Turkish Online Journal of Qualitative Inquiry (TOJQI)

Volume 12, Issue 8, July2021: 833-842

Some Recent Advances in Prime Cordial Labeling of Graphs

Vishally Sharma, A. Parthiban
Department of Mathematics, School of Chemical Engineering and Physical Sciences, Lovely
Professional University, Phagwara, Punjab, India
vishuuph@gmail.com, mathparthi@gmail.com

Abstract

This paper deals with the prime cordial labeling of graphs obtained by performing graph operations namely, corona product and extension of vertex, on some well-known graphs. Further, certain interesting conjectures and open problems concerning prime cordial labeling are also formulated.

Keywords: Prime cordial labeling, Corona product, Extension of vertex.

1. Introduction

In this article, all of the graphs are simple, finite, connected, and undirected. Burton [2] and Hararay [5] are the names of the books we refer for number theory and graph theory respectively. Gallian [4] is complex survey on the various graph labeling problems with considerable bibliography. For definitions and other related literature we refer to [1, 6-10]. Cahit [3] pioneered the idea of cordial labeling. We refer to prime cordial labeling and prime cordial graph as "pcl" and "pcg" respectively, throughout this article.

Definition 1.1. [7] A pcl of a graph H^{*} having node set V_{H}^{*} is a one-one, onto map $g^{*}: V_{H}^{*} \rightarrow\left\{1,2,3, \ldots,\left|V_{H}^{*}\right|\right\}$ so that each edge ' $u_{1} v_{1}$ ' is assigned the label 1 when $G C D\left(g^{*}\left(u_{1}\right), g^{*}\left(v_{1}\right)\right)=1$ and 0 if $G C D\left(g^{*}\left(u_{1}\right), g^{*}\left(v_{1}\right)\right)$ >1, then the modulus of difference between the count of edges having labels 0 and 1 is at the most 1 i.e; $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$. A graph is considered a pcg if it allows a pcl.

Note. One can easily recall that in graph theory the terms node and vertex, node set and vertex set are interchangeable.

2. Main Results

In this section, we discuss certain advanced results on the pcl of graphs.

2.1 PCL in the Context of Corona Product of Graphs

In this section, we accomplish some results on prime cordial labeling in the context of corona product of graphs.
Definition 2.1.1. [1] If H^{*} is a graph of order r, then the corona product of H^{*} with another graph K^{*}, represented by $H^{*} \odot K^{*}$ is a graph acquired by considering one copy of H^{*} and r copies of K^{*} thereby connecting the $r^{\text {th }}$ node of H^{*} by an edge to each node in the $r^{\text {th }}$ copy of K^{*}.

Theorem 2.1.2. Corona product of path P_{m} with $\underline{K_{1}}$ denoted by $P_{m} \odot \underline{K_{1}}$ permits a pcl.
Proof. Let P_{m} be the given path having node set $V^{s}\left(P_{m}\right)=\left\{p_{1}, p_{2}, \ldots, p_{m}\right\}$ and edge set $E^{s}\left(P_{m}\right)=\left\{p_{i} p_{i+1}\right.$: $1 \leq i \leq m-1\}$. Let G^{s} represent the graph acquired by considering corona product of P_{m} with $\underline{K_{1}}$ having node set $V^{s}\left(G^{s}\right)=V^{s}\left(P_{m}\right) \cup\left\{p_{1}^{\prime}, p_{2}^{\prime} \ldots, p_{m}^{\prime}\right\}$ and edge set $E^{s}\left(G^{s}\right)=E\left(P_{m}\right) \cup\left\{p_{i} p_{i}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{m}\right\}$.

Clearly the cardinalities of node set and edge set of G^{s} are equal to $2 m$ and $2 m-1$ respectively. Consider the map $g^{s}: V^{s}\left(G^{s}\right) \rightarrow\{1,2, \ldots, 2 m\}$ defined by $g^{s}\left(p_{1}\right)=2, g^{s}\left(p_{i}\right)=g^{s}\left(p_{i-1}\right)+2 ; 2 \leq \mathrm{i} \leq \mathrm{m}$, and $g^{s}\left(p_{i}^{\prime}\right)=$ $g^{s}\left(p_{i}\right)-1 ; 1 \leq \mathrm{i} \leq \mathrm{m}$. Evidently, $e_{g^{s}}(0)=m-1$ and $e_{g^{s}}(1)=m$. Hence, G^{s} is pcg.

Figure 1. pcl of $P_{4} \odot \underline{K_{1}}$
Theorem 2.1.3. Corona product of cycle C_{p} with $\underline{K_{1}}$ denoted by $C_{p} \odot \underline{K_{1}}$ allows a pcl.
Proof. Let C_{p} be the given cycle with node set $V^{s}\left(C_{p}\right)=\left\{c_{1}, c_{2}, \ldots, c_{p}\right\}$ and edge set $E^{s}\left(C_{p}\right)=$ $\left\{c_{i} c_{i+1}: 1 \leq i \leq p-1\right\} \cup\left\{c_{p} c_{1}\right\}$. Let G^{s} represent the graph acquired by taking the corona product of C_{p} with $\underline{K_{1}}$ having node set $V^{s}\left(G^{s}\right)=V^{s}\left(C_{p}\right) \cup\left\{c_{1}^{\prime}, c_{2}^{\prime} \ldots, c_{p}^{\prime}\right\}$ and edge set $E^{s}\left(G^{s}\right)=E^{s}\left(C_{p}\right) \cup\left\{c_{i} c_{i}^{\prime}: 1 \leq\right.$ $i \leq p\}$. Clearly, $\left|V^{s}\left(G^{s}\right)\right|=2 p$ and $\left|E^{s}\left(G^{s}\right)\right|=2 p$. Consider the map $g^{s}: V^{s}\left(G^{s}\right) \rightarrow\{1,2, \ldots, 2 p\}$ given by $g^{s}\left(c_{1}\right)=2, g^{s}\left(c_{i}\right)=g^{s}\left(c_{i-1}\right)+2 ; 2 \leq \mathrm{i} \leq \mathrm{p}$, and $g^{s}\left(c_{i}^{\prime}\right)=g^{s}\left(c_{i}\right)-1 ; 1 \leq \mathrm{i} \leq \mathrm{p}$. Following the above pattern, it is easy to note that $e_{g^{s}}(0)=p=e_{g^{s}}(1)$ which proves that G^{s} is a pcg.

Theorem 2.1.4. Corona product of wheel graph with $\underline{K_{1}}$ allows a pcl.
Proof. Let W_{n}^{α} be the wheel graph having node set $V\left(W_{n}^{\alpha}\right)=\left\{w_{0}^{\alpha}\right\} \cup\left\{w_{1}^{\alpha}, w_{2}^{\alpha}, \ldots, w_{n}^{\alpha}\right\}$ and edge set $E\left(W_{n}^{\alpha}\right)=\left\{w_{i}^{\alpha} w_{i+1}^{\alpha}: 1 \leq i \leq n-1\right\} \cup\left\{w_{n}^{\alpha} w_{1}^{\alpha}\right\} \cup\left\{w_{0}^{\alpha} w_{i}^{\alpha}: 1 \leq i \leq n\right\}$. Let H^{α} represents the graph acquired by operating the corona product operation to get $W_{n}^{\alpha} \odot \underline{K_{1}}$ having $V\left(H^{\alpha}\right)=V\left(W_{n}^{\alpha}\right) \cup\left\{w_{0}^{\prime}\right.$, $\left.w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{n}^{\prime}\right\}$ and edge set $E\left(H^{\alpha}\right)=E\left(W_{n}^{\alpha}\right) \cup\left\{w_{i}^{\alpha} w_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{w_{0}^{\alpha} w_{0}^{\prime}\right\}$. Clearly the cardinalities of node and edge set of H^{α} are equal to $2 n+2$ and $3 n+1$ respectively. Consider the map $g^{*}: V\left(H^{\alpha}\right) \rightarrow$ $\{1,2, \ldots, 2 n+2\}$ defined under the two possibilities.
Case (i). When n is divisible by 2 .
Fix $\quad g^{*}\left(w_{0}^{\alpha}\right)=2, g^{*}\left(w_{1}^{\alpha}\right)=4, g^{*}\left(w_{0}^{\prime}\right)=1, g^{*}\left(w_{\frac{n}{2}}^{\alpha}\right)=6, g^{*}\left(w_{\frac{n}{2}+1}^{\alpha}\right)=3, g^{*}\left(w_{i}^{\alpha}\right)=g^{*}\left(w_{i-1}^{\alpha}\right)+4$, for $\frac{n}{2}+2 \leq$ $i \leq n, g^{*}\left(w_{i}^{\prime}\right)=g^{*}\left(w_{i}^{\alpha}\right)+2 ; \frac{n}{2}+1 \leq i \leq n$ and w_{i}^{α} and w_{j}^{\prime} may be given the even labels, where $2<i<$ $\frac{n}{2}$ and $1 \leq j \leq \frac{n}{2}$.

Case (ii). When n is not divisible by 2 .
Fix $\quad g^{*}\left(w_{0}^{\alpha}\right)=2, g^{*}\left(w_{1}^{\alpha}\right)=4, g^{*}\left(w_{0}^{\prime}\right)=2 n+1, g^{*}\left(w_{\frac{n+1}{2}}^{\alpha}\right)=6, g^{*}\left(w_{\frac{n+1}{2}}^{\prime}\right)=1, g^{*}\left(w_{\frac{n+1}{2}+1}^{\alpha}\right)=3, g^{*}\left(w_{i}^{\alpha}\right)=$ $g^{*}\left(w_{i-1}^{\alpha}\right)+4 ; \frac{n+1}{2}+2 \leq i \leq n$, and $g^{*}\left(w_{i}^{\prime}\right)=g^{*}\left(w_{i}^{\alpha}\right)+2 ; \frac{n+1}{2}+1 \leq i \leq n$. Allot the remaining even labels out of $\{1,2, \ldots, 2 n+2\}$ to w_{i}^{α} and w_{j}^{\prime}, where $1<i<\frac{n+1}{2}$ and $1 \leq j<\frac{n+1}{2}$ in any pattern. Following the above patterns it is noteworthy that $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$ and therefore H^{α} isa pcg.

Figure 2. pcl of $W_{6} \odot \underline{K_{1}}$
Theorem 2.1.5. Corona product of gear graph G_{n} with $\underline{K_{1}}$ is pcg.
Proof. Let G_{n} be the gear graph having node set $V\left(G_{n}\right)=\left\{g_{0}\right\} \cup\left\{g_{1}, g_{2}, \ldots, g_{2 n}\right\}$ and edge set $E\left(G_{n}\right)=$ $\left\{g_{i} g_{i+1}: 1 \leq i \leq 2 n\right\} \cup\left(g_{2 n} g_{1}\right\} \cup\left\{g_{0} g_{i}: i \in\{1,3,5 \ldots, 2 n-1\}\right.$. Let H^{*} be the name given to corona product of G_{n} with $\underline{K_{1}}$ having node set $V\left(H^{*}\right)=V\left(G_{n}\right) \cup\left\{g_{0}^{\prime}, g_{1}^{\prime}, g_{2}^{\prime} \ldots, g_{2 n}^{\prime}\right\}$ and edge set $E\left(H^{*}\right)=E\left(G_{n}\right) \cup$ $\left\{g_{i} g_{i}^{\prime}: 1 \leq i \leq 2 n\right\} \cup\left\{g_{0} g_{0}^{\prime}\right\}$. Clearly the cardinalities of node and edge set of H^{*} are equal to $4 \mathrm{n}+2$ and $5 \mathrm{n}+$ 1 respectively. Consider the map $h^{*}: V\left(H^{*}\right) \rightarrow\{1,2, \ldots, 4 n+2\}$ and let us perform the labeling as under.
$\operatorname{Fix}^{*}\left(g_{0}\right)=2, h^{*}\left(g_{0}^{\prime}\right)=1, h^{*}\left(g_{1}\right)=4, h^{*}\left(g_{n}\right)=6, h^{*}\left(g_{n+1}\right)=3, h^{*}\left(g_{i}\right)=h^{*}\left(g_{i-1}\right)+4 ; n+2 \leq i \leq 2 n$. Next, $h^{*}\left(g_{n+1}^{\prime}\right)=9, h^{*}\left(g_{n+2}^{\prime}\right)=5$ and $h^{*}\left(g_{i}^{\prime}\right)=h^{*}\left(g_{i}\right)+2 ; n+3 \leq i \leq 2 n$. Further, g_{i} and g_{j}^{\prime} should be marked with unutilized even labels, where $2 \leq \mathrm{i}<\mathrm{n}, 1 \leq \mathrm{j} \leq \mathrm{n}$. Following the above pattern it is easy to note that $\left|e_{h^{*}}(0)-e_{h^{*}}(1)\right| \leq 1$ which shows that H^{*} is pcg.
Theorem 2.1.6. Corona product of a flower graph $F l_{n}$ with $\underline{K_{1}}$ denoted by $F l_{n} \odot \underline{K_{1}}$ permits a pcl.
Proof. Let $F l_{n}$ be the flower graph having node set $V\left(F l_{n}\right)=\left\{v_{0}\right\} \cup\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \cup\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and edge set $E\left(F l_{n}\right)=\left\{v_{0} v_{i}, v_{0} u_{i}, v_{i} u_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{v_{n} v_{1}\right\}$. Let H^{*} represents the graph acquired by considering the corona product of $F l_{n}$ with $\underline{K_{1}}$ having node set $V\left(H^{*}\right)=V\left(F l_{n}\right) \cup\left\{u_{0}, v_{i}^{\prime}, u_{i}^{\prime}: 1 \leq\right.$ $i \leq n, 1 \leq j \leq n$ and edge set $E H *=E(F \ln) \cup v O u O \cup v i v i^{\prime}: 1 \leq i \leq n \cup u i u i i^{\prime}: 1 \leq i \leq n$. Note that the cardinalities of node and edge set of H^{*} are equal to $4 \mathrm{n}+2$ and $6 n+1$ respectively. Consider the map $g^{*}: V\left(H^{*}\right) \rightarrow\{1,2, \ldots, 4 n+2\} \quad$ given by fixing $g^{*}\left(v_{0}\right)=2, g^{*}\left(u_{0}\right)=1, g^{*}\left(v_{1}\right)=4, g^{*}\left(v_{i}\right)=$ $g^{*}\left(v_{i-1}\right)+4 ; 2 \leq \mathrm{i} \leq \mathrm{n}, g^{*}\left(v_{i}^{\prime}\right)=g^{*}\left(v_{i}\right)+2 ; 1 \leq i \leq n, g^{*}\left(u_{i}\right)=g^{*}\left(v_{i}\right)+1 ; 1 \leq i \leq n$ and $g^{*}\left(u_{i}^{\prime}\right)=g^{*}\left(v_{i}\right)-1 ; 1 \leq i \leq n$. Following this pattern, we accomplish that $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$. Thus H^{*} is pcg.

Figure 3. pcl of $F l_{6} \odot \underline{K_{1}}$

Vishally Sharma, A. Parthiban

Theorem 2.1.7. Corona product of a path P_{n} with $\underline{K_{2}}$ permits a pcl.
Proof. Let $V\left(P_{n}\right)=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and $E\left(P_{n}\right)=\left\{p_{i} p_{i+1}: 1 \leq i \leq n-1\right\}$ stands respectively for the set of nodes and edges of P_{n}. Let H^{*} represent the graph formed by taking the corona product of P_{n} with $\underline{K_{2}}$ having node set $V\left(H^{*}\right)=V\left(P_{n}\right) \cup\left\{p_{1}^{\prime}, p_{2}^{\prime} \ldots, p_{n}^{\prime}\right\} \cup\left\{p_{1}^{\prime \prime}, p_{2}^{\prime \prime}, \ldots, p_{n}^{\prime \prime}\right\}$ and edge set $E\left(H^{*}\right)=E\left(P_{n}\right) \cup\left\{p_{i} p_{i}^{\prime}: 1 \leq \mathrm{i} \leq\right.$ $\mathrm{n}\} \cup\left\{p_{i} p_{i}^{\prime \prime}: 1 \leq i \leq n\right\}$. Note that the cardinalities of node and edge set of P_{n} are equal to $3 n$ and $3 n-1$ respectively. Consider the map $g^{*}: V\left(H^{*}\right) \rightarrow\{1,2, \ldots, 3 n\}$ defined by two possibilities.

Case (i). When n is even.
Fix $\quad g^{*}\left(p_{1}\right)=2, g^{*}\left(p_{\frac{n}{2}+1}\right)=1, g^{*}\left(p_{\frac{n}{2}+1}^{\prime}\right)=3, g^{*}\left(p_{\frac{n}{2}+1}^{\prime \prime}\right)=5, g^{*}\left(p_{i}\right)=g^{*}\left(p_{i-1}\right)+2 ; 2 \leq i \leq \frac{n}{2}$, $g^{*}\left(p_{\frac{n}{2}+1+i}\right)=g^{*}\left(p_{\frac{n}{2}+1+(i-1)}\right)+6 ; 1 \leq i \leq \frac{n}{2}-1, g^{*}\left(p_{\frac{n}{2}+1+i}^{\prime}\right)=g^{*}\left(p_{\frac{n}{2}+1+(i-1)}^{\prime}\right)+6 ; 1 \leq i \leq \frac{n}{2}-1$ and $g^{*}\left(p_{\frac{n}{2}+1+i}^{\prime \prime}\right)=g^{*}\left(p_{\frac{n}{2}+1+(i-1)}^{\prime \prime}\right)+6 ; 1 \leq i \leq \frac{n}{2}-1$. Allocate the unutilized even labels to $p_{i}^{\prime}, p_{i}^{\prime \prime}$ for $1 \leq i \leq \frac{n}{2}$. Following the above pattern, we find that $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$.

Case (ii). When n is odd.
Fix $\quad g^{*}\left(p_{1}\right)=2, \quad g^{*}\left(p_{\frac{n+1}{2}}\right)=6, g^{*}\left(p_{\frac{n+1}{2}}^{\prime}\right)=3, g^{*}\left(p_{\frac{n+1}{2}}^{\prime \prime}\right)=1, g^{*}\left(p_{\frac{n+1}{2}+1}\right)=7, g^{*}\left(p_{\frac{n+1}{2}+1+i}\right)=$ $g^{*}\left(p_{\frac{n+1}{2}+1+(i-1)}\right)+6 ; 1 \leq i \leq \frac{n-3}{2}, \quad g^{*}\left(p_{\frac{n+1}{2}+i}^{\prime}\right)=g^{*}\left(p_{\frac{n+1}{2}+i}\right)+2 ; \quad 1 \leq i \leq \frac{n-1}{2}$ and $g^{*}\left(p_{\frac{n+1}{2}+i}^{\prime \prime}\right)=$ $g^{*}\left(p_{\frac{n+1}{2}+i}\right)-2 ; 1 \leq i \leq \frac{n-1}{2}$. Allocate the unutilized even labels out of $\{1,2, \ldots, 3 n\}$ to p_{i}, p_{j}^{\prime} and $p_{k}^{\prime \prime}$ in any fashion, where $2 \leq i \leq \frac{n-1}{2}, 1 \leq j \leq \frac{n-1}{2}$ and $1 \leq k \leq \frac{n-1}{2}$. Note that $e_{g^{*}}(0)=e_{g^{*}}(1)=\frac{3 n-1}{2} \quad$ which implies that $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$. Hence H^{*} is pcg.

Theorem 2.1.8. Corona product of cycle C_{n} with $\underline{K_{2}}$ denoted by $C_{n} \odot \underline{K_{2}}$ permits a pcl.
Proof. Let C_{n} be the given cycle graph having node set $V_{c}\left(C_{n}\right)=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$ and edge set $E_{c}\left(C_{n}\right)=$ $\left\{c_{i} c_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{c_{n} c_{1}\right\}$. Let H^{*} be the graph acquired by taking the corona product of C_{n} with K_{2} having $\quad V_{c}\left(H^{*}\right)=V_{c}\left(C_{n}\right) \cup\left\{c_{1}^{\prime}, c_{2}^{\prime} \ldots, c_{n}^{\prime}\right\} \cup\left\{c_{1}^{\prime \prime}, c_{2}^{\prime \prime}, \ldots, c_{n}^{\prime \prime}\right\} \quad$ as node set and $E_{c}\left(H^{*}\right)=E_{c}\left(C_{n}\right) \cup$ $\left\{c_{i} c_{i}^{\prime}: 1 \leq i \leq n\right\} \cup\left\{c_{i} c_{i}^{\prime \prime}: 1 \leq i \leq n\right\}$ as an edge set. Note that the cardinalities of node and edge set of H^{*} are equal to $3 n$ and $3 n$ respectively. Consider the map $g^{*}: V_{c}\left(H^{*}\right) \rightarrow\{1,2, \ldots, 3 n\}$ defined under two possibilities.

Case (i).When n is even.
Fix $g^{*}\left(c_{1}\right)=2, g^{*}\left(c_{\frac{n}{2}}\right)=6, \quad g^{*}\left(c_{\frac{n}{2}+1}\right)=3, g^{*}\left(c_{\frac{n}{2}+2}\right)=7, g^{*}\left(c_{\frac{n}{2}+2+i}\right)=g^{*}\left(c_{\frac{n}{2}+2+(i-1)}\right)+6 ; 1 \leq i \leq \frac{n}{2}-2$, $g^{*}\left(\begin{array}{c}c_{\frac{n}{2}+1}^{\prime}\end{array}\right)=1, g^{*}\left(\begin{array}{c}c_{\frac{n}{2}+2}^{\prime}\end{array}\right)=9, g^{*}\left(c_{\frac{n}{2}+1}^{\prime \prime}\right)=5, g^{*}\left(c_{\frac{n}{2}+2+i}^{\prime}\right)=g^{*}\left(c_{\frac{n}{2}+2+(i-1)}^{\prime}\right)+6 ; \quad 1 \leq i \leq \frac{n}{2}-2 \quad$ and $g^{*}\left(c_{\frac{n}{2}+1+i}^{\prime \prime}\right)=g^{*}\left(c_{\frac{n}{2}+1+(i-1)}^{\prime \prime}\right)+6 ; 1 \leq i \leq \frac{n}{2}-1$. Allot the unutilized even labels out of the remaining labels to $c_{i}, c_{j}^{\prime}, c_{k}^{\prime \prime}$, where $2 \leq i \leq \frac{n}{2}-1,1 \leq j \leq \frac{n}{2}$ and $1 \leq k \leq \frac{n}{2}$, in any fashion. Following this pattern it follows that $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$.

Case (ii). When n is odd.
Follow the labeling pattern of case (ii) of previous theorem, we observe that H^{*} allows a pcl.
Theorem 2.1.9. Corona product of P_{n} with $\underline{K_{n}}$ denoted by $P_{n} \odot \underline{K_{n}}$ permits a pcl.

Some Recent Advances in Prime Cordial Labeling of Graphs

Proof. Let P_{n} be path having $V\left(P_{n}\right)=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and $E\left(P_{n}\right)=\left\{p_{i} p_{i+1}: 1 \leq i \leq n-1\right\}$ as node and edge set respectively. Let H^{*} be the graph formed by taking the corona product of P_{n} with $\underline{K_{n}}$ having node set $V\left(H^{*}\right)=V\left(P_{n}\right) \cup\left\{k_{i j}: 1 \leq i \leq n, 1 \leq j \leq n\right\}$ and edge set $E\left(H^{*}\right)=E\left(P_{n}\right) \cup\left\{p_{i} k_{i j}: 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq j \leq n\right\}$. Clearly the cardinalities of node and edge set of H^{*} are equal to $n^{2}+n$ and $n^{2}+n-1$ respectively. Consider the map $g^{*}: V\left(H^{*}\right) \rightarrow\left\{1,2, \ldots, n^{2}+n\right\}$ given by two possibilities.

Case (i). When n is even.
Fix $\quad g^{*}\left(p_{1}\right)=2, g^{*}\left(p_{i}\right)=g^{*}\left(p_{i-1}\right)+2 ; 2 \leq i \leq \frac{n}{2}, g^{*}\left(p_{\frac{n}{2}+1}\right)=1$. Consider the sequence of consecutive prime numbers, say $q_{\frac{n}{2}+2}, q_{\frac{n}{2}+3}, \ldots, q_{n}$ such that $n^{2}+n \geq q_{n}>q_{n-1}>\cdots>q_{\frac{n}{2}+2}$. Fix $g^{*}\left(p_{i}\right)=q_{i} ; \frac{n}{2}+2 \leq$ $i \leq n$. Allot the unutilized even labels to $k_{i j}$ such that $1 \leq i \leq \frac{n}{2}, 1 \leq j \leq n$. Next assign unutilized odd labels to $k_{i j}$ for $\frac{n}{2}+1 \leq i \leq n, 1 \leq j \leq n$ simultaneously from $\left\{1,2, \ldots, n^{2}+n\right\}$.

Case (ii). When n is odd.
Fix $g^{*}\left(p_{1}\right)=2, g^{*}\left(p_{i}\right)=g^{*}\left(p_{i-1}\right)+2 ; 2 \leq i \leq\left\lceil\frac{n}{2}\right\rceil, g^{*}\left(p_{\left\lceil\frac{n}{2}\right\rceil+1}\right)=1$. Consider the sequence of consecutive prime numbers, say $q_{\left\lceil\frac{n}{2}\right\rceil+2}, q_{\left\lceil\frac{n}{2}\right\rceil+3}, \ldots, q_{n}$ such that $n^{2}+n \geq q_{n}>q_{n-1}>\cdots>q_{\left\lceil\frac{n}{2}\right\rceil+2}$. Fix $g^{*}\left(p_{i}\right)=q_{i} ; \quad\left\lceil\frac{n}{2}\right\rceil+$ $2 \leq i \leq n$. Allot the unutilized even labels to $k_{i j}$ such that $1 \leq i \leq\left\lfloor\frac{n}{2}\right\rfloor, 1 \leq j \leq n$ and to $k_{\left\lceil\frac{n}{2}\right\rceil j}, 1 \leq j \leq\left\lfloor\frac{n}{2}\right\rfloor$. Allot the unutilized odd labels to $k_{\left\lceil\frac{n}{2}\right\rceil j}$ for $\left\lceil\frac{n}{2}\right\rceil \leq j \leq n$ and to $k_{i j}$ for $\left\lceil\frac{n}{2}\right\rceil+1 \leq i \leq n, \quad 1 \leq j \leq n$ simultaneously from $\left\{1,2, \ldots, n^{2}+n\right\}$. Following above pattern one can easily find that $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$, which prove that H^{*} is pcg.

Remark 2.1.10. One can easily derive pcl of the corona product of cycle C_{n} with $\underline{K_{n}}$ in similar lines with the above theorem.

2.2 PCL in the Context of Extension of Vertex

In this part, we discuss some results on pcl of graphs in the context of extension of node/nodes.
Definition 2.2.1. [7] Duplicating a node, say u_{i}^{α}, in G^{u} is accomplished by adding a new node u_{i}^{\prime} so that $\mathrm{N}\left(u_{i}^{\prime}\right)=\mathrm{N}\left(u_{i}^{\alpha}\right)$.
Definition 2.2.2. [7] Extension of a node, say u_{i}^{α}, is achieved by inserting a new node u_{i}^{\prime} so that $\mathrm{N}\left(u_{i}^{\prime}\right)=$ $\mathrm{N}\left[u_{i}^{\alpha}\right]$.

Theorem 2.2.3. Duplicating each node of a path graph P_{n} results in a pcg.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n}$ designates the set of nodes for path graph P_{n}. Let H^{*} be a graph formed by duplicating each node of P_{n} having node set $\mathrm{V}\left(H^{*}\right)=\mathrm{V}\left(P_{n}\right) \cup\left\{v_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and edge set $\mathrm{E}\left(H^{*}\right)=\mathrm{E}\left(P_{n}\right) \cup\left\{u_{i-1} v_{i}: 2 \leq \mathrm{i}\right.$ $\leq \mathrm{n}\} \cup\left\{v_{i} u_{i+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$. Clearly $\left|\mathrm{V}\left(H^{*}\right)\right|=2 \mathrm{n}$ and $\left|\mathrm{E}\left(H^{*}\right)\right|=3 \mathrm{n}-3$. Consider a map $g^{*}: \mathrm{V}\left(H^{*}\right) \rightarrow\{1,2, \ldots, 2 \mathrm{n}\}$ defined by two possibilities.
Case (i). When n is even.
Fix $g^{*}\left(u_{\frac{n}{2}}\right)=6, g^{*}\left(v_{\frac{n}{2}}\right)=2, g^{*}\left(u_{\frac{n}{2}+1}\right)=5, g^{*}\left(v_{\frac{n}{2}+1}\right)=3$. Allot the available even labels to u_{i} and v_{i} for $1 \leq i<\frac{n}{2}$ in any fashion. Next, fix $g^{*}\left(u_{i}\right)=g^{*}\left(u_{i-1}\right)+6 ; \mathrm{i}>\frac{n}{2}+1, g^{*}\left(v_{i}\right)=g^{*}\left(v_{i-1}\right)+6$; i $>\frac{n}{2}+1$. Let us assume that u_{k} and v_{l} be the largest indexed node, labeled by using above pattern. Label u_{k+1} with the largest unused odd label out of $\{1,2, \ldots, 2 \mathrm{n}\}$. Let $g^{*}\left(u_{i}\right)=g^{*}\left(u_{i-1}\right)-12$ for $\mathrm{k}+2 \leq \mathrm{i} \leq \mathrm{n}$, and for unlabeled nodes v_{i} , fix $g^{*}\left(v_{i}\right)=g^{*}\left(u_{i}\right)-6$ for $\mathrm{k}+1 \leq \mathrm{i} \leq \mathrm{n}$. Once this pattern ends, assign the unutilized label, if any, to the unlabeled node/nodes.

Case (ii). When n is odd.

Fix $g^{*}\left(u_{\left\lceil\frac{n}{2}\right\rceil}\right)=6, g^{*}\left(v_{\left\lceil\frac{n}{2}\right\rceil}\right)=2, g^{*}\left(u_{\left\lceil\frac{n}{2}\right\rceil+1}\right)=5, g^{*}\left(v_{\left\lceil\frac{n}{2}\right\rceil+1}\right)=3$. Allot the remaining even labels to $u_{i} ; 1 \leq \mathrm{i}<\left\lceil\frac{n}{2}\right\rceil$ and to $v_{j} ; 2 \leq \mathrm{j}<\left\lceil\frac{n}{2}\right\rceil$ in any fashion. Next, fix $g^{*}\left(u_{i}\right)=g^{*}\left(u_{i-1}\right)+6 ; \mathrm{i}>\frac{n}{2}+1, g^{*}\left(v_{i}\right)=g^{*}\left(v_{i-1}\right)+6 ; \mathrm{i}>$ $\frac{n}{2}+1$. Let us assume that u_{k} be the largest indexed node labeled with above pattern. Assign the largest unused label out of $\{1,2, \ldots, 2 \mathrm{n}\}$ to u_{k+1}. Assign $g^{*}\left(u_{i}\right)=g^{*}\left(u_{i-1}\right)-12$ for $\mathrm{i} \geq \mathrm{k}+2$ and for unlabeled nodes v_{i}, fix g^{*} $\left(v_{i}\right)=g^{*}\left(u_{i}\right)-6$ for $\mathrm{i} \geq \mathrm{k}+1$. Once this pattern ends, allot the unutilized labels to the remaining unmarked node/nodes.

In view of the above cases, it follows that $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$. Hence, H^{*} is pcg.

Figure 4. pcl of graph formed by duplication of each node in P_{5}
Remark 2.2.4. It is easy to deduce the pcl of the graph formed by duplicating each node of cycle graph and wheel graph on similar lines with the above theorem.

Theorem 2.2.5. Extension of an arbitrary node of a cycle graph C_{n} results in a pcg for $\mathrm{n} \geq 7$.
Proof. Let $c_{1}, c_{2}, \ldots, c_{n}$ designates the nodes of C_{n}. Let H^{*} be a graph produced by taking the extension of an arbitrary node of C_{n}. Let us consider the extension of node c_{1} and let w be the freshly inserted node. Clearly cardinalities of node and edge set of H^{*} are equal to $\mathrm{n}+1$ and $\mathrm{n}+3$ respectively. Consider a vertex labeling $g^{*}: \mathrm{V}\left(H^{*}\right) \rightarrow\{1,2, \ldots, \mathrm{n}+1\}$ as given. Let $g^{*}\left(c_{1}\right)=6, g^{*}\left(c_{n}\right)=2$ and $g^{*}(w)=4$. Now we have the under mentioned possibilities.

Case (i). When n is even.
$g^{*}\left(c_{i}\right)=g^{*}\left(c_{i-1}\right)+2 ; 2 \leq i \leq \frac{n}{2}-2, g^{*}\left(c_{\frac{n}{2}-1}\right)=1, g^{*}\left(c_{i}\right)=g^{*}\left(c_{i-1}\right)+2 ; \frac{n}{2} \leq \mathrm{i} \leq \mathrm{n}-1$.
Case (ii). When n is odd.
$g^{*}\left(c_{i}\right)=g^{*}\left(c_{i-1}\right)+2 ; 2 \leq i \leq \frac{n-1}{2}-1, g^{*}\left(c_{\frac{n-1}{2}}\right)=1, g^{*}\left(c_{i}\right)=g^{*}\left(c_{i-1}\right)+2 ; \frac{n-1}{2}+1 \leq \mathrm{i} \leq \mathrm{n}-1$.
Note that $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$ for both the cases which ensures that H^{*} is pcg.

Figure 5. pcl of extension of c_{1} in C_{6}
Theorem 2.2.6. The graph acquired by performing the extension of a rim vertex of wheel W_{n} chosen at random allows a pel for $\mathrm{n}>7$.

Proof. Let $\mathrm{V}\left(W_{n}\right)=\left\{w_{0}, w_{1}, w_{2} \ldots, w_{n}\right\}$ be the node set of W_{n} in which w_{0} is central node and rest are rim nodes. Let H^{*} be a graph produced by taking extension of an arbitrary rim node. Let us take the extension of w_{1} and let x be the freshly inserted node. Clearly the cardinalities of node and edge sets of H^{*} are equal to $\mathrm{n}+2$ and $2 \mathrm{n}+4$ respectively. Consider a map $g^{*}: \mathrm{V}\left(H^{*}\right) \rightarrow\{1,2, \ldots, \mathrm{n}+2\}$ defined under three conditions.
Case (i). When n is even.
$g^{*}\left(w_{0}\right)=2, g^{*}(x)=6, g^{*}\left(w_{1}\right)=8, g^{*}\left(w_{n}\right)=4, g^{*}\left(w_{\frac{n}{2}-1}\right)=1, g^{*}\left(w_{\frac{n}{2}}\right)=3, g^{*}\left(w_{\frac{n}{2}+1}\right)=9, g^{*}\left(w_{i}\right)=$ $g^{*}\left(w_{i-1}\right)+2 ; 2 \leq i \leq \frac{n}{2}-2$. Allocate the unutilized labels to unmarked nodes namely $w_{\frac{n}{2}+2}, w_{\frac{n}{2}+3}, \ldots, w_{n-1}$ simultaneously from $\{1,2, \ldots, \mathrm{n}+2\}$.

Case (ii). When n is odd and $n \equiv 2(\bmod 3)$.
$g^{*}\left(w_{0}\right)=2, g^{*}(x)=6, g^{*}\left(w_{1}\right)=8, g^{*}\left(w_{n}\right)=4, g^{*}\left(w_{n-1}\right)=1, g^{*}\left(w_{\frac{n+1}{2}-2}\right)=3, g^{*}\left(w_{\frac{n+1}{2}-1}\right)=9$, and $g^{*}\left(w_{i}\right)=g^{*}\left(w_{i-1}\right)+2 ; 2 \leq i \leq \frac{n+1}{2}-3$. Allocate unutilized labels to unlabeled nodes namely $w_{\frac{n+1}{2}}, w_{\frac{n+1}{2}+1}, \ldots$, w_{n-2} simultaneously from $\{1,2, \ldots, \mathrm{n}+2\}$.

Case (iii). When n is odd and $n \not \equiv 2(\bmod 3)$.
$g^{*}\left(w_{0}\right)=2, g^{*}(x)=8, g^{*}\left(w_{1}\right)=10, g^{*}\left(w_{n}\right)=4, g^{*}\left(w_{\frac{n+1}{2}-3}\right)=6, g^{*}\left(w_{\frac{n+1}{2}-2}\right)=3, g^{*}\left(w_{\frac{n+1}{2}-1}\right)=9$ and $g^{*}\left(w_{i}\right)=g^{*}\left(w_{i-1}\right)+2 ; 2 \leq i \leq \frac{n+1}{2}-4$ (if the case exists). Allocate the unutilized labels to unlabeled nodes namely $w_{\frac{n+1}{2}}, w_{\frac{n+1}{2}+1}, \ldots, w_{n-2}$ simultaneously from $\{1,2,3, \ldots \mathrm{n}+2\}$.
In all the three cases discussed above it is visible that $\left|e_{g^{*}}(0)-e_{g^{*}}(1)\right| \leq 1$, which ensures that H^{*} is pcg.

Figure 6. pcl of extension of rim vertex in W_{9}
Theorem 2.2.7. Extension of an arbitrary node of degree 2 of a flower graph $F l_{n}$ results in a pcg.
Proof. Let $\left\{\mathrm{v}, v_{i}, u_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ be the node set of $F l_{n}$ where nodes $v_{i}{ }^{\prime} \mathrm{s}$ and $u_{i}{ }^{\prime}$ s have degree 4 and 2 respectively. Let H^{*} be a graph produced by taking extension of an arbitrary node of degree 2 . Without loss of generality, let us take the extension of node u_{1} and let w be the freshly inserted node. Clearly the cardinalities of node set and edge set of H^{*} are respectively equal to $2 \mathrm{n}+2$ and $4 \mathrm{n}+3$. Consider a map $g^{*}: \mathrm{V}\left(H^{*}\right) \rightarrow\{1,2, \ldots, 2 \mathrm{n}+2\}$ as given. Let $g^{*}(\mathrm{v})=2, g^{*}\left(v_{1}\right)=6, \quad g^{*}\left(u_{1}\right)=3$ and $g^{*}(\mathrm{w})=1$. Allocate available unutilized even labels simultaneously to $v_{i} ; 2 \leq \mathrm{i} \leq \mathrm{n}$. Next, set $g^{*}\left(u_{i}\right)=g^{*}\left(v_{i}\right)+1 ; 2 \leq \mathrm{i} \leq \mathrm{n}-1$ and allocate the unutilized label to u_{n}. Following this pattern it is easy to see that H^{*} is pcg.

Remark 2.2.8. The graph formed by performing the extension of an arbitrary node of degree 4 in flower graph $F l_{n}$ allows a pcl. Here the count of edges will be $4 \mathrm{n}+5$. Fix $g^{*}(\mathrm{w})=3, g^{*}\left(v_{1}\right)=6, g^{*}\left(u_{1}\right)=1$ and $g^{*}\left(v_{2}\right)=12$, rest follow the above pattern.
Theorem 2.2.9. Extension of all vertices of path graph P_{n} allows a pcl.

Proof. Let $u_{1}, u_{2}, \ldots, u_{n}$ be the nodes of P_{n}. Let H^{*} be the graph acquired by taking extension of all nodes of P_{n} having node set $\mathrm{V}\left(H^{*}\right)=\mathrm{V}\left(P_{n}\right) \cup\left\{v_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and edge set $\mathrm{E}\left(H^{*}\right)=\mathrm{E}\left(P_{n}\right) \cup\left\{u_{i} v_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{v_{i} u_{i-1}: 2\right.$ $\leq \mathrm{i} \leq \mathrm{n}\} \cup\left\{v_{i} u_{i+1}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\}$. Clearly cardinalities of node set and edge set of H^{*} are equal to 2 n and $4 \mathrm{n}-3$ respectively. In order to define $g^{*}: \mathrm{V}\left(H^{*}\right) \rightarrow\{1,2, \ldots, 2 \mathrm{n}\}$, we refer to theorem 2.2.3.

Theorem 2.2.10. Extension of all nodes of cycle graph $C_{n}, \mathrm{n}>8$ allows a pcl.
Proof: Let the node set of C_{n} be $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$. Let H^{*} be the graph produced by taking extension of all nodes of C_{n} having node set $\mathrm{V}\left(H^{*}\right)=\mathrm{V}\left(C_{n}\right) \cup\left\{v_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and edge set $\mathrm{E}\left(H^{*}\right)=\mathrm{E}\left(C_{n}\right) \cup\left\{u_{i} v_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ $\cup\left\{u_{i-1} v_{i}: 2 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{u_{i+1} v_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}-1\right\} \cup\left\{u_{n} v_{1}, u_{1} v_{n}\right\}$. Clearly the cardinalities of node set and edge set of H^{*} are equal to 2 n and 4 n . In order to define $g^{*}: \mathrm{V}\left(H^{*}\right) \rightarrow\{1,2, \ldots, 2 \mathrm{n}\}$, we refer to theorem 2.2.3, except for the following few changes. Replace $g^{*}\left(u_{\frac{n}{2}+1}\right)=9, g^{*}\left(v_{\frac{n}{2}+1}\right)=3, g^{*}\left(u_{\frac{n}{2}+2}\right)=11, g^{*}\left(v_{\frac{n}{2}+2}\right)=5$, $g^{*}\left(u_{\frac{n}{2}+3}\right)=17, g^{*}\left(v_{\frac{n}{2}+3}\right)=15$. (Similar pattern when n is odd). One can easily see that H^{*} is pcg.

Remark 2.2.11. It is easy to deduce the pcl of the graph acquired by performing the extension of all the rim vertices of wheel graph W_{n} on similar lines with the above theorem.

Theorem 2.2.12. Extension of all vertices in a star graph allows a pcl.
Proof. Let $\left\{k_{0}, k_{1}, k_{2}, \ldots, k_{n}\right\}$ be the node set of star graph $K_{1, n}$ where k_{0} represents the apex node and k_{1}, k_{2}, \ldots, k_{n} represents the pendant nodes. Let H^{*} be the graph produced by performing extension of each node of $K_{1, n}$ and let $u_{0}, u_{1}, u_{2}, \ldots, u_{n}$ be the freshly inserted nodes. The node set and edge set of H^{*} are given by $\mathrm{V}\left(H^{*}\right)=$ $\mathrm{V}\left(K_{1, n}\right) \cup\left\{u_{0}, u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $\mathrm{E}\left(H^{*}\right)=\mathrm{E}\left(K_{1, n}\right) \cup\left\{k_{i} u_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{k_{0} u_{0}\right\} \cup\left\{k_{0} u_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup$ $\left\{u_{0} k_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ respectively. Clearly the cardinalities of node set and edge set of H^{*} are equal to $2 \mathrm{n}+2$ and $4 \mathrm{n}+1$ respectively. Consider the map $g^{*}: \mathrm{V}\left(H^{*}\right) \rightarrow\{1,2, \ldots, 2 \mathrm{n}+2\}$ defined as here. Fix $g^{*}\left(k_{0}\right)=2, g^{*}\left(k_{1}\right)=3$, $g^{*}\left(k_{2}\right)=4, g^{*}\left(k_{3}\right)=8, g^{*}\left(k_{i}\right)=g^{*}\left(k_{i-1}\right)+2 ; 4 \leq \mathrm{i} \leq \mathrm{n}, g^{*}\left(u_{0}\right)=6, g^{*}\left(u_{1}\right)=1, g^{*}\left(u_{2}\right)=5, g^{*}\left(u_{i}\right)=$ $g^{*}\left(k_{i}\right)-1 ; 3 \leq \mathrm{i} \leq \mathrm{n}$.
Note that $\operatorname{GCD}\left(g^{*}\left(k_{0}\right), g^{*}\left(k_{i}\right)\right)>1 ; 2 \leq \mathrm{i} \leq \mathrm{n}$,
$\operatorname{GCD}\left(g^{*}\left(k_{0}\right), g^{*}\left(u_{0}\right)\right)>1$ and
$\operatorname{GCD}\left(g^{*}\left(u_{0}\right), g^{*}\left(k_{i}\right)\right)>1 ; 1 \leq \mathrm{i} \leq \mathrm{n}$.
The edges due to above observation shall be labeled 0 and the remaining edges shall be labeled 1 . We note here that $e_{g^{*}}(0)=2 \mathrm{n}$ and $e_{g^{*}}(1)=2 \mathrm{n}+1$. One can easily see that H^{*} is pcg.
Theorem 2.2.13. Extension of all nodes of bistar graph allows a pcl.
Proof. Let $B_{n, n}$ be the bistar having node set $\mathrm{V}\left(B_{n, n}\right)=\left\{u_{0}, v_{0}, u, v_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ where u_{0}, v_{0} represents the apex nodes. Let H^{*} be the graph produced by performing extension of each node of $B_{n, n}$ and let $v_{0}^{\prime}, u_{0}^{\prime}, v_{i}^{\prime}, u_{i}^{\prime}$; $1 \leq \mathrm{i} \leq \mathrm{n}$ be the freshly added nodes.

The node set and edge set of H^{*} are given by $\mathrm{V}\left(H^{*}\right)=\mathrm{V}\left(B_{n, n}\right) \cup\left\{v_{0}^{\prime}, u_{0}^{\prime}, v_{i}^{\prime}, u_{i}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ and $\mathrm{E}\left(H^{*}\right)=$ $\mathrm{E}\left(B_{n, n}\right) \cup\left\{u_{i} u_{i}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{v_{i} v_{i}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{u_{0} v_{0}^{\prime}, v_{0} u_{0}^{\prime}, u_{0} u_{0}^{\prime}, v_{0} v_{0}^{\prime}\right\} \cup\left\{u_{0} u_{i}^{\prime}, v_{0} v_{i}^{\prime}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup$ $\left\{u_{0}^{\prime} u_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\} \cup\left\{v_{0}^{\prime} v_{i}: 1 \leq \mathrm{i} \leq \mathrm{n}\right\}$ respectively. The cardinality of node set of H^{*} is equal to $4 \mathrm{n}+4$ and that of edge set is equal to $8 \mathrm{n}+5$.

Consider the map $g^{*}: \mathrm{V}\left(H^{*}\right) \rightarrow\{1,2, \ldots, 4 \mathrm{n}+4\}$ defined as here. $g^{*}\left(u_{0}\right)=2, g^{*}\left(v_{0}\right)=4, g^{*}\left(u_{0}^{\prime}\right)=6, g^{*}\left(v_{0}^{\prime}\right)=1$, $g^{*}\left(u_{1}\right)=3, g^{*}\left(u_{1}^{\prime}\right)=12$. Allot the unutilized even labels to u_{i} and $u_{i}^{\prime} ; 2 \leq \mathrm{i} \leq \mathrm{n}$ in any order. Next, $g^{*}\left(v_{1}\right)=$ $5, g^{*}\left(v_{i}\right)=g^{*}\left(v_{i-1}\right)+4 ; 2 \leq \mathrm{i} \leq \mathrm{n}$ and $g^{*}\left(v_{i}^{\prime}\right)=g^{*}\left(v_{i}\right)+2 ; 1 \leq \mathrm{i} \leq \mathrm{n}$.
Observe here that $\operatorname{GCD}\left(g^{*}\left(v_{0}^{\prime}\right), g^{*}\left(v_{i}\right)\right)=1 ; 1 \leq \mathrm{i} \leq \mathrm{n}$,
$\operatorname{GCD}\left(g^{*}\left(v_{0}\right), g^{*}\left(v_{i}\right)\right)=1 ; 1 \leq \mathrm{i} \leq \mathrm{n}$,
$\operatorname{GCD}\left(g^{*}\left(v_{0}\right), g^{*}\left(v_{i}^{\prime}\right)\right)=1 ; 1 \leq \mathrm{i} \leq \mathrm{n}$,
$\operatorname{GCD}\left(g^{*}\left(u_{0}\right), g^{*}\left(v_{o}^{\prime}\right)\right)=1$,

Some Recent Advances in Prime Cordial Labeling of Graphs

$\operatorname{GCD}\left(g^{*}\left(v_{0}\right), g^{*}\left(v_{0}^{\prime}\right)\right)=1$ and
$\operatorname{GCD}\left(g^{*}\left(u_{0}\right), g^{*}\left(u_{1}\right)\right)=1$.
The edges due to above observation shall be labeled 1 and the remaining edges shall be labeled 0 . Note here that $e_{g^{*}}(1)=4 \mathrm{n}+3$ and $e_{g^{*}}(0)=4 \mathrm{n}+2$, which proves that H^{*} is pcg.
Vaidya et.al in [10] proved that one point union of C_{3} allows a pcl. Motivated by this, we attempt to prove that one point union of K_{4} also permits pcl.

Theorem 2.2.14. The point union of n -copies of K_{4} allows a pcl.
Proof. Let H^{*} be the graph produced by taking the point union of n -copies of K_{4} having node set $\mathrm{V}\left(H^{*}\right)=\left\{k_{0}\right\}$ $\cup\left\{k_{i j}: 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq 3\right\}$ and edge set $\mathrm{E}\left(H^{*}\right)=\left\{k_{0} k_{i j}: 1 \leq \mathrm{i} \leq \mathrm{n}, 1 \leq \mathrm{j} \leq 3\right\} \cup\left\{k_{i 1} k_{i 2}, k_{i 1} k_{i 3}, k_{i 2} k_{i 3}\right.$ $: 1 \leq \mathrm{i} \leq \mathrm{n}\}$. Clearly the cardinalities of node set and edge set of H^{*} are equal to $3 \mathrm{n}+1$ and 6 n respectively. Consider a map $g^{*}: \mathrm{V}\left(H^{*}\right) \rightarrow\{1,2,3, \ldots, 3 \mathrm{n}+1\}$ as given. Choose the largest prime p such that $3 \mathrm{p} \leq 3 \mathrm{n}+1$. Fix $g^{*}\left(k_{0}\right)=2$ p. Beginning with k_{11}, allocate all even labels simultaneously to the nodes $k_{12}, k_{13}, k_{21}, k_{22}$, k_{23}, \ldots. in any fashion. Now we have two cases.

Case (i). When n is odd.
Allocate odd labels to unmarked nodes simultaneously from $\{1,2, \ldots, 3 n+1\}$.
Case (ii). When n is even.
Fix $g^{*}\left(K_{\frac{n}{2}}^{2}\right)=1, \quad g^{*}\left(K_{\left(\frac{n}{2}+1\right) 1}\right)=3, \quad g^{*}\left(K_{\left(\frac{n}{2}+1\right) 2}\right)=9$ and assign unutilized labels to unmarked nodes namely, $K_{\left(\frac{n}{2}+1\right) 3}, K_{\left(\frac{n}{2}+2\right) 1}, K_{\left(\frac{n}{2}+2\right) 2}, \ldots, k_{n 3}$ simultaneously from unutilized labels out of $\{1,2, \ldots, 3 \mathrm{n}+1\}$.

Figure 7. pcl of point union of 4 copies of K_{4}

2.3 Conjectures and Open Problems

We propose the following conjectures.
Conjecture 2.3.1. $P_{n} \odot \underline{K_{m}}$ permits a pcl.
Conjecture 2.3.2. If G is a k-regular pcg , then $\mathrm{G} \odot K_{1}$ is also a pcg.
Conjecture 2.3.3. Extension of an apex vertex of wheel graph does not permit a pcl.
Conjecture 2.3.4. The graph produced by performing the extension of each node of G allows a pcl, where G is a k -regular pcg.

In addition to the above conjectures, we also propose the following open problems.
Problem 2.3.5. Investigate whether the following graphs permit a pcl?
$C_{n} \odot \underline{K_{m}}, W_{n} \odot \underline{K_{m}}, F l_{n} \odot \underline{K_{m}}, G_{n} \odot \underline{K_{m}}$

Problem 2.3.6. If G is a k-regular pcg, then does $\mathrm{G} \odot K_{n}$ also pcg ?
Problem 2.3.7. Investigate whether extension of each node of helm graph, flower graph, gear graph allows a pcl?

Problem 2.3.8. If G is a pcg then does graph produced by performing extension of each node of G also allow a pcl?

3. Conclusion

In the first subsection of the main results, we have accomplished that path, cycle, wheel, gear, and flower graphs are invariant under graph operation namely corona product, with $\underline{K_{1}}$, for pcl. Further we have also established that corona product of path P_{n} with $\underline{K_{n}}$ permits a pcl. In the second subsection we have established that graphs produced by performing extension of every node in path, cycle, wheel, star and bistar graph permit a pcl besides formulating some interesting conjectures and open problems.

References (APA)

[1] Bosmia, M.I., \& Kanani, K.K. (2016). Divisor Cordial Labeling in the Context of Corona Product, 9th National Level Science Symposium organized by Christ College, Rajkot and sponsored by GUJCOST, Gandhinagar, 3, 178-182.
[2] Burton, D.M. (1980). Elementary Number Theory, Second edition, Wm. C. Brown company publishers.
[3] Cahit, I. (1987).Cordial graphs: A weaker version of graceful and harmonious graphs, Ars combinatoria, 23, 201-207.
[4] Gallain, J.A. (2018). A Dynamic Survey of Graph Labeling, Electronic Journal of Combinatorics, \# DS6.
[5] Hararay, F. (1972). Graph Theory, Addison Wesley , Reading Mass.
[6] Maya, P., \& Nicholas, T. (2014).Some New Families of Divisor Cordial Graph, Annals of Pure and Applied Mathematics, 5(2), 125-134.
[7] Parthiban, A., \& David, N.G. (2018). Prime Distance Labeling of Some Path Related Graphs. International Journal of Pure and Applied Mathematics, 120(7), 59-67.
[8] Sundaram, M., Ponraj, R., \& Somasundaram, S. (2005).Prime Cordial Labeling of Graphs, Journal of Indian Academy of Mathematics, 27(2), 373-390.
[9] Vaidya, S.K., \& Shah, N.H. (2013). Prime cordial labeling of some wheel related graphs, Malaya Journal of Matematik, 4(1), 148-156.
[10] Vaidya, S.K., \& Vihol, P.L. (2010). Prime Cordial Labeling for Some Cycle Related Graphs, Int.J. Open Problems Compt. Math., 3(5), 223-232.

