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Abstract:  

In this research paper, we are fascinated to recount a Green shift to solve a specifically motivated to work 

two-point limit confidence problem with end limit layer in the stretch [0,1]. We investigated the 

appropriateness of the mathematical design while using the well-known Greens adjustment to a specific 

problem. During the approach, on two straight models, the quadrature method was applied. For exactness 

and to identify the error bound, the numerically computed results were compared to the analytical solutions. 

Computationally determined Findings were considered for the plan's assembly, and they are in appropriate 

agreement with the particular arrangement that is available in the literature. The analytical solutions found 

in the literature are closely associated with the simulation result. 
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Introduction 

Many physical problems from fluid mechanics, fluid dynamics, elasticity, magneto-hydrodynamics, plasma 

dynamics, oceanography, biological model, boundary layer theory,…etc are described mathematically by 

nonlinear integro-differential equations[1-3]. At present various techniques for numerical integration and 

methods for approximate solution of integro-differential equations and their applications to various physical 

models. Most of the nonlinear differential equations cannot be solved analytically. So it is required to obtain 

efficient numerical methods [4-7].Variable mesh methods for the solution of two point nonlinear boundary 

value problems; however, their methods are not applicable to differential equations with singular 

coefficients [8-12]. In recent years discussed a family of third order variable mesh methods for the solution 

of two point non-linear boundary value problems and obtained convergent solution for singular problems. 

In this context, we propose an efficient third order variable mesh method based on arithmetic average 

discretization for the solution of nonlinear integro-differential equation (4.1.1), which is applicable when 

the internal grid points of the solution region are both odd and even in number. Herewith we are resolving 

the singularly perturbed two - point boundary value problem using quadrature method depicted below. 
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Mathematical Details of the Discretization 

v′′ = 𝐹(𝑦, v, v′) + ∫ 𝐾(𝑦, 𝑡)𝑑𝑡,      0 < 𝑦 < 1,0 < 𝑡 < 1
1

0

 

 

v′′ = 𝐹(𝑦, v, v′) + ∫ 𝐾(𝑦, 𝑡)𝑑𝑡,            0 < 𝑦, 𝑡 < 1
1

0
               (4.1.1) 

 
𝑢(0) =  𝛿0,     𝑢(1) =  𝛿1       (4.1.2) 
𝛿0,𝛿1 
0≤ 𝑦, 𝑡 ≤ 1 
v′′ = 𝐻(𝑦, v, v′), 0 < 𝑦 < 1       (4.1.3) 
 
v(𝑦) ∈ C6[0,1] and v(𝑦, 𝑡) ∈ C4[0,1] 
 
0 = 𝑦0 < 𝑦1 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ < 𝑦N+1 = 1.  𝑚𝑛+1 = 𝑦𝑛+1 − 𝑦𝑛 > 1.  
 

𝑛 = 0(1)𝑁 + 1𝑦𝑖 = 𝑦0 + ∑ 𝑚𝑛
𝑖
𝑛=1 ,    𝑖 = 1(1)𝑁 + 1. 

 
𝜎𝑛 = (𝑚𝑛+1 𝑚𝑛⁄ ) > 0𝜎𝑛 = 1  
 

𝑦
𝑛+

1

2

=  𝑦𝑛 + 
𝜎𝑛𝑚𝑛

2
and  𝑦

𝑛−
1

2

=  𝑦𝑛 −
𝑚𝑛

2
  

𝑢(𝑦)𝑦𝑛 𝑈𝑛 = v(𝑦𝑛)  vn  𝑈𝑛  
 

∫ ∅(𝑦)𝑑𝑦

1

0

∅(𝑦) 

∫ ∅(𝑦)𝑑𝑦
𝑦

𝑛+
1
2

𝑦
𝑛−

1
2

= 𝛼−1∅
𝑛−

1

2

+ 𝛼0∅𝑛 + 𝛼1∅
𝑛+

1

2

     (4.2.1) 

𝛼−1, 𝛼0, 𝛼1  𝑦𝑛   ∅𝑛 =  ∅(𝑦𝑛) 
 

𝑦𝑛+1
2⁄ − 𝑦𝑛 =

𝑚

2
= 𝑦𝑛−𝑦𝑛−1

2⁄  

∅𝑛+1
2⁄ = ∅𝑛 +

𝑚

2
∅𝑛

′ +
𝑚2

8
∅𝑛

′′ +
𝑚3

48
∅𝑛

′′′ + 𝑂(𝑚4)     (4.2.2a) 

 

∫ ∅(𝑦)𝑑𝑦

𝑦
𝑛+

1
2

𝑦
𝑛−

1
2

= ∫ ∅(𝑦𝑛 + (𝑦 −

𝑦
𝑛+

1
2

𝑦
𝑛−

1
2

𝑦𝑛)) 

∫ ∅(𝑦)𝑑𝑦
𝑦

𝑛+
1
2

𝑦
𝑛−

1
2

= ∫ [∅ + (𝑦 −
𝑦

𝑛+
1
2

𝑦
𝑛−

1
2

𝑦𝑛)∅𝑛
′ +

(𝑦−𝑦𝑛)2

2
∅𝑛

′′+
(𝑦−𝑦𝑛)3

6
∅𝑛

′′′ +
(𝑦−𝑦𝑛)4

24
∅𝑛

𝑖𝑣 + ⋯ ⋯ ]𝑑𝑥 
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= [𝑦∅𝑛 +
(𝑦−𝑦𝑛)2

2
∅𝑛

′ +
(𝑦−𝑦𝑛)3

6
∅𝑛

′′ +
(𝑦−𝑦𝑛)4

24
∅𝑛

′′′ + ⋯ ⋯ ]𝑦
𝑛−

1
2

𝑦
𝑛+

1
2 

   = [𝑚∅𝑛 +
𝑚3

24
∅𝑛

′′ +
𝑚5

1920
∅𝑛

𝑖𝑣 + ⋯ ⋯]    (4.2.3) 

 
∅𝑛 
𝛼−1 + 𝛼0 + 𝛼1 = 𝑚 

−
𝑚

2
𝛼−1 +

𝑚

2
𝛼1 = 0 

−𝛼−1 + 𝛼1 = 0 
or  −𝛼−1 = 𝛼1 

 

−
𝑚2

8
𝛼−1 +

𝑚2

8
𝛼1 =

𝑚3

24
 

𝛼−1 + 𝛼1 =
𝑚

3
 

 

𝛼−1 =
𝑚

6
,   𝛼0 =

4𝑚

6
,                     𝛼1 =

𝑚

6
 

[𝑦𝑛, 𝑦𝑛+1]          𝑦𝑛,  𝑦𝑛+1
2⁄ , 𝑦𝑛+1 

 

∫ ∅(𝑦)𝑑𝑦 =  
𝑚

6
[

𝑦𝑛+1

𝑦𝑛
∅𝑛 + 4∅

𝑛+
1

2

+ ∅𝑛+1]      (4.2.4) 

 
[𝑦𝑛, 𝑦𝑛+1]   is   𝑚𝑛+1 
 

∫ ∅(𝑦)𝑑𝑦 =  
𝑚𝑛+1

6
[

𝑦𝑛+1

𝑦𝑛
∅𝑛 + 4∅

𝑛+
1

2

+ ∅𝑛+1],   n = 0,1,2,3 ………,N               (4.2.5) 

 

∫ ∅(𝑦)𝑑𝑦 = ∫ ∅(𝑦)𝑑𝑦 +
𝑥1

𝑥0
∫ ∅(𝑦)𝑑𝑦 + ⋯

𝑥2

𝑥1
⋯ ⋯ ⋯ + ∫ ∅(𝑦)𝑑𝑦

𝑥𝑁+1

𝑥𝑁

1

0
  

 

 = ∑
𝑚𝑛+1

6
𝑁
𝑛=0 [∅𝑛 + 4∅

𝑛+
1

2

+ ∅𝑛+1]     (4.2.6) 

 
𝑉𝑛

′′ = 𝐻(𝑦𝑛,𝑉𝑛, 𝑉𝑛
′) = 𝐻𝑛 

 

𝛼𝑛
− = (

𝑑𝐻

𝑑𝑣
)

𝑦𝑛

, 𝛽𝑛 = (
𝑑𝐻

𝑑𝑣′)
𝑦𝑛

                    (4.2.7) 

𝛼1𝑉𝑛+1 + 𝛼0𝑉𝑛 + 𝛼−1𝑉𝑛−1 = 𝑚𝑛
2[𝑏1𝐻

𝑛+
1

2

+ 𝑏0𝐻𝑛 + 𝑏−1𝐻
𝑛−

1

2

]+𝑇𝑛   (4.2.8) 

Where 𝑇𝑛 = O(𝑚𝑛
5) 

 
𝛼−1 + 𝛼0 + 𝛼1 = 0         (4.2.9a) 
𝛼1𝜎𝑛𝑚𝑛 − 𝛼−1𝑚𝑛 = 0        (4.2.9b) 
 
𝛼1𝜎𝑛

2𝑚𝑛
2 + 𝛼−1𝑚𝑛

2 = 2𝑚𝑛
2(𝑏1 + 𝑏0 + 𝑏−1) 
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𝛼1𝜎𝑛
2 + 𝛼−1 = 2(𝑏1 + 𝑏0 + 𝑏−1)       (4.2.9b) 

 
𝛼1𝜎𝑛

3𝑚𝑛
3 − 𝛼−1𝑚𝑛

3 = 3𝑚𝑛
3(𝑏1𝜎𝑛 − 𝑏−1) 

𝛼1𝜎𝑛
3 − 𝛼−1 = 3(𝑏1𝜎𝑛 − 𝑏−1)       (4.2.9d) 

 
𝛼1𝜎𝑛

4𝑚𝑛
4 + 𝛼−1𝑚𝑛

4 = 3𝑚𝑛
4(𝑏1𝜎𝑛

2 + 𝑏−1) 
𝛼1𝜎𝑛

4 + 𝛼−1 = 3(𝑏1𝜎𝑛
2 + 𝑏−1)       (4.2.9e) 

 
3(𝑏1𝜎𝑛 − 𝑏−1) =  𝜎𝑛

3 − 𝜎𝑛        (4.2.10a) 
3(𝑏1𝜎𝑛

2 + 𝑏−1) = 𝜎𝑛
4 + 𝜎𝑛        (4.2.10b) 

 

𝑏1 =  
𝜎𝑛

2

3
 

 
𝑂(𝑚𝑛

3), 

(𝑉𝑛+1 − (1 + 𝜎𝑛)𝑉𝑛 + 𝜎𝑛𝑉𝑛−1) =  
𝜎𝑛𝑚𝑛

2

3
[𝜎𝑛𝐻

𝑛+
1

2

+
(1+𝜎𝑛)

2
𝐻𝑛 + 𝐻

𝑛−
1

2

] + 𝑂(𝑚𝑛
5), 𝜎𝑛 ≠ 1(4.2.11) 

 
�̅�

𝑛+
1
2

= 𝛼1𝑉𝑛+1 + 𝛼0𝑉𝑛 

�̅�
𝑛+

1

2

=
1

2
(𝑉𝑛+1 + 𝑉𝑛) = 𝑉

𝑛+
1

2

+
𝜎𝑛

2𝑚𝑛
2

8
𝑉𝑛

′′ +  𝑂(𝑚𝑛
3),    (4.2.12) 

 

�̅�
𝑛−

1

2

=
1

2
(𝑉𝑛−1 + 𝑉𝑛) = 𝑉

𝑛−
1

2

+
𝑚𝑛

2

8
𝑉𝑛

′′ −  𝑂(𝑚𝑛
3),    (4.2.13) 

 
𝛼0 = −1,                     𝛼1 = 1 
 

�̅�
𝑛+

1

2

′ =
1

𝜎𝑛𝑚𝑛
(𝑉𝑛+1 − 𝑉𝑛) = 𝑉

𝑛+
1

2

′ +
𝜎𝑛

2𝑚𝑛
2

24
𝑉𝑛

′′′ +  𝑂(𝑚𝑛
3),   (4.2.14)  

 

�̅�
𝑛−

1

2

′ =
1

𝑚𝑛
(𝑉𝑛 − 𝑉𝑛−1) = 𝑉

𝑛−
1

2

′ +
𝑚𝑛

2

24
𝑉𝑛

′′′ −  𝑂(𝑚𝑛
3),    (4.2.15) 

 
𝛼1 + 𝛼0 + 𝛼−1 = 0        (4.2.16a) 
𝛼1𝜎𝑛𝑚𝑛 − 𝛼−1𝑚𝑛 = 1       (4.2.16b) 
𝛼1𝜎𝑛

2 + 𝛼−1 = 0        (4.2.16c) 
𝛼1𝜎𝑛𝑚𝑛(1 + 𝜎𝑛) = 1   
 

𝛼1 =
1

𝜎𝑛𝑚𝑛(1 + 𝜎𝑛)
 

𝛼−1 = −
𝜎𝑛

2

𝜎𝑛𝑚𝑛(1 + 𝜎𝑛)
 

𝛼0 =
(1 − 𝜎𝑛

2)

𝜎𝑛𝑚𝑛(1 + 𝜎𝑛)
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�̅�
𝑛+

1

2

= 𝐻
𝑛+

1

2

+
𝜎𝑛

2𝑚𝑛
2

8
𝑉𝑛

′′𝛼
𝑛+

1

2

+
𝜎𝑛

2𝑚𝑛
2

24
𝑉𝑛

′′′𝛽
𝑛+

1

2

+  𝑂(𝑚𝑛
3), 𝜎𝑛 ≠ 1   

   

 = 𝐻
𝑛+

1

2

+
𝜎𝑛

2𝑚𝑛
2

24
(3𝑉𝑛

′′𝛼𝑛 + 𝑉𝑛
′′′𝛽𝑛) +  𝑂(𝑚𝑛

3), 𝜎𝑛 ≠ 1  (4.2.20a)  

 = 𝐻
𝑛−

1

2

+
𝑚𝑛

2

24
(3𝑉𝑛

′′𝛼𝑛 + 𝑉𝑛
′′′𝛽𝑛) −  𝑂(𝑚𝑛

3), 𝜎𝑛 ≠1   (4.2.20b) 

 

�̅�
𝑛+

1

2

+ �̅�
𝑛−

1

2

= 2𝑉𝑛
′′ +

𝑚𝑛

2
(𝜎𝑛 − 1)𝑉𝑛

′′′ +
𝑚𝑛

2

24
(1 + 𝜎𝑛

2)(3𝑉𝑛
′′𝛼𝑛 + 𝑉𝑛

′′′𝛽𝑛 + 3𝑉𝑛
′𝑣) + 𝑂(𝑚𝑛

3),

 𝜎𝑛 ≠ 1          (4.2.21a)  
 

�̅�
𝑛+

1

2

− �̅�
𝑛−

1

2

=
𝑚𝑛

2
(1 + 𝜎𝑛)𝑉𝑛

′′′ +
𝑚𝑛

2

24
(𝜎𝑛

2 − 1)(3𝑉𝑛
′′𝛼𝑛 + 𝑉𝑛

′′′𝛽𝑛 + 3𝑉𝑛
′𝑣) + 𝑂(𝑚𝑛

3), 𝜎𝑛 ≠ 1 

                       (4.2.21b) 
 

�̿�𝑛 = 𝑉𝑛 + 𝛼𝑚𝑛
2(�̅�

𝑛+
1

2

+ �̅�
𝑛−

1

2

)      (4.2.22a) 

�̿�𝑛
′ = �̅�𝑛

′ + 𝑏𝑚𝑛(�̅�
𝑛+

1

2

− �̅�
𝑛−

1

2

)      (4.2.22b) 

 

�̿�𝑛 = 𝑉𝑛 + 2𝛼𝑚𝑛
2𝑉𝑛

′′ + 𝑂(𝑚𝑛
3), 𝜎𝑛 ≠ 1     (4.2.23a) 

 

�̿�𝑛
′ = �̅�𝑛

′ + 𝑏𝑚𝑛(�̅�
𝑛+

1

2

− �̅�
𝑛−

1

2

) 

�̿�𝑛
′ = �̅�𝑛

′ +
𝑚𝑛

2

6
[𝜎𝑛 + 3𝑏(1 + 𝜎𝑛)]𝑉𝑛

′′′ + 𝑂(𝑚𝑛
3), 𝜎𝑛 ≠ 1   (4.2.23b) 

�̅�𝑛 = 𝐻𝑛 + 2𝛼𝑚𝑛
2𝑉𝑛

′′𝛼𝑛 +
𝑚𝑛

2

6
[𝜎𝑛 + 3𝑏(1 + 𝜎𝑛)]𝑉𝑛

′′′𝛽𝑛 + 𝑂(𝑚𝑛
3), 𝜎𝑛 ≠ 1 (4.2.25) 

 
(1 + 𝜎𝑛

3) + 8𝛼(1 + 𝜎𝑛) = 0 
(1 − 𝜎𝑛 + 𝜎𝑛

2) + 2(𝜎𝑛 + 3𝑏(1 + 𝜎𝑛)) = 0 
(1 + 𝜎𝑛 + 𝜎𝑛

2) + 6𝑏(1 + 𝜎𝑛) = 0 

𝛼 =
−(1−𝜎𝑛+𝜎𝑛

2)

8
,  𝛼 =

−(1+𝜎𝑛+𝜎𝑛
2)

6(1+𝜎𝑛)
 

�̅�𝑛 = 𝑂(𝑚𝑛
5), 𝜎𝑛 ≠ 1 

 

Observations and Conclusion 

Using three variable mesh points, we have discussed a new numerical method of accuracy of 𝑂(𝑚𝑛
3), based 

on arithmetic average discretizations for the solution of the nonlinear two point boundary value problem 

shown in above derived equations. We had developed a third order variable mesh method based on 

Numerov type discretization in which is only applicable to the solution space having odd number of grid 

points. Although the proposed variable mesh method involves more algebra, but applicable to the solution 

space having both odd and even number of internal grid points. In addition, the proposed method is directly 
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applicable to singular problems and we do not require any fictitious points near the boundaries to 

incorporate the singular point. The numerical results indicate that the proposed method is computationally 

slightly better than the method discussed and applicable to the solution space with all internal grid points. 

In this singularly perturbed two - point boundary value problem is solved and analyzed. 
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