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Abstract 

Image processing has applications in real-time in various fields, including feature recognition, forensics, 

military applications, and clinical so on. Image processing algorithms require a colossal amount of data to be 

stored since these algorithms operate on a plethora of array of pixels. Furthermore, the actual application 

requires these algorithms to be delivered at higher throughput and low latency, for instance, live video telecast 

and live object tracking. The parallelism and reconfigurable nature of FPGA and the high number of assets 

accessible on FPGA fill in as an ideal platform to accomplish this task in real-time. Edge detection is one of the 

crucial algorithms of image processing, after that, other algorithms such as object recognition, feature extraction 

depend. A great deal of researchers has aimed at various edge detection strategies. Several edge detection 

algorithms such as Roberts, Prewitt, Sobel, Scharr, and Canny are analyzed using the Xilinx Zed board and SoC 

design flow in this paper. The xfopenCV library has been utilized for edge detection, developed explicitly for 

Xilinx FPGAs and SoCs, can run up to 40 times faster than GPUs and 100 times faster than CPUs.. 

Keywords: FPGA, Image Processing, Edge Detection, Sobel, Canny, Robert, Prewitt, Laplacian of Gaussian, 

Marr-Hildreth, xfOpenCV, SoC Design flow, Zynq-7000, Zed Board 

  

1. Introduction 

The image processing algorithms operate on the data stored in a pixel frame, making it require a different 

approach than conventional microcontroller practice. A microcontroller sequentially executes the code, causing 

higher latency. To implement the major operation of image processing, convolution, on the microcontroller 

using assembly language, entails the loading of data from memory, moving data to registers, and then 

performing the convolution and finally storing the result back to the memory. This process would return as 

much as the number of pixels is present in the given image and increase power consumption and area due to a 

few names of peripherals handled on the microcontroller. Field programmable gate array (FPGA) is an ideal 

nominee for pragmatically achieving image processing as it works in parallel, steering a decline in latency. The 

cores accessible through FPGA, Digital Signal Processing (DSP) slices, Block RAM (BRAM), a Lookup table 

(LUT), industrial I/O standards, on-chip processor, and on-chip peripherals, can accomplish any digital design 

on a single chip. Figure 1 illustrates the difference between microcontroller and FPGA for several arithmetic 

operations. The parallel implementation needs only two clock cycles; on the other hand, sequential execution 

requires 12 clock cycles to complete [1]. Additionally, advanced zynq based FPGA provides the entrenched 

integration of software (processing system) and hardware (programmable logic). 
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Figure 1.Parallel vs Sequential Implementation 

However, designing with FPGA requires expertise in architectural details of the system at the Register 

Transfer Level (RTL) layer and profound knowledge of Hardware Description Language (HDL). Nevertheless, 

advanced Xilinx tools such as Intellectual Property (IP) integrator, High-level synthesis (HLS), System 

Generator provide automation at an individual level of abstraction. Many researchers implemented their diverse 

edge detection using these tools. Ex, R. K. Megalingam, M. Karath, P. Prajitha and G. Pocklassery performed 

Sobel edge detection algorithm with Vivado HLS and concluded that execution time for RTL is much less 

compared to the C specifications [4]. D. Sangeetha and P. Deepa proposed pipelining structure of canny edge 

detection using approximation method and performed output on Xilinx Virtex-5 FPGA [3]. B. C. Maheshwari, 

J. Burns, M. Blott and G. Gambardella implemented real-time Canny edge detection algorithm using vivado and 

demonstrated output on Pynq board [14]. Šušteršič T, Milovanović V, Ranković V, Filipović N, Peulić A 

designed Sobel and Robert edge detection using Xilinx system generator and compare them in terms of timing 

and resources utilization [15]. This paper aims to analyses SoC design flow in different aspects for first edge 

detection (Roberts, Prewitt, Sobel, and Scharr) to some advanced edge detection (Marr-Hildreth, Canny) 

methods. 

2. Basic Edge detection 

Identifying variations in the pixel value requires the computation of the first and second-order derivatives of 

arrays of pixels. The agent used to succeed this process is gradient, indicated by , and defined as a vector of a 

given image, f, at coordinate (x, y), 

∇𝑓 = [
𝐺𝑥

𝐺𝑦
] = [

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑥

](1) 

The vector has a central geometrical feature that indicates the largest variation of f at the position (x, y) per 

unit. M expresses the magnitude vector of f (x, y), 

M(x, y) = √𝐺𝑥
2 + 𝐺𝑦

2(2) 

M is the equivalent of the rate of change in the course of the gradient vector. Gx andGyare known as gradient 

images. An angle, 

                                                        𝛼(𝑥, 𝑦) = tan−1(𝐺𝑦 𝐺𝑥 ⁄ )(3) 

gives the direction of the vector measured on the x-axis. 

Gradient Operatives 

Partial derivatives 𝜕𝑓 𝜕𝑥and 𝜕𝑓 𝜕𝑦⁄⁄  need to be estimated at all pixel locations to capture the gradient 

image. Since we are dealing with digital quantities, a partial derivatives digital approximation is necessary over 

a neighborhood about a point. The equation for the digital derivatives is, 

                                                                                  𝐺𝑥 = 𝑓(𝑥 + 1, 𝑦) − 𝑓(𝑥, 𝑦)(4) 

                                                                                 𝐺𝑦 = 𝑓(𝑥, 𝑦 + 1) − 𝑓(𝑥, 𝑦) (5) 

When we are dealing with diagonal edge detection, we need a 2D filter. The Roberts-cross edge gradient is 

one of the pioneer techniques to utilize a diagonal filter for edge detection. Consider the 3×3 region as shown in 
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figure 2 for reference, 

 

Figure 2. 3×3 region 

Then, Roberts-cross edge filter is given by,  

                                                                                             𝐺𝑥 = (𝑧9 − 𝑧5) (6) 

                                                                                             𝐺𝑦 = (𝑧8 − 𝑧6)(7) 

Kernels practiced to realize (6), (7) are, 

𝐺𝑥 = [
−1 0
0 1

] , 𝐺𝑦 = [
0 −1
1 0

] 

Although 2×2 is computationally simple, they are not symmetric about the center point 𝑧5(x, y), as witnessed 

in the above equations. The minimum size of the filter required to consider the information residing on the other 

side of the center point 𝑧5(x, y) is 3, can be represented as,  

  𝐺𝑥 = (𝑧7 − 𝑧1) + (𝑧8 − 𝑧2) + (𝑧9 − 𝑧3)                       (8) 

                                                                          𝐺𝑦 = (𝑧3 − 𝑧1) + (𝑧6 − 𝑧4) + (𝑧9 − 𝑧7)                       (9) 

Kernel required to actualize (8), (9) are, 

𝐺𝑥 = [
−1 −1 −1
0 0 0
1 1 1

]  ,    𝐺𝑦 = [
−1 0 1 
−1 0 1
−1 0 1

] 

These two kernels are known as Prewitt operators. Sobel operator is a slightly revised version, with the 

added weight of 2 to the center coefficient. 

                                                                   𝐺𝑥 = (𝑧7 − 𝑧1) + 2(𝑧8 − 𝑧2) + (𝑧9 − 𝑧3)                     (10) 

                                                                   𝐺𝑦 = (𝑧3 − 𝑧1) + 2(𝑧6 − 𝑧4) + (𝑧9 − 𝑧7)                     (11)   

Kernels adopted to implement (10), (11) are, 

𝐺𝑥 = [
−1 −2 −1
0 0 0
1 2 1

]  ,    𝐺𝑦 = [
−1 0 1 
−2 0 2
−1 0 1

] 

Scharr operator even considers the added weight of 3 and 10 to the side and centre coefficient, respectively.   

                                                                     𝐺𝑥 = 3(𝑧7 − 𝑧1) + 10(𝑧8 − 𝑧2) + 3(𝑧9 − 𝑧3)              (12) 

                                                                     𝐺𝑦 = 3(𝑧3 − 𝑧1) + 10(𝑧6 − 𝑧4) + 3(𝑧9 − 𝑧7)              (13) 

Scharr kernels applied to fulfil (12), (13) are 

𝐺𝑥 = [
−3 −10 −3
0 0 0
3 10 3

]  ,    𝐺𝑦 = [
−3 0 3

−10 0 10
−3 0 3

] 

Sobel and Scharr's operators provide image smoothing by putting weighs to the coefficients. The final output 

image is calculated by (2). 
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3. Advanced Edge detection 

3.1 The Marr-Hildreth Edge detection 

Marr-Hildreth operator incorporates two essential concepts. Firstly, intensity variations are dependent on 

image scale so that their edge detection needs the use of operators of various sizes. Secondly, an abrupt intensity 

value change would increase the highest point in the first derivation or similarly a zero crossing in the second 

derivation. Marr and Hildreth recommended that operator fulfilling these circumstances is ∇2𝐺, where ∇2 is the 

Laplacian operator 𝜕2 𝜕𝑥2⁄ + 𝜕2 𝜕𝑦2⁄ , the kernel for implementing laplacian operator is, 

[
1 1 1
1 −8 1
1 1 1

] 

As the Laplacian and Gaussian are linear operators, it is feasible to apply the Gaussian filter and then 

calculate Laplacian of gaussian [6,7]. 

3.2 Zero-Crossing 

One strategy for calculating zero-crossing at any pixel, of the filtered image is based upon using a 3×3 

neighbourhoodcentred at the pixel. A zero-crossing at pixel shows that a minimum of two of its neighbourhood 

signs must be different. If two opposing pixels are getting compared to a threshold, then not only signs must 

differ, but also the absolute of their numerical must be bigger than the threshold magnitude [6]. 

3.3 Canny Edge Operator  

Although this operator is very intricate, this operator's results are highly superior to those discussed first. 

Canny edge detection involves three essential concepts. First, low error rate-All the edges should be detected, 

and there should not be incorrect responses. Second, the edge should be localised appropriately; that is, the 

separation between the edge and the real edge should be minimal. Finally, the single edge point response- the 

local maxima around an edge point should be the lowest [3]. The canny operator takes the gradient and phase 

response of the image filtered with underlying edge detection kernels. Smoothing with a gaussian filter is 

necessary before performing the necessary edge detection. The gradient includes wide edges around the local 

maxima. Hence, the final step is to lean those edges. Non-maxima suppression performs this task for us [6]. 

3.4 Nonmaxima Suppression 

The principle of this approach is to define the discrete orientation of the gradient vector. Non-maximum 

suppression used to remove the incorrect response of edge detection—non-maximum suppression achieved by 

interpolating pixels for maximum accuracy [3]. 

3.5 Hysteresis 

The final procedure is to threshold the non-maxima suppressed image to decrease incorrect edge points. 

Most of the image processing technique uses one threshold level. In that case, if the value of the threshold is 

meagre, there is still going to be some wrong edge (called as false positive); if the setting of the threshold is 

high, then original edge points are going to be removed (called as false negative). The Canny algorithm uses 

hysteresis thresholding, which uses two threshold values: a low threshold TL, and high threshold TH, to improve 

this situation [3,6]. 

4. Line Buffer and Window Buffer 

A classic technique to effectuate the edge detection in hardware is to employ line buffer and window buffer. 

A line buffer carries memory elements capable of storing more than one line of the input image [5]. The kernel 

height specifies the number of rows in a line buffer. Since most of the edge detection algorithms, analyzed here, 

practice 3x3 kernels, the kernel height has assigned to 3. In HLS, xf::LineBuffer class can instantiate line buffer. 

The difference between xf and HLS class for line buffer is, xf has supplementary template arguments for 

describing the storage architecture to be inferred, and array reshape factor [8]. A window buffer is applied to 

save the current window's values and has an equal dimension as the kernel has. 
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Figure 3. Line Buffer and Window Buffer 

Figure 3 demonstrates the working method for line buffer and window buffer, assuming the image dimension 

as 4x4 for basic comprehension. The input image is scanned pixel by pixel into the line buffer in a streaming 

manner. For instance, pixel value 1 is copied to the first location; pixel value 2 is copied to the second location, 

and so on. Line buffer gets vertically shift while copying the input data and the most top-line buffer discharge 

data first. After period t, line 1, line 2 and line 3 gets filled. 

5. Vivado HLS 

The Vivado HLS tool integrates a C and C++ functions within an IP core without specifying RTL 

descriptions.  Vivado HLS has tight integration with all of the design tools provided by Xilinx and IP cores and 

provides complete language assistance and optimized implementation for C/C++ algorithms [5]. Vivado HLS 

Tool requires a function written in C/C++ as a primary input; the principal function can carry a hierarchical 

chain of sub-functions. The constraint file specifies the FPGA target, clock period, clock uncertainty. Vivado 

HLS provides the facility to generate the different hardware implementation of the same C/C++ algorithms by 

providing optional directives without altering the functionality of code. Vivado HLS utilises C/C++ test bench 

before the synthesis phase to verify algorithm working and Co/RTL simulation to validate the generated design 

behavior before exporting it to as an IP core [9]. Figure 4 illustrates the workflow of the Vivado HLS. 

 

Figure 4. HLS Workflow 

6. HLS AXI Protocol Simulation 

 

Figure 5. Robert Simulation(Input Signal Initialisation) 

 

Figure 6. Prewitt Simulation(Output Signal Initialisation) 
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Figure 7. Sobel Simulation(Signals while running) 

 

Figure 8. Scharr Simulation (Data transfer and signals) 

 

Figure 9. Laplace Simulation (Signals while running) 

 

Figure 10. Zero Cross Simulation (Threshold specifications) 

 

Figure 11. Non-Maxima Simulation (Signals while running) 

 

Figure 12. Hysteresis simulation (Threshold specifications) 

6.1 Advanced Interface Extensible (AXI) Protocol Handshaking 

The AXI4-stream protocol consists of the signal TREADY, TVALID, TLAST, TID, TDEST, TKEEP, 

TSTRB, TDATA. For data transfer to initialize and terminate TREADY, TVALID, TLAST plays a vital role 

[13]. It is not plausible to display the entire start of frame (SOF) and end of the line (EOL) in one simulation 

picture. Therefore, we have distributed the data transfers events into the different simulation of the different 

filters for better comprehension. Edge detection IP begins operating when ap_rst_n signal is asserted by the 

zynq processing system, as shown in figure 5. After a few periods, gray_in_TVALID and gray_in_TREADY 

gets maintained, indicating that they are ready to receive the streaming of data through AXI DMA [12]. The 

signal gray_in_TLAST goes into the law state after a few clock cycles, reflecting the frame's start. This signal 

remains in this state until the data transfer ends. As illustrated in figure 6, the output signal prewitt_out_TDATA 

starts accepting the data when prewitt_out_TREADY and prewitt_out_TVALID are high. After both the input 

and output channel's TLAST signal goes to zero, the IP works, as shown in figure 7. The output is only 

registered when sobel_out_TREADY, sobel_out_TVALID are in high state and sobel_out_TLAST is in the low 

state. When the IP completes the operation, it asserts the output TLAST signal, scharr_out_TLAST in our case, 
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as shown in figure 8. For advanced edge detection methods, the required parameters such as threshold level are 

transmitted via the AXI-lite protocol. AXI-lite protocol contains the same signals as the AXI stream but has 

some additional signals such as ADDR, LEN, SIZE, BURST, LOCK, CACHE, PROT, QOS and REGION. The 

Zynq processing system writes the threshold value at the address indicated by the signal AWADDR once the 

WVALID (Write Valid) signal goes to high, as from figure 10 and 12. 

7. Implementation 

7.1 Hardware Implementation 

The Zynq processing system operates as a master and slave through the general-purpose master and high-

performance slave port. The image is present in the SD card in a bit map format. The zynq processing system 

receives the pixels from the image stored in the SD card. After reading the pixels from the image, the DDR 

(dual data rate) memory stores the pixels buffer. The AXI Direct Memory Access (DMA) IP works as a bridge 

for transmitting the pixels to the edge detection module in streaming mode. The AXI DMA maps the pixel's 

streaming into the memory at the address specified by the zynq processing system. Once the edge detection 

module completes the operation, it re-sends the pixels to the zynq processing system via AXI DMA after that 

AXI DMA maps the output pixels to the DDR memory [12]. For advanced edge detection methods like Marr-

Hildreth and Canny, the Zynq processing system shares the threshold information via an AXI-lite protocol. The 

hardware system uses an AXI timer for measuring the time accurately, in 64-bit mode. Figure 13 portrays the 

high-level block representation of the hardware system. 

 

Figure 13. Hardware Implementation 

7.2 Software Implementation 

Subsequent designing the hardware, the next phase in the SoC design flow is to create a software code that 

runs on the hardware designed earlier. The drivers API initialize the drivers for using it in software.  For 

detecting the image stored in the SD card, the FATFS module or Xilinx xilffs library is necessary. FATFS is a 

generic entity file system designed for the small embedded system. It is platform-independent. Image 

dimensions are 280×280 for removing the need to handle the padding present in the bit map format.  For the 

advanced edge detection methods, Marr-Hildreth, the input is first blurred by the Gaussian filter with =1. The 

threshold level is 4 for zero-crossing detection. We have first blurred image with Gaussian filter =1 for canny 

edge detection. After applying gaussian filer, Sobel edge detection we applied, and then phase and magnitude 

response are calculated in the two different images. The Canny edge detection takes these two images as input. 

The low and high threshold levels are 20 and 60 for hysteresis, respectively. After the edge detection is over, the 

output image is written back to the SD card through FATFS. 

8. Result and Discussion 

To compare the output of basic and advanced level edge detection, we have used a Taj image of 280×280 

size. From the output image, it can be seen that in basic level edge detection (figure 15,16,17,18), we get a better 

result in Scharr filter (figure 17) because it has higher value coefficients. On the other side, in advanced edge 

detection, we get better output in the canny filter because of its complex algorithm. It detects the smallest edges 

of the image. Table 1 shows that advanced edge detection requires more timing than basic edge detection, and 

we get faster output on FPGA than the MATLAB. Robert edge detection (figure 14) requires the smallest 

amount of resources corresponding to the other edge detection algorithms. The Canny (figure 20) and Marr-

Hildreth (figure 19) require more resources because of its complexity. These basic level edge detections are used 

in barcode scanner and monitoring where accuracy is not a significant issue, but in medical image processing 

and defense applications, we required more advanced level edge detection like canny and Laplacian of gaussian 
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[15]. 

 

Figure 14. Input Image 

 

Figure 15. Sobel Filter 

 

Figure 16. Robert Filter 

 

Figure 17. Scharr Filter 
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Figure 18. Prewitt Filter 

 

Figure 19. Zero-Crossing Filter 

 

Figure 20. Hysteresis Filter 

Table 1.Timing Information 

Algorithm Timing 

(Zed 

board)(100 

MHz)(sec) 

Timing 

(Matlab)(2.30 

GHz)(i5)(sec) 

Speed up 

factor 

Robert 0.002692 0.0022632 ×19 

Prewitt 0.002692 0.0023811 ×20 

Sobel 0.002692 0.0024261 ×21 

Scharr 0.002692 0.0024572 ×21 

Marr-

Hildreth 

0.006168 0.0179565 ×8 

Canny 0.006354 0.020562 ×8 

Table 2.Resource Utilization 

Algorithm LUTs Registers Block RAM Tile 

Robert 3595 4373 3 

Prewitt 3714 4459 3.5 
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Sobel 3717 4460 3.5 

Scharr 3870 4520 3.5 

Laplacian 3627 4427 3.5 

Zero Cross 3681 4426 3.5 

Non-

Maxima 

4401 5370 5.5 

Hysteresis 3644 4437 3.5 

9. Conclusion and Future Work 

This paper correlated the Xilinx zynq SoC FPGA design flow with the sequential flow for the sophisticated 

edge detection: image processing algorithms. Using the parallelism and hard IPs present on the FPGAs, latency 

is decreased compared to the microprocessor/microcontroller approach. We utilized higher abstraction level 

tools like HLS and xfopenCV library for implementing the algorithms on the hardware. Additionally, different 

directives accessible via HLS reduced the design latency and improved the optimization level. The line and 

window buffer provide great flexibility for implementing most image processing algorithms on the FPGAs or 

SoC boards. The AXI protocol lessened the communication overhead between different IPs in the design. By 

practicing the zynq based SoC design flow, we managed some assets of the hardware (PL) design through the 

zynq processing system (PS) with the help of the AXI protocol. The real video processing system can use these 

IPs in their design with the help of the other supplementary AXI IPs, such as AXI subset converter, AXI Video 

Direct Memory Access (VDMA), AXI Video Graphics Array (VGA) core, and video timing controller by 

running at the required pixel resolution clock. For future work, we are looking forward to using custom IPs in 

real-time applications with the camera interface with the help of zynq SoC FPGA.. 
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