝑖𝑡), number of water drops 

(𝑁𝐼𝑊𝐷), soil updating parameters (𝑎𝑠𝑜𝑖𝑙, 𝑏𝑠𝑜𝑖𝑙, 𝑐𝑠𝑜𝑖𝑙, 𝜌), and velocity updating parameters 
(𝑎𝑣𝑒𝑙, 𝑏𝑣𝑒𝑙, 𝑐𝑣𝑒𝑙)are some constant velocity parameters that are set for the given problem. After 

initialization the parameters, for each IWD, here choose 𝑛 (distinct) features (𝑓). Herecompute 

the probability 𝑃𝑟𝑜𝑏(𝑖) according to (52). At the beginning, water drops are spread randomly at 

the nodes of the construction graph, and visited nodes list (𝐹)is updated to include the start node 

𝑃𝑟𝑜𝑏(𝑖) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑠𝑜𝑖𝑙(𝑖))

∑ 𝑓(𝑠𝑜𝑖𝑙(𝑘))𝑘∉𝐹
  (52) 

 where 𝑃𝑟𝑜𝑏(𝑖) represents the probability of selecting node 𝑖, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑠𝑜𝑖𝑙(𝑖)) is the fitness 

function. The fitness function of candidate node 𝑖 is inversely proportional to the absolute soil 

value  

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑠𝑜𝑖𝑙(𝑖)) =
1

𝜀𝑠𝑚𝑎𝑙𝑙+𝑔(𝑠𝑜𝑖𝑙(𝑖))
  (53) 

where 𝜀𝑠𝑚𝑎𝑙𝑙 is a small positive number, 𝑔(𝑠𝑜𝑖𝑙(𝑖)) used to prevent the division by zero in 

function 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑠𝑜𝑖𝑙(𝑖))which is calculated as follows: 

𝑔(𝑠𝑜𝑖𝑙(𝑖)) = {
𝑠𝑜𝑖𝑙(𝑖) 𝑖𝑓 min

𝑘∉𝐹
(𝑠𝑜𝑖𝑙(𝑘)) ≥ 0

𝑠𝑜𝑖𝑙(𝑖) − 𝑚𝑖𝑛
𝑘∉𝐹

(𝑠𝑜𝑖𝑙(𝑘)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (54) 

where 𝑠𝑜𝑖𝑙(𝑖) refers to the amount of soil within the node (feature) 𝑖 and 𝑠𝑜𝑖𝑙(𝑘) refers to the 

amount of soil within the node 𝑘 which is not selected before. Then, add the newly selected node 

𝑖 to the feature list 𝐹. The 𝑚𝑖𝑛() function returns the minimum value of its arguments. After 

selecting 𝑛 features according to (52), the training dataset is classified by using the selected 

features and the F-score value which is a real number in range [0, 1], of the classification is taken 

to measure the “quality” of the selected features. If the computed F-measure is high, this means 
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that the selected features are valuable. Then, F-measure value is used to update the velocity and 

the soil values. For each IWD, the velocity𝐼𝑊𝐷𝑣𝑒𝑙 is updated as follows  

𝐼𝑊𝐷𝑣𝑒𝑙(𝑡 + 1) =
𝐼𝑊𝐷𝑣𝑒𝑙(𝑡)+𝑎𝑣𝑒𝑙

𝑏𝑣𝑒𝑙+𝑐𝑣𝑒𝑙×∑ 𝑠𝑜𝑖𝑙(𝑖)𝑖∈𝐹
 (55) 

where 𝑎𝑣𝑒𝑙, 𝑏𝑣𝑒𝑙, 𝑐𝑣𝑒𝑙 are the static parameters used to represent the nonlinear relationship 

between the velocity of water drop 𝐼𝑊𝐷, i.e.𝐼𝑊𝐷𝑣𝑒𝑙, and the inverse of the amount of soil in the 

local node, i.e. 𝑠𝑜𝑖𝑙(𝑖). The amount of soil∆𝑠𝑜𝑖𝑙(𝐹) that the IWD loads from the selected 

features is  

∆𝑠𝑜𝑖𝑙(𝐹) =
𝑎𝑠𝑜𝑖𝑙

𝑏𝑠𝑜𝑖𝑙+𝑐𝑠𝑜𝑖𝑙×𝑡𝑖𝑚𝑒2(𝐹,𝐼𝑊𝐷𝑣𝑒𝑙(𝑡+1))
 (56) 

Where𝑡𝑖𝑚𝑒2(𝐹, 𝐼𝑊𝐷𝑣𝑒𝑙(𝑡 + 1))time taken for an IWD having the velocity𝐼𝑊𝐷𝑣𝑒𝑙(𝑡 + 1)  to 

move from the current node 𝑖 to next node 𝑗 is calculated by 

𝑡𝑖𝑚𝑒2(𝐹, 𝐼𝑊𝐷𝑣𝑒𝑙(𝑡 + 1)) =
1

𝐹−𝑚𝑒𝑎𝑠𝑢𝑟𝑒(𝐹)×𝐼𝑊𝐷𝑣𝑒𝑙(𝑡+1)
   (57) 

here F refers to the selected subset of features and F-measure(F) refers to the F-measure value of 

the selected features. The IWD’s soil, 𝐼𝑊𝐷𝑠𝑜𝑖𝑙 , is increased by removing some soil of the 

selected features 𝐹. Update the soil of the IWD as 

𝐼𝑊𝐷𝑠𝑜𝑖𝑙 = 𝐼𝑊𝐷𝑠𝑜𝑖𝑙 + ∆𝑠𝑜𝑖𝑙(𝐹) 

The soil values of all features are updated as follows  

𝑠𝑜𝑖𝑙(𝑖)

= {

(1 −  𝜌) × 𝑠𝑜𝑖𝑙(𝑖) − 2𝜌 × ∆𝑠𝑜𝑖𝑙(𝐹), 𝑖𝑓 𝑖 ∈ 𝐹 𝑎𝑛𝑑 𝐹 𝑖𝑠 𝑏𝑒𝑠𝑡
(1 −  𝜌) × 𝑠𝑜𝑖𝑙(𝑖) − 𝜌 × ∆𝑠𝑜𝑖𝑙(𝐹), 𝑖𝑓 𝑖 ∈ 𝐹 𝑎𝑛𝑑 𝐹 𝑖𝑠 𝑛𝑜𝑡 𝑏𝑒𝑠𝑡

𝑠𝑜𝑖𝑙(𝑖), 𝑖𝑓 𝑖 ∉ 𝐹

 

(58) 

The above computations are repeated for each IWD and the best feature set is recorded. All these 

processes continue until the termination condition is met. Post-selection of features, they have 

classified as lung cancer region deprived of utilizing EPARCNN classifier. The algorithm of 

IWD based feature selection are described in pseudo code given below:  

 

Table.1. Pseudo code of IWD based feature selection algorithm. 

Input:Training samples of lung images and 

𝑁set of all features  

Output: set of best 𝑛 features  

1. Initialize the static parameters i.e. 

parameters are not changed during the 

search process. 

2. While algorithm termination condition is 

not met do  

3. Initialize the dynamic parameters i.e. 

parameters changed during the search 
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process.  

4. Spread 𝑁𝐼𝑊𝐷 number of water drops 

randomly on a construction graph. 

5. For each IWD do  

6. Choose 𝑛 features by using roulette 

wheel that is formed according to the 

probabilities of features that are 

computed with respect to soil values of 

features. 

7. Classify documents by using selected 𝑛 

features and compute the F-measure.  

8. By using the computed F-measure value, 

update the soil and velocity values of the 

IWD, and the soil value of all features in 

the feature space.  

9. end  

10. Choose the best feature set found so far.  

11. Until the termination condition is met.  

12. Return the best feature set.  

2.6.Enhanced Pre-Activation Residual Convolutional Neural Network (EPARCNN) 

The EPARCNN framework significantly tends to enhance the efficiency of recognition process 

through utilizing same/less number of computational metrics, when compared to similar kind of 

deep learning methods. The proposed EPARCNN method adopts the residual block as the vital 

element, which is represented in Fig 3(a). Accordingly, there are two convolutional layers 

besides a residual connection (skip connection) comprised in residual block. This skip 

connection additionally aggregates low-level, and high-level features. Thus, the gradient 

vanishing or explosion problem occurs in deep network can get reduced through the residual 

block. The estimation of each residual can be formulated as, 

𝐻(𝑥) = 𝑓(𝐹(𝑥) + 𝑥) (59) 

Here, residual block’s input and output is represented by x and 𝐻(·), respectively. A residual 

learning function is denoted by F;the convolutional layer output is represented by 𝐹(𝑥) that is 

prior to summation operation; and the activation function is indicated by f . 

 

Conv 

x 

BN 

ReLU 

Conv 

BN 

⊕ 

ReLU 

H(x) 

residual 

BN 

x 

ReLU 

 Conv 

BN 

ReLU 

 

⊕ 

H(x) 

Pre-

activation 

residual 

Conv 
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Fig 3. Normal residual block (a) and Pre-activation residual block (b)Architecture. 

Here, in the suggested network’s residual block, the Batch Normalization (BN) and pre-

activation mechanism have applied for attaining the optimal performance. The implementation of 

pre-activation architecture is carried out by means of shifting BN and rectified linear units 

(ReLU) activation function prior to convolution operation as depicted in Fig 4(b). The 

formulation of pre-activation residual block is expressed as 

𝐻(𝑥) = 𝐹(𝑥) + 𝑥 (60) 

Fig 4(a) demonstrates that activation function f in (1) is ReLU, can be formulated as follows 

𝑓(𝑥) = max (0, 𝑥) (61) 

If the signal is negative, the signal is forcibly converted to 0 by the ReLU, through which a few 

useful residual features from normal residual block may be lost. Consider the f as an identity 

mapping, then (1) will be the same value of (2). Through identity mapping, signals can get 

enabled to being directly propagated within any two units, which ensures that features learned by 

residual learning function have prevented from loss. Thus, the process of network training is 

simplified by the pre-activation mechanism, besides the network generalization performance is 

improved. 

EPARCNN block is considered being the highly substantial element of this proposed 

architecture, in which residual units, inception units, and RCLs have involved. The process of 

this architecture can be described as follows, i) the inputs are fed into input layer, ii) passed 

through inception units, where RCLs are applied, iii) inception units output are added to 

IRRCNN-block input. According to various sized kernels in inception unit, the recurrent 

convolution operations implement. The prior time step outputsis added with the output at the 

current time step, since because of the recurrent structure inside convolution layer. Subsequently, 

outputs at present time step is considered as input for following time step. With regard to 

considered time steps, the same operations are executed. For instance, EPARCNN-block 

comprises 3 RCLs which is characterized by k=2, in which the dimensions of the input and 

output remain unchanged. It is merely considered as an accumulation of feature maps pertaining 

to time steps. Consequently, through equal number ofnetwork parameters the optimal recognition 

accuracy is obtained, which has ensured by the robust features. In accordance with the discrete 

time steps, the RCL operations have carried out, besides they have articulated based on RCN 

[26]. Assume that the 𝑥𝑙 input sample located in the EPARCNN-block’s 𝑙𝑡ℎ layer and a pixel 

located at (𝑖, 𝑗) in an input sample on the kth feature map in the RCL. Besides, consider that 

network 𝑂𝑖𝑗𝑘
𝑙 (𝑡)output is at time step t. Then, output is formulated as, 

𝑂𝑖𝑗𝑘
𝑙 (𝑡) = (𝑤𝑘

𝑓
)

𝑇
∗ 𝑥𝑙

𝑓(𝑖,𝑗)
(𝑡) + (𝑤𝑘

𝑟)𝑇(𝑡 − 1) + 𝑏𝑘 (62) 

In which, the standard convolution layers has fed with 𝑥𝑙
𝑓(𝑖,𝑗)

and 𝑙𝑡ℎ RCL has fed with 

(𝑤𝑘
𝑟)𝑇(𝑡 − 1) as an inputs. The values of 𝑤𝑘

𝑓
and 𝑤𝑘

𝑟 have considered being the typical 

convolutional layer and RCL of kth feature map, correspondingly. Whereas, 𝑏𝑘 represents the 

bias. 

𝑦 = 𝑓 (𝑂𝑖𝑗𝑘
𝑙 (𝑡)) = max (0, 𝑂𝑖𝑗𝑘

𝑙 (𝑡)) (63) 
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In the above equation, the standard Rectified Linear Unit (ReLU) activation function is signified 

by f. Besides, the performance of this framework has determined using Exponential Linear Unit 

(ELU) activation function in the subsequent experiments, in which 

𝑦1𝑥1 (𝑥), 𝑦3𝑥3 (𝑥), and𝑦1𝑥1
𝑝  (𝑥)  indicate outputs 𝑦 of inception units for various size kernels and 

average pooling layer, correspondingly. And, ℱ(𝑥𝑙 , 𝑤𝑙) is the formulation of the final outputs of 

EPARCNN unit, which can be estimated as follows, 

ℱ(𝑥𝑙  , 𝑤𝑙) = 𝑦1𝑥1 (𝑥)⨀y(x)⨀𝑦1𝑥1
𝑝  (𝑥)  (64) 

Where, ⨀ signifies the concatenation operation as regards the channel/feature map axis. Further, 

RCNN-unit outputs are added to the inputs of EPARCNN-block. The subsequent equation 

expresses the EPARCNN-block’s residual operation. 

𝑥𝑙+1 = 𝑥𝑙 + ℱ(𝑥𝑙 , 𝑤𝑙) 

 

(65) 

Here, the inputs for the instantaneous next transition block is defined as 𝑥𝑙+1, the EPARCNN -

block’s input samples is indicated by 𝑥𝑙, the l th EPARCNN-block’s kernel weights is signified 

by 𝑤𝑙, and the outputs from of l th layer of the EPARCNN-unit is denoted by ℱ(𝑥𝑙 , 𝑤𝑙). As 

represented in the EPARCNN-block depicted in Figure 3, the number of feature maps are equal 

to dimensions of feature maps for residual units. Eventually, EPARCNN-block outputs is being 

applied with batch normalization. 

As inspired by NiN [27] and Squeeze Net [28] models, solely 1×1 and 3×3 convolution filters 

are used during this implementation. Besides, it supports to retain the minimum number of 

network parameters. Through adding a 1×1 filter the non-linearity of decision function can get 

increased deprived of influencing the convolution layer. The input and output features size is 

simply a linear projection on same dimension, since it remains unchanged in the IRRCNN 

blocks, besides non-linearity is added to RELU and ELU activation functions. Following each 

convolution layer in transition block, 0.5 dropout is utilized. Ultimately, at the end of the 

architecture, a Softmax, or normalized exponential function layer is utilized. For input sample x, 

weight vector W, and K distinct linear functions, Softmax operation can be defined for 𝑖𝑡ℎ class 

as follows: 

𝑃(𝑦 = 𝑖|𝑥) =
𝑒𝑥𝑇𝑤𝑖

∑ 𝑒𝑥𝑇𝑤𝑘
𝐾
𝑘=1

 
(66) 

In order to evaluate assess the proposed EPARCNN framework, a set of experiments have done 

on various benchmark datasets and obtained outcomes are related over various models. The 

framework of proposed EPARCNN is shown in Fig.5. 
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Fig.5. The framework of EPARCNN method 

 

3. Experimental Results and discussion 

In this segment, the performance evaluation is carried out for the proposed CoISAE-PARCNN 

approach. Besides, the results have compared with the prevailing lung nodule detection 

methodologies, like LOG, Fast-RCNN, EWRCNNandEIRCNN. The real-time Lung Image 

Database Consortium image collection (LIDC-IDRI) includes diagnostic and lung cancer 

screening thoracic lung CT and X-ray scans accompanied by marked-up annotated lesions. This 

data set has jointly created by eight medical imaging organizations and seven academic centers, 

in which 1018 cases have included. The images from clinical thoracic CT scan and an associated 

XML file have included that archives two-phase image annotation process outcomes, which has 

accomplished by four proficient thoracic radiologists. The subsequent figures clearly depict the 

efficiency of the proposed approach to deliver optimal performance as regards the performance 

metrics, such as accuracy, precision, recall, f-measure, error rate, time and PSNR. In Table 1 and 

Table 2, the numerical outcomes of CT images and X-ray images for the proposed CoISAE-

PARCNN, as well as the prevailing LOG, Fast-RCNN, EWRCNNandEIRCNN methods have 

listed out.

Table 1: Performance evaluation metrics for CT images 

Performance 

Evaluation 

metrics 

 

Existing 

LOG 

 

Existing 

Fast-RCNN 

Proposed 

EWRCNN 

 

Phase 1 

Proposed 

EIRCNN 

 

Phase 2 

Proposed 

CoISAE-

PARCNN 

Phase 3 

Accuracy 81.73 87.16 93.86 94.05 98.25 

Input  
Feature maps  

Batch Normalization ReLU Conv 

Conv 

Softmax layer 

Output layer 

Input layer 

Output 

units  

Batch 

Normalization 
ReLU 
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      Table 2: Performance evaluation metrics for X-ray images 

3.1.Precision Result comparison 

 

 

Precision 52.99 54.57 59.38 59.70 83.09 

Recall 81.40 87.10 93.76 95.32 98.19 

F-measure 64.19 67.10 70.71 73.12 90.01 

Error rate 19.36 12.83 7.13 5.94 1.74 

Time 3.30 2.89 2.10 1.92 1.63 

PSNR 41 42 44 46 47 

Performance 

Evaluation 

metrics 

 

Existing 

LOG 

 

Existing 

Fast-RCNN 

Proposed 

EWRCNN 

 

Phase 1 

Proposed 

EIRCNN 

 

Phase 2 

Proposed 

CoISAE-

PARCNN 

Phase 3 

Accuracy 81.73 87.72 92.50 93.64 98.60 

Precision 50.87 51.46 52.48 53.96 73.55 

Recall 81.14 88.16 92.57 94.90 98.49 

F-measure 63.53 64.99 66.99 70.72 85.88 

Error rate 19.26 12.27 8.49 6.35 1.39 

Time 4.5 3.19 2.36 2.11 1.98 

PSNR 39 40 43 44 45 
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Fig.4. Precision performance comparison in several compression techniques 

In Fig. 4, precision outcomes obtained by proposed CoISAE-PARCNN, and existing LOG, Fast-

RCNN, EWRCNN and EIRCNN methods have compared. From the graphs, the proposed 

approach proves to be efficient than other prevailing methods as they represent that the proposed 

CoISAE-PARCNN approach precisely obtains the lung nodule, i.e.83.09% and 73.55% of the 

precision rate for CT and X-ray respectively, which is superior to other existing methods. 

Moreover, the results depict that the proposed technique is efficient than prevailing methods in 

terms of image enhancement using FNGCCLAHE with NSCT that that mean brightness can be 

achieved as the original mean brightness is retained and thus the proposed method has been 

found effective in enhancing contrast of images in comparison to few existing methods and 

further attained high precision rate. 

3.2.F-measure Result Comparison 

 

 

Fig.5. F-measure performance comparison in several compression techniques 
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Fig. 5 compares proposed CoISAE-PARCNN, and existing LOG, Fast-RCNN, EWRCNN and 

EIRCNNmethodF-measure values. The graphs depict the proficiency of the proposed approach 

to secure 90.01% and 85.88%of F-Measure for CT and X-ray respectively, which signifies that it 

is optimal in lung nodule detection, and is superior to other prevailing approaches. The reason is 

that proposed CoISAE-PARCNN technique performs on the basis of appropriate feature 

extraction and feature selection methods. Whereas, low rate of F-Measure values has attained for 

both x-ray and CT images by the prevailing methods, like RCNN, Faster RCNN, EIRCNN and 

EWRCNN, correspondingly. Thus, the proposed technique is proved to be efficient than other 

prevailing approaches as regards lung nodule detection.The reason is that,the feature space is 

reduced by IWD technique having advantage of in-place computation and thus reduce the 

computational complexity of the proposed system and enhancing the performance of learning 

algorithm of EPARCNN and thus produce high f-measure results. 

3.3.Recall Result Comparison 

 

 

Fig.6. Recall performance comparison in various compression techniques 

Fig. 6 compares Recall rates obtained by the proposed CoISAE-PARCNN, and existing LOG, 

Fast-RCNN, EWRCNN and EIRCNN methods. From the graphs, the proposed approach proves 

to be efficient for procuring 98.19% and 98.49% of Recall rate for CT and X-ray images 

respectively in contrast to other prevailing methods RCNN, Faster RCNN, EWRCNN and 
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EIRCNN solely obtain low rate of recall ratios. It represents that the proposed CoISAE-

PARCNN is efficient for optimal detection rate. By having the efficient stage of image 

enhancement and ISAEDNN based feature extraction, the proposed method becomes effective, 

through which it diminishes the noise with the help of NSCT. 

Accuracy Result Comparison 

 

Fig.7. Accuracy performance comparison in various compression techniques 

In Fig. 7, accuracy values obtained by the proposed CoISAE-PARCNN, and existing LOG, Fast-

RCNN, EWRCNN and EIRCNN methods have compared. From the graphs, the proposed 

approach proves to be effective than other prevailing methods, as the proposed CoISAE-

PARCNN approach secures 98.25% and 98.60%of the accuracy for CT and X-ray respectively. 

Whereas, other prevailing approaches, such as RCNN, Faster RCNN, EWRCNN and EIRCNN 

solely attain low accuracy for both CT and X-ray images. Moreover, the reason for the efficiency 

of the proposed method is that the pre-activation mechanism that carries feature recalibration 

adaptively and learn more robust feature representations with respect to selected features from 

IWD and thus improves the lung nodule detection accuracy. 

3.4.Error rate Result Comparison 
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Fig.6. Error rate performance comparison in various compression techniques 

Fig. 6 compares Error rate rates obtained by the proposed CoISAE-PARCNN, and existing LOG, 

Fast-RCNN, EWRCNN and EIRCNN methods. From the graphs, the proposed approach proves 

to be efficient for procuring 1.74% and 1.39% of Error rate for CT and X-ray images 

respectively in contrast to other prevailing methods RCNN, Faster RCNN, EWRCNN and 

EIRCNN solely obtain high error rate ratios. It represents that the proposed CoISAE-PARCNN 

is efficient for optimal detection rate for lung nodule detection.The reason is that a method of 

deep learning, such as stacked Auto-encoder (SAE) network, is utilized to reduce the 

dimensionality of the feature sets and gain the latent features which reduces the error rate at the 

training and testing stage of the proposed classifier. 

3.5.Time Result Comparison 
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Fig.6. Time performance comparison in various compression techniques 

Fig. 6 compares time obtained by the proposed CoISAE-PARCNN, and existing LOG, Fast-

RCNN, EWRCNN and EIRCNN methods. From the graphs, the proposed approach proves to be 

efficient for procuring 1.63m and 1.98m of time rate for CT and X-ray images respectively in 

contrast to other prevailing methods RCNN, Faster RCNN, EWRCNN and EIRCNN solely 

obtain high rate of time. It represents that the proposed CoISAE-PARCNN is efficient for lung 

nodule detection.The reason is that in proposed model, SIPCNN can effectively capture high-

level semantic concepts and project them back into the image space to generate five gray 

intensities with great practical value that has the ability to locate and segment the target lung 

nodules from the CT and X-ray image and thus reduce the computation time of the proposed 

classifier. 

3.6.PSNR Result Comparison 
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Fig.6. PSNR performance comparison in various compression techniques 

Fig. 6 compares PSNR rates obtained by the proposed CoISAE-PARCNN, and existing LOG, 

Fast-RCNN, EWRCNN and EIRCNN methods. From the graphs, the proposed approach proves 

to be efficient for procuring 47dB and 45dB of PSNR rate for CT and X-ray images respectively 

in contrast to other prevailing methods RCNN, Faster RCNN, EWRCNN and EIRCNN solely 

obtain low rate of PSNR ratios. It represents that the proposed CoISAE-PARCNN is efficient for 

lung nodule detection. The reason is that the proposed model developed with the aim to 

determine the maximum entropy value in the Fuzzy set theory for brightness of grey levels in CT 

and X-ray images. Besides, the research focuses on evaluating the fusion approach of 

NGCCLAHE-based image enhancement method with Fuzzy set theory so that it can increase the 

contrast and brightness in CT and X-ray images and thus it improves the quality of contrast and 

brightness for field images and enhance the quality of the images with high PSNR.  

4. Conclusion and Future work 

Throughout this research work, an innovative image enhancement methodology has introduced, 

namely Fuzzy Normalized Gamma-Corrected Contrast-Limited Adaptive Histogram 

Equalization (FNGCCLAHE) with Nonsubsampled Contourlet Transform (NSCT). Through 

utilizing this FNGCCLAHE-NSCT, the contrast of lung nodule image is enhanced initially. 
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Subsequently, after FNGCCLAHE, the lung image decomposition  into NSCT domain is done 

through low-frequency sub-band and numerous high-frequency sub-bands. Further involved a 

new segmentation approach, namely Sub-Intensity Range based Pulse-Coupled Neural Network 

(SIPCNN) for acquiring optimum segmentation results from medical Lung CT and X-ray 

images. Ultimately, proposed a novel deep learning model on the basis of Combined Improved 

Stacked Auto Encoder Deep Neural Network (ISAE-DNN) and Enhanced Pre-Activation 

Residual Convolutional Neural Network (EPARCNN) to carry out tumor recognition, during 

which the model jointly learn the feature representation, and execute the recognition, termed as 

(CoISAE-PARCNN). During the process of ISAE-DNN, feature extraction is done through three 

hidden layers, and then, classification took place using EPARCNN classifier. At this point, 

particle Swarm Optimization is involved to perform the feature reduction. Empirical findings 

depict the efficiency of the designed CoISAE-PARCNN network and the FP reduction strategy 

to implement the lung nodule detection in addition to FP reduction for CT and X-ray images with 

accuracy value of 98.25% and 98.60% respectively that accommodate accurate results. 

References 

1. Bjerager M., Palshof T., Dahl R., Vedsted P., Olesen F. Delay in diagnosis of lung cancer 

in general practice. Br. J. Gen. Pract. 2006;56:863–868. 

2. Nair M., Sandhu S.S., Sharma A.K. Cancer molecular markers: A guide to cancer 

detection and management. Semin. Cancer Biol. 2018;52:39–55. doi: 

10.1016/j.semcancer.2018.02.002. 

3. Silvestri G.A., Tanner N.T., Kearney P., Vachani A., Massion P.P., Porter A., 

Springmeyer S.C., Fang K.C., Midthun D., Mazzone P.J. Assessment of plasma 

proteomics biomarker’s ability to distinguish benign from malignant lung nodules: 

Results of the PANOPTIC (Pulmonary Nodule Plasma Proteomic Classifier) 

trial. Chest. 2018;154:491–500. doi: 10.1016/j.chest.2018.02.012. 

4. Shi Z., Zhao J., Han X., Pei B., Ji G., Qiang Y. A new method of detecting pulmonary 

nodules with PET/CT based on an improved watershed algorithm. PLoS 

ONE. 2015;10:e0123694. 

5. Available from: http://www.globocan.iarc.fr/Pages/fact_sheets_cancer.aspx. [Last 

accessed on 2016 Feb 20] 

6. M. Bergtholdt, R. Wiemker and T. Klinder, "Pulmonary Nodule Detection Using a 

Cascaded SVM Classifier" in Computer-Aided Diagnosis, Bellingham, WA, USA:SPIE, 

vol. 9785, 2015. 

7. S. G. and J. P., "A fully-automated system for identification and classification of subsolid 

nodules in lung computed tomographic scans", Biomed. Signal Process. Control, vol. 53, 

Aug. 2019. 

8. S. Ren, K. He, R. Girshick, et al., “Faster R-CNN: towards real-time object detection 

with region proposal networks,” IEEE Trans.Pattern Anal. Mach. Intell., vol. 39, no. 6, 

pp. 1137-1149, 2017 

9. Fan, W., Jiang, H., Ma, L., Gao, J., & Yang, H. (2018, August). A modified faster R-

CNN method to improve the performance of the pulmonary nodule detection. In Tenth 

International Conference on Digital Image Processing (ICDIP 2018) (Vol. 10806, p. 

108065A). International Society for Optics and Photonics. 



K.S. GOWRI LAKSSHMI1*  ,Dr.R. UMAGANDHI PhD2 

 

8641 
 

10. Zuo, W., Zhou, F., Li, Z., & Wang, L. (2019). Multi-resolution CNN and knowledge 

transfer for candidate classification in lung nodule detection. Ieee Access, 7, 32510-

32521. 

11. Cao, H., Liu, H., Song, E., Ma, G., Xu, X., Jin, R., ... & Hung, C. C. (2020). A two-stage 

convolutional neural networks for lung nodule detection. IEEE journal of biomedical and 

health informatics, 24(7), 2006-2015. 

12. Ali, I., Muzammil, M., Haq, I. U., Khaliq, A. A., & Abdullah, S. (2020). Efficient Lung 

Nodule Classification Using Transferable Texture Convolutional Neural Network. IEEE 

Access, 8, 175859-175870. 

13. SM Pizer, RE Johnston, JP Ericksen, BC Yankaskas, KE Muller, Contrast-

limitedadaptive histogram equalization: speed and effectiveness (Proceedings of theFirst 

Conference on Visualization in Biomedical Computing, United States,1990), pp. 337–

345 

14. KU Khan, J Yang, W Zhang, Unsupervised classification of polarimetric SARimages by 

gamma-correction of features using self organizing map. ChineseJ Electron. 18(4), 767–

770 (2009) 

15. RC Gonzalez, RE Woods, Digital image processing, 3rd edn. (Prentice Hall,New Jersey, 

2007). pp. 132–135 

16. S Vimal, P Thiruvikraman, Automated image enhancement using power 

lawtransformations. Sadhana-Acad P Eng S. 37(6), 739–745 (2012) 

17. R Arun, MS Nair, R Vrinthavani, R Tatavarti, An alpha rooting based hybridtechnique 

for image enhancement. Eng Let. 19(3), 1–10 (2011) 

18. CM Tsai, Adaptive local power-law transformation for colorimageenhancement. Appl 

Math Inform Sci. 7(5), 2019–2026 (2013) 

19. A Khunteta, D Ghosh, Fuzzy rule-based image exposure level estimation andadaptive 

gamma correction for contrast enhancement in dark images (11th IEEEInternational 

Conference on Signal Processing, China, 2012), pp. 667–672 

20. R Boss, K Thangavel, D Daniel, Automatic mammogram image breast regionextraction 

and removal of pectoral muscle. Int J Sci Eng Res.4(5), 1722–1729 (2013) 

21. A Reza, Realization of the contrast limited adaptive histogram equalization (CLAHE)for 

real-time image enhancement. J VLSI Sig Proc Syst. 38(1), 35–44 (2004) 

22. V Schatz, Low-latency histogram equalization for infrared image sequences:a hardware 

implementation. J. Real-Time Image Proc. 8(2), 193–206 (2013) 

23. Yang, Z., Lian, J., Li, S., Guo, Y., Qi, Y., & Ma, Y. (2018). Heterogeneous SPCNN and 

its application in image segmentation. Neurocomputing, 285, 196-203. 

24. Y.chen,S>K.Park, Y.MA,R.Ala, a new automatic parameter setting method of a 

simplified PCNN for image segmentation.IEEE trans,Neural.Netw.22(2011)880-892. 

25. J.Lian,B.shi, M.Li, Z.Nan, Y.Ma, An automatic segmentation method of s 

prameteradptive PCNN for medical images, Int.J.Comput.Assist.Radiol.Surg.12(2017)1-

9. 

26. J. Donahue, L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan, K. Saenko, 

and T. Darrell. Long-term recurrent convolutionalnetworks for visual recognition and 

description. In CVPR, 2015. 

27. Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv: 

1312.4400 (2013).\ 



CoISAE-PARCNN: Combined Improved Stacked Auto Encoder and Enhanced Pre-Activation Residual 

Convolutional Neural Network for the Pulmonary Nodule Detection in Lung CT and X-ray Images with 

robust image enhancement and segmentation techniques 

 

8642 
 

28. Iandola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer 

parameters and< 0.5 MB model size." arXiv preprint arXiv:1602.07360 (2016). 

29. Agarwal, B., & Mittal, N. (2016). Prominent feature extraction for review analysis: an 

empirical study. Journal of Experimental & Theoretical Artificial Intelligence, 28(3), 

485-498. 

30. Zhan K, Zhang H, Ma Y (2009) New spiking cortical model for invariant texture retrieval 

and image processing. IEEE Trans on Neural Netw 20(12):1980–1986. 

31. Wang, L., You, Z. H., Chen, X., Xia, S. X., Liu, F., Yan, X., ... & Song, K. J. (2018). A 

computational-based method for predicting drug–target interactions by using stacked 

autoencoder deep neural network. Journal of Computational Biology, 25(3), 361-373. 

 

 

 


