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Abstract 

In this article, Model predictive control of the dynamical system with fast open-loop dynamics is 

presented. The success of MPC depends on the model being used to approximate the system's 

dynamic behavior under consideration. Kautz functions are formulated in a state-space-like 

representation to develop the system's model, as they are very good at approximating the signals. 

A two parametric Kautz model is employed to identify the dynamic characteristics of the system, 

and the same model is utilized as a replica of the system in the design of MPC and MPC design, a 

suitable objective function is chosen which will minimize the error between the system output and 

reference input signal. The abilities of the two parametric Kautz model and its capabilities in 

controlling systems with fast dynamics is demonstrated on DC-DC buck converter. 

1 INTRODUCTION 

Model predictive control of dynamical systems is successful and well-demonstrated control 

strategy, both in industry and academic research. Identification of the process model is an integral 

part of MPC design, traditionally known as system identification. There are several ways of 

developing the process models in scientific literature, among which system identification is mostly 

adopted and a successful methodology because of its inherent advantages. The theory of system 

identification is known as black-box modeling; in this way of system modeling, the model is 

derived from the input-output data of the system and does not depend on the fundamental physical 

laws of the system under consideration. It is a way of fitting a model with a degree of accuracy by 

mapping the input into the output space. 

Several physical systems display fast dynamic characteristics, and one can find many such 

systems in electrical engineering applications. Such a system with fast dynamics requires an 

efficient and fast responding control design to achieve reasonable tracking control. These fast-

dynamic systems can have applications spanning from power electronics applications to robotics. 

Traditionally and industrially accepted PID controllers, whose design is based on a linear 

approximation of a system, may be improved by replacing it with an MPC. PID controllers are 

generally turned on a trial and error basis for the system's best performance under consideration; 

hence, MPC may be a better alternative to control such a system. 

Model predictive control, as the name sounds an explicit process/system model in 

calculating the optimal control actions required to have excellent and stable control. An 

appropriate objective function is minimized in the design procedure over a definite period, called 

the prediction horizon. The first few samples of the control moves are applied to the system, called 
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the control horizon. The simplest form of representing the dynamic signal is either by finite 

Impulse Response (FIR) or Infinite Impulse Response (IIR). Still, both the representations are 

sufferers from the requirement of many shifting filters. In other words, it needs more number filter 

coefficients to represent the signals, and many times, the optimal solutions resulting from FIR or 

IIR representation sufferers from lack of stability in the numerical solutions.  

Power electronics devices such as power converters need a fast and reliable control strategy 

because of their meager response time [3, 10]. A detailed review on this topic is presented 

elsewhere [11]. MPC was introduced by [4] in 1960, the optimal control action was calculated by 

solving a linear programming problem. PID controller is the popularly used and industrially 

accepted control strategy that is not demonstrated and expected for the constrained process. Most 

of the time, PID control parameters are used to turn on the heuristic approach. The controllers 

designed based on the empirical model of the process are an alternative way of dealing with such 

systems and are known as model-based control algorithms. Model predictive control (MPC in 

short) is one of the two crucial model-based control methodologies. MPC is a proven control 

algorithm in controlling non-linear, constrained, and MIMO systems. The control action is 

calculated as an optimization problem and process model embedded in the controller in MPC. 

Model predictive control design based on the orthogonal basis functions (OBF's) is well 

established and demonstrated [1, 9, 12, 13]. The use of OBF's in system identification will naturally 

reduce the number of model parameters because of the inherent orthogonal property of these 

functions. In other words, the resulting models will have parsimonious nature and lead to a simple 

solution. 

The issues referred to above can be addressed by integrating the theory of orthogonal filters 

makes them very handy and effective in system modeling and/or control design. The orthogonal 

property of these filters will enable the control system designed to reduce the numerical 

computational burden to a great extent and reduce the number of model parameters required in 

modeling the dynamical system. 

Laguerre filter and Kautz filters are two famous orthogonal filters that appeared most of 

the orthogonal filters, which can be parameterized utilizing a single Laguerre parameter (typically 

a real-valued number). In contrast, the Kautz filter is generally parameterized by a complex 

conjugate number, and their representation also looks mathematically complex compared to that 

of Laguerre representation [6, 7, 5, 2]. The complexity of the Kautz filters is because of their 

complicated mathematical structure. Still, it can be neglected in system identification as it is a one-

time job. 

2 Theoretical developments 

The Orthogonal property and the z-domain representation of Kautz functions are summarized in 

the following [13]: 

Theorem 1: The set { ( )j z }, ∀j ∈ [1, 2n], defined as following, 

( ) ( ) ( )

2 1 1 11 ( )n n n

n z C a z z− = −                         (1) 

( ) ( ) ( )( ) ( ) ( )

2 2 21n n n

n z C a z z = −            (2) 

 

forn = 1, 2 … where 
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 C1
2

(n)
=
√

(1 − βn2)(1 − βn∗2)(1 − βnβn∗ )

{1 + (a1
2

(n)
)2} {1 + βnβn∗ } − 2a1

2

(n){βn + βn∗ }

               (6) 

Follow orthogonal property, i.e., 

                   δmn =
1

2πi
∮Ψm(z)Ψn(z

−1)
dz

z
                                 (7) 

  

δmn Is the Kronecker delta function and {βn, βn
∗ } ∈  ℂ, |βn| < 1. the set of functions 

{ ( )j z ,  j = 1, 2 … are refereed as discrete-time Kautz functions. 

Condition I   

When βn, βn
∗=a1, i.e., the parameters are real-valued. The solution of Eq.4 is simplified as 

a1
(n)
= a1 and a2

(n)
=
1

a1
 

C1
(n)
= √(1 − al

2 and C2
(n)
= √1 − al

2 

Ψj(z) = √1 − al
2 (1−a1z)

j−1

(z−al)
j = Lj(z)                  (8) 

Kautz functions take a more straightforward version named Laguerre functions. 

Condition II 

When βn,βn
∗ = β, for imaginary and equal values of the parameter, The solution of Eq. 4 is as 

follows. 

a1
(n)
=

1+ββ∗

β+β∗
 and a2

(n)
=0 

Ψ2n−1(z) =
C1
(n)
(1−a1

(n)

z2+bkz+ck
 √

ckz
2+bkz+1

Z2+bkz+ck

n−1
         (9) 

Ψ2n(z) =
C1
(n)
(1−a1

(n)

z2+bkz+ck
 √

ckz
2+bk+1

z2+bkz+ck

n−1
               (10) 

Where bk = −(β + β
∗) and ck = β × β∗ 

Eq. 9 and Eq. 10 show a simple version of Kautz functions with complex conjugate and constant 

number with 2n number of Kautz function. 

 

3 Kautz Representation 
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Any system can be approximated as a weighted sum of orthogonal basis functions if it follows the 

following, 

• Strictly proper, i.e., (G(∞)=0) 

• Continuous in |z| ≥ 1. 

In the discrete-time domain, the output of the systems can be expressed as follows, 

y(𝑧) =  ∑𝜃𝑗𝛹𝑗𝑈(𝑧)

2𝑁

𝑗=1

                              (11) 

The input to the system can be mapped into the output domain by choosing the suitable parameters, 

called model parameters as, 

𝑦(𝑘𝑇𝑠) = 𝛩𝛹(𝑞)𝑢(𝑘𝑇𝑠)                       (12) 

Where Ts is sampling time, By considering the Kautz function 𝛹1, 𝛹2, … . . , 𝛹2𝑁−1, 𝛹2𝑁  as states 

of the system under consideration and defining delay operator 'q.' It is possible to estimate the 

model regression parameter Θ using the least-squares approach. A state-space representation can 

be derived as follows, 

𝛹2𝑛−1(𝑘𝑇𝑠) =

{
 
 

 
 1

𝑞2 + 𝑏𝑘𝑞 + 𝑐𝑘
𝑈(𝑧),     𝑓𝑜𝑟        𝑛 = 1

𝑐𝑘𝑞
2 + 𝑏𝑘𝑞 + 1

𝑞2 + 𝑏𝑘𝑞 + 𝑐𝑘
𝑈(𝑧)        𝑓𝑜𝑟        𝑛 > 1

                                  (13) 

 

𝛹2𝑁(𝑘𝑇𝑠) =  𝛹2𝑁−1(𝑘𝑇𝑠 − 1)                                                 (14) 
 

Where 𝑏𝑘 = −𝛽 − 𝛽∗     𝑎𝑛𝑑      𝑐𝑘 =  𝛽 × 𝛽
∗ 

For n=1, by defining the following states, 

                                𝛹1(𝑘𝑇𝑠) =
1

𝑞2+𝑏𝑘𝑞+𝑐𝑘
                                                            (15) 

                            𝛹1(𝑘𝑇𝑠) = 𝛹1(𝑘𝑇𝑠 − 1)                                                            (16) 

Rewriting the above in the time domain leads to the following, 

                         𝛹1(𝑘𝑇𝑠 + 1) = −𝑏𝑘𝛹1(𝑘𝑇𝑠) − 𝑐𝑘𝛹1(𝑘𝑇𝑠 − 1) + 𝑢(𝑘𝑇𝑠)               (17) 
Upon replacing 𝛹1(𝑘𝑇𝑠 − 1) 𝑤𝑖𝑡ℎ 𝛹2(𝑘𝑇𝑠)𝑖𝑛 𝐸𝑞. 17 

Ψ1(𝑘𝑇𝑠+1) = -𝑏𝑘𝛹1(𝑘𝑇𝑠) − 𝑐𝑘𝛹2(𝑘𝑇𝑠) + 𝑢(𝑘𝑇𝑠) 
                           𝛹2(𝑘𝑇𝑠 + 1) = 𝛹1(𝑘𝑇𝑠)                                                              (18) 

For n=2, by defining the following states, 

                  𝛹3(𝑘𝑇𝑠) =
𝑐𝑘𝑞

2+𝑏𝑘𝑞+1

𝑞2+𝑏𝑘𝑞+𝑐𝑘
× 𝛹1(𝑘𝑇𝑠)                                                 (19) 

                             𝛹4(𝑘𝑇𝑠) = 𝛹3(𝑘𝑇𝑠 − 1)                                                             (20) 

Applying the inverse transformation leads to, 

𝛹3(𝑘𝑇𝑠 + 1) = 𝑏𝑘(1 − 𝑐𝑘)𝛹1(𝑘𝑇𝑠) + (1 − 𝑐𝑘
2)𝛹2(𝑘𝑇𝑠) − 𝑏𝑘𝛹3(𝑘𝑇𝑠) − 𝑏𝑘𝛹3(𝑘𝑇𝑠)

− 𝑐𝑘𝛹4(𝑘𝑇𝑠) + 𝑐𝑘𝑢(𝑘𝑡𝑠) 
                                      𝛹4(𝑘𝑇𝑠) = 𝛹3(𝑘𝑇𝑠 − 1)                                                               (21) 

From Eq.18 and Eq.21, one can observe that the equations can be written in a matrix notation as 

follows, 
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[

𝛹1(𝑘𝑇𝑠 + 1)
𝛹2(𝑘𝑇𝑠 + 1)
𝛹3(𝑘𝑇𝑠 + 1)
𝛹4(𝑘𝑇𝑠 + 1)

]

= [

−𝑏𝑘 −𝑐𝑘 0 0
1 0 0 0

𝑏𝑘(1 − 𝑐𝑘
2) 1 − 𝑐𝑘

2 −𝑏𝑘 −𝑐𝑘
0 1 0 0

] × [

𝛹1(𝑘𝑇𝑠)
𝛹2(𝑘𝑇𝑠)
𝛹3(𝑘𝑇𝑠)
𝛹4(𝑘𝑇𝑠)

]

+ [

1
0
𝑐𝑘
0

] × 𝑢(𝑘𝑇𝑠)                   (22) 

                                                         𝑦(𝑘𝑇𝑠 = 𝛩𝛹(𝑘𝑇𝑠)                                                                                    
(23) 

The regression coefficient vector (Θ) is calculated as, 

𝛹2𝑛−1(𝑘𝑇𝑠) = 𝐶1
𝑛[𝛹2𝑛(𝑘𝑇𝑠) − 𝑎1

𝑛𝛹2𝑛−1(𝑘𝑇𝑠)] 
                                                  𝛹2𝑛(𝑘𝑇𝑠) = 𝑐2

𝑛[𝛹2𝑛(𝑘𝑇𝑠) − 𝑎2
𝑛𝛹2𝑛−1(𝑘𝑇𝑠)]                                        (24) 

From the above derivations, it can be generalized (for an Nth order Kautz model), and it is possible 

to develop a mathematical expression as given below 

                                                        𝛹(𝑘𝑇𝑠 + 1) = 𝐴𝑘𝛹(𝑘𝑇𝑠) + 𝑏𝑘(𝑘𝑇𝑠)                                         (25) 

Where 

𝛹(𝑘𝑇𝑠) =

[
 
 
 
 
 
 
 
𝛹1(𝑘𝑇𝑠)
𝛹2(𝑘𝑇𝑠)
𝛹3(𝑘𝑇𝑠)
𝛹4(𝑘𝑇𝑠)

.

.

.
𝛹2𝑁(𝑘𝑇𝑠)]

 
 
 
 
 
 
 

 

is the vector that needs to be updated based on the constant-coefficient matrices 𝐴𝑘 and vector 𝑏𝑘. 
The output of the system under consideration can be approximated sum of Kautz states. 

                  𝑦(𝑘𝑇𝑠) =∑𝜃𝑗

2𝑁

𝑗=1

𝛹𝑗(𝑘𝑇𝑠)                                                                   (26) 

                         𝑦(𝑘𝑇𝑠) = ΘΨ (k𝑇𝑠)                                                                  (27) 

And Θ is calculated by applying linear regression. 

 

4 Model predictive control design 

 A dynamic model of a system is a vital issue in MPC calculations. Generally, a model of 

the process is utilized as a replica of the process to forecast the process's future dynamic behavior. 

A moving window, called prediction horizon (Np), is the time over window called control horizon 

(Nc). The overall aim of predictive control is to calculate a set of control moves {u(kTs+p-1/kTs), 

∀p∈[1Nc]} by optimizing a suitable defined objective function to obtain maximizing yield and 

minimizing the control effort required. 

 The Kautz model developed in section 3 serves as a dynamic model to predict a system's 

future behavior in the present work. 
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𝛹 (𝑘𝑇𝑠 + 𝐾𝑖 +
1
𝑘𝑇𝑠
⁄ ) =  𝐴𝑘𝛹(𝑘𝑇𝑠 +

𝑘𝑖
𝑘𝑇𝑠
⁄ )+𝑏𝑘𝑢(𝑘𝑇𝑠 +

𝑘𝑖
𝑘𝑇𝑠
⁄ ) 

                          𝑦 (𝑘𝑇𝑠 + 𝐾𝑖 +
1
𝑘𝑇𝑠
⁄ ) = 𝛩𝛹 (𝑘𝑇𝑠 + 𝐾𝑖 +

1
𝑘𝑇𝑠
⁄ )                             (28) 

Where ki is the time window, 𝑘𝑖 ∈ [1, 𝑁𝑝]. Derivation between process and model is referred to as 

process model mismatch (𝑑 (
𝑘𝑇𝑠

𝑘𝑇𝑠
⁄ ) =  𝑦𝑝(𝑘𝑇𝑠) − 𝑦𝑚(

𝑘𝑇𝑠
𝑘𝑇𝑠
⁄ − 1)) and the predicted output 

is updated as, 

    𝑦𝑐 (𝑘𝑇𝑠 +
𝑘𝑖
𝑘𝑇𝑠
⁄ ) =  𝑦𝑝(𝑘𝑇𝑠) + 𝑑(

𝑘𝑇𝑠
𝑘𝑇𝑠
⁄ )                                                       (29) 

In the prediction control calculations, the future control effort is calculated by optimizing the 

derivation between the know reference trajectory 𝑦𝑠𝑝(𝑘𝑇𝑠 + (
𝐾𝑖
𝑘𝑇𝑠
⁄ )) and the corrected 

prediction of the process. A quadratic objective function is optimized over a moving horizon to 

ensure the global optimal solution, 

𝑚𝑖𝑛
∆𝑢

∑ 𝐸𝑐 (𝑘𝑇𝑠 +
𝐾𝑖
𝑘𝑇𝑠
⁄ )

𝑇
𝑁𝑝

𝑘𝑖=1

𝑄𝐸(𝑘𝑇𝑠 +
𝑘𝑖
𝑘𝑇𝑠
⁄ ) 

And 𝐸𝑐 (𝑘𝑇𝑠 +
𝐾𝑖
𝑘𝑇𝑠
⁄ ) =  𝑦𝑠𝑝 (𝑘𝑇𝑠 +

𝐾𝑖
𝑘𝑇𝑠
⁄ ) − 𝑦𝑐(𝑘𝑇𝑠 +

𝑘𝑖
𝑘𝑇𝑠
⁄  )                                          (30) 

 

5 Results and Discussion 

The developed Kautz model is applied to a Dc-Dc buck converter to prove the developed model's 

capabilities in modeling systems with a fast and underdamped response. The results presented are 

carried out on MATLAB®  (R10a) with Window 10 64-bit PC. 

5.1 case study: DC-DC buck converter 

       The DC-DC buck converter is found everywhere in the power conversion application because 

of its efficiency in converting a high voltage signal to a low voltage signal. Extended battery life,  

low heat losses are some of the advantages of power conversion, and these advantages allow for 

the fabrication of low-power electronic systems. Generally, the circuit components such as 

capacitors, inductors, and the load resistance decide the mode of operation of buck converter, 

called continuous mode and discontinuous mode of operation of buck converter, called continuous 

mode and discontinuous mode. The schematic of a DC-DC buck converter is as shown in Fig 1. 

IN the present study, continuous conduction mode (CCM) 

 

Fig 1: Schematic of DC-DC buck converter 

The DC-DC buck converter is considered with a switching period(T). DC-DC buck converter 

displays linear dynamic characteristics when the switches are closed. 
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The dynamics of the converter can be represented as the following equations with closed switches 

[8]. 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴1𝑥(𝑡) + 𝐵1𝑢(𝑡) 

                                                 𝑦(𝑡) =  𝐶1𝑥(𝑡) + 𝐸1𝑢(𝑡)                                             (31) 

With opened switches, the converter dynamics can be represented by the following equations, 

𝑑𝑥(𝑡)

𝑑𝑡
 = 𝐴2𝑥(𝑡) + 𝐵2𝑢(𝑡) 

𝑦(𝑡) =  𝐶2𝑥(𝑡) + 𝐸2𝑢(𝑡)                                             (32) 

From the above Eq. 31 and Eq. 32, the average model of the converter system in the state-space 

model as a function of the duty cycle can be written as 

𝑑�̅�(𝑡)

𝑑𝑡
=  𝐴𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟(𝑑)�̅� + 𝐵𝑐𝑜𝑛v𝑒𝑟𝑡𝑒𝑟(𝑑)�̅� 

                                        𝑦 =  𝐶𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟 (𝑑)�̅� + 𝐸𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟(𝑑)�̅�                                               (33) 

Where 𝐴𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟(𝑑), 𝐵𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟(𝑑), 𝐶𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟(𝑑) 𝑎𝑛𝑑 𝐸𝑐𝑜𝑛𝑣𝑒𝑟𝑡e𝑟(𝑑) are defined as 

𝐴𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟(𝑑) = 𝑑𝐴1 + (1 − 𝑑)𝐴2 

𝐵𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟(𝑑) = 𝑑𝐵1 + (1 − 𝑑)𝐵2 

𝐶𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟(𝑑) =  𝑑𝐶1 + (1 − 𝑑)𝐶2 

                                                  𝐸𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑟(𝑑) =  𝑑𝐸1 + (1 − 𝑑)𝐸2                                          (34) 

x̅(t), u̅(t), and y̅(t) are the corresponding average value of u(t), x(t), and y(t) during one switching 

period (T), and d is the duty cycle. The dynamic model of the buck converter is as described below 

[8]. 

𝑑𝑖̅𝐿
𝑑𝑡

=  
−1

𝐿
�̅�𝑜 +

𝑑

𝐿
𝑉𝑖𝑛 

𝑑�̅̅̅�𝑜
𝑑𝑡

=  
1

𝐶
𝑖̅𝐿 +

−1

𝑅𝐶
�̅�𝑜 

                                                                                 �̅� =  �̅�𝑜                                                                        (35) 

The parameter values of DC-DC buck converter in the present study are Vin = 15V, R = 10Ω, 

L = 3, C = 22F 

5.2     Identification of DC-DC buck converter 
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The Dc-Dc buck converter is excited with an appropriate input signal around the operating point, 

and the data is collected to train, test, and validate the Kautz model. 

 

Figure 2: Identification of DC-DC buck converter measured voltage across the load 

(solid line) and predicted voltage using linear Kautz model (dash-dot line) and predicted 

voltage using linear Kautz model (dash-dot line). 

 

Figure 3: Test signal for DC-DC buck converter identification 

Input duty cycle perturbation of mean value 0.47. A total of 5000 data points were collected by 

solving system describing equations of DC-Dc buck converter(refer Eq. 35) with a sampling rate 

of  
1

𝑓𝑠
𝑠𝑒𝑐. The data is divided into two parts, one to train the model and another one to test the 

model. 75% of the data is used to train the model and to calculate the model parameters for the 

best performance, and the remaining 25% of the data is used to validate the best performance. The 

remaining 25% of the data is used to validate the developed Kautz model is evaluated based on a 

performance index called root mean square error (RMSE) value between the process/ model 

mismatch. The identification capabilities of the developed Kautz model are compared graphically 

and are shown in Fig. 2. It can be easily observed from figure  2 that the Kautz model is very 
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efficient in approximating the resonant zone of the DC-DC buck converter. The RMSE value 

between process/model mismatch is reported as low as 0.0143. 

 

Figure 4: The performance of Kautz MPC in controlling DC-DC buck converter: 

converter load  voltage 

 

Figure 5: The performance of Kautz MPC in controlling DC-DC converter: Input duty 

cycle profile 

5.3  MPC of DC-DC buck converter 

Both unconstrained and constrained model-based predictive control strategies are implemented 

on the DC-DC buck converter system. In the design, the prediction and control horizons are chosen 

as 10 and 1, respectively. The Kautz model-based predictive control performance is shown in Fig. 

4, Fig. 5,  Fig. 6, and Fig. 7. In both cases, the Kautz model is based on tracking the reference 

voltage even with a fast switching in the reference voltage values. From fig. 6 and Fig. 7, one can 

easily observe the reference tracking capabilities of Kautz MPC with a constant of duty cycle(0.25 

≤ Duty cycle ≤ 0.75). 
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Figure 6: the performance of Kautz MPC in controlling DC-DC buck converter with 

constraints on duty cycle: converter load voltage 

6 Conclusions 

This work introduces a methodology for model identification and predictive control of 

underdamped systems using the Kautz model. Kautz's efficiency in modeling and controlling the 

resonating system is demonstrated through a case study. It has been observed that the process-

model mismatch is significantly more minor in approximating the dynamics of DC-DC buck 

converters, whose dynamics are high-speed. An MPC has been designed based on the model 

developed, the capabilities of Kautz model-based MPC id presented. From simulation studies, it 

is evident that the Kautz filters are good at dealing with resonating systems.    

 

Figure 7: The performance of Kautz MPC in controlling DC-DC converter with constraints 

on duty cycle: Input duty cycle profile. 
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