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Abstract 

In this paper, a new method is presented based on Social Spider Algorithm (SSA) for solving 

travelling salesman problem (TSP). Since the SSA is applied to continuous problem and TSP is 

discrete NP-hard problem, adaptive version of the SSA is introduced that called Adaptive SSA 

(DSSA). The DSSA algorithm was implemented on 36 instances of TSPLIB benchmarks (a library 

of sample instances for the TSP) that include symmetric and asymmetric traveling salesman 

problems. In order to implement the DSSA, MATLAB 2017 was used. After simulation, DSSA 

found the optimal solution for 24 instances out of 36 datasets. The simulation results showed that 

DSSA is superior to other algorithms for solving both the TSP and ATSP problems. We propose the 

Adaptive Social Spider Algorithm (DSSA) based on SSA for solving adaptive optimization problems 

such as TSP problem. The DSSA is main contribution of this paper. In this section, the changes of 

original SSA are described to create adaptive version of SSA. 

Keywords: Adaptive Social Spider Algorithm, Traveling Salesman Problem, Optimization. 

1. Introduction  

The Traveling Salesman Problem is one of the most intractable problem in NP-Hard class. The TSP 

can be modeled as adaptive optimization problem. Studies show that many evolutionary computing 

and swarm intelligence algorithms have been used for solving optimization problem and in particular 

TSP problem. For example, genetic algorithm (GA), bat algorithm (BA), firefly algorithm (FA) and 

so on. From the last 50 years so far, The TSP has been important research topic in the world [1]. The 

purpose of this problem is to find a Hamiltonian cycle in the connected graph while the cost of the 

tour is minimized. The Hamilton cycle is a path that visits each vertex of the graph exactly once and 

returns to the origin vertex. Social Spider Algorithm (SSA) is a type of swarm intelligence algorithm 

that developed by James J.q. Yu and Victor O.K. Li in 2015 [2] and is developed for solving 

continuous optimization problem. In this work, we proposed DSSA algorithm and then applied it to 

solve adaptive optimization problems. The main contribution of this work is DSSA algorithm that 

adaptive type of SSA to solve TSP and ATSP (Asymmetric TSP) problems. The DSSA algorithm 

was implemented on 36 instances of TSPLIB benchmarks (a library of sample instances for the 

TSP). After simulation, the results are compared to IBA, ESA, GA, IDGA, DFA and DICA 

algorithms that implemented in this problem in [3].This paper is continued as follows: Related 
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research is presented in Section 2. The proposed algorithm is explained in Section 3. In addition, the 

results are presented in Section4. Finally, conclusions are explained in Section 5. 

2. Related Work 

There are various techniques for solving TSP problem. Investigation and study of various references 

indicate that evolutionary algorithms have been widely applied in optimization problem and in 

particular TSP problem that in this part we mentioned a number of them as examples. In [3] authors 

presented aadaptive Bat algorithm for solving routing problems. They implemented the proposed 

algorithm on 37 instances of TSPLIB. In [1] [4] applied simulated annealing and tabu search 

algorithm for solving TSP problem. In [5], ant colony optimization algorithms are used for solving 

traveling salesman problem. In another article [6], authors proposed a hybrid evolutionary fuzzy 

learning algorithm to solve large scale TSP problem. They results demonstrated that their algorithm 

is suitable for routing problem and has acceptable computing time. In another study [7], proposed a 

generalized heuristic method based on ant colony algorithm. The proposed method was applied to 

TSP problem and achieved acceptable results. In [8] authors proposed a Hybrid algorithm for solving 

Probabilistic TSP based on Particle Swarm Optimization. Hybrid evolutionary algorithms proposed 

in [9] and applied to solve Multi objective TSP problem. Firefly algorithm and ant colony algorithm 

were used for solving TSP problem in [10], [11], respectively. In [12], adaptive invasive weed 

optimization algorithm proposed to solve TSP and in [11] a Tabu Search Approach is designed for 

the Prize Collecting Traveling Salesman Problem. 

2.1. The Traveling Salesman Problem  

The Traveling Salesman Problem is one of the most intractable problem, and it takes a lot of time to 

solve it. There are a number of cities in the TSP problem. The distance between each pair of cities in 

this problem is fixed and constant. The aim of this problem is to find a Hamilton cycle with 

minimum cost. In a directed graph, the Hamiltonian cycle is a path from one vertex to itself. In this 

cycle, the salesman passes from all the other cities exactly once. Mathematically, the problem is 

determined by finding the number of permutations and then evaluating each state. 

This problem can be simulated as follows [1]: 

If G = (V, A) is a complete graph, the Hamilton cycle with minimum cost can be formulated as: 

  (1) 

In this Equation, lij indicate the distance between the cities i and j.  If this distance is equal for every 

pair of cities, TSP is symmetrical TSP and otherwise is Asymmetrical TSP.  

2.2.Social Spider Algorithm 

The original Social Spider Algorithm (SSA) is introduced here, SSA is a type of swarm intelligence 

algorithm that introduced in 2015 for solving continuous optimization problems [2]. According to 

reference [2], spiders have a web that formulated the search space of problem. When spiders move 

on the web, vibration is produced. The vibration is propagated in the web, and another spider 
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receives it. In fact, spiders shared information by the web. Moreover, each spider has a position and 

fitness of the position on the web. Spiders can move from one position to another position on the 

web. As mentioned in [2], the pseudo-code of Social Spider Algorithm is presented as: 

Algorithm-1: Social spider algorithm 

1. Assign values to the parameters of SSA 

2. Create the population of spiders’ pop and assign memory for them 

3. Initialize for each spider 

4. While stopping criteria not met do 

5.  for each spider s in pop do 

6. Evaluate the fitness value of s 

7. Generate a vibration at the position of s 

8.   End for 

9. for each spider s in pop do 

10.  Calculate the intensity of the vibrations V, generated by all spiders 

11. Select the strongest vibration  from V 

12. if the intensity of  is larger than  then 

13. Store as  

14. End if 

15. Update CS 

16.  Generate a random number r from [0,1) 

17. if   then 

18. Update the dimension mask  

19. End if 

20.   Generate . 

21.  Perform a random walk. 

22. Address any violated constraints 

23. End for 

24. End while 
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25. Output the best solution found 

This pseudo-code has 5 important steps: fitness evaluation, vibration generation, mask changing, 

random walks and constraints handling. Details of each step are described below. 

In fitness evaluation step, fitness function is calculated for each spider. Since the SSA is designed for 

minimization problem, each spider with minimum fitness is known as the best spider in swarm. 

Let 𝐟(𝐏𝐬) be a spider fitness in its position and c is a small constant. Each spider produces a 

vibration in accordance with the 𝐟(𝐏𝐬) as [2, 14, 15, 16] 

 

         (2) 

The vibration attenuation is defined in accordance with distance as [2]: 

  (3) 

Where D(Pa, Pb)  is the Manhattan distance between the spiders a and b,  is the standard deviation 

of   spider positions, and  is the user-defined parameter that controls the attenuation rate 

[14][16].After this step, SSA propagates these vibrations and each spider receives the produced 

vibration from another spider. Then spiders find the strongest received intensity. 

According to [2] [16], mask is a sparse matrix that spiders use it as a guide to walk. In mask 

changing step, each spider generates a new mask.  and  are user-defined parameter in (0,1). SSA 

uses these parameters to changing mask. As mentioned in [2] [16], probability of changing mask is  

.   represents the probability of being 1 in each cell of the mask, when the mask is decided 

to be changed. It is worth noting that each bit of a mask is changed independently. 

 Then a new following position generated as [2]: 

 

 (4) 

A random walk is represented as [2] [14] [16]:  

   (5) 

Where R is a vector of random floating-point numbers between 0 to 1 and ʘ is element-wise 

multiplication, respectively [2]. 

The final step is the constraint handling. In this step, SSA is the consideration of optimization 

problem’s limitation and testing the position of each spider. If the spider was out of the search space, 

the position is modified as follows [2]: 

 

 (6) 
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As mentioned in [2] [16],  , are the upper bound and the lower bound of the search space in 

problem and r is a random floating point number between 0 and 1. 

3. The proposed method 

Motivated by [3], we propose the Adaptive Social Spider Algorithm (DSSA) based on SSA for 

solving adaptive optimization problems such as TSP problem. The DSSA is main contribution of this 

paper. In this section, the changes of original SSA are described to create adaptive version of SSA. 

3.1.Controlling Randomness 

SSA has two user-controlled parameters for adjusting randomness in order to control exploration 

and exploitation of the algorithm ,i.e.  is a user-defined parameter[2] [16] that represents 

“the probability of changing mask”, and  that determines the probability of being 1 in each cell 

of the mask matrix. Unlike SSA that used fixed parameter scheme [17] [18], DSSA used the 

parameters in a deterministic [17] [19] manner to control the randomness of the algorithm in such a 

way that the algorithm gains maximum randomness in the beginning of the search and achieves 

maximum exploration. The randomness then decreases toward the end of the algorithm in order to 

converge on the solutions. 

 In doing so, DSSA calculates  (  at iteration i) and  ( at iteration i) as follows:  

     

           (7)  

and  

  (8) 

where is the iteration number, is the number of iterations, and are control parameters 

determined by user.Figure1 show how the parameters Pc and Pm  change during the execution of 

the algorithm in which the horizontal coordinates represent the iteration number and vertical 

coordinates represent the value of these parameters. 

Figure 1. The Changes of Pc and Pm throughout the algorithm 

As depicted in these Figures, the trade-off between exploration and exploitation is established in 

DSSA algorithm. 
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3.2.Distance Function 

DSSA uses Hamming distance (HD) [3] to measure the distance between two spiders, instead of 

Manhattan distance as in original SSA. Each permutation of cities represents a spider. To calculate 

the HD between two permutations, consider two spiders as a two permutation consist five nodes, 

e.g., , and , then that is the result of comparing peer-

to-peer elements in two permutations. Firstly, . If any element of doesn't match to 

corresponding element in , . 

3.3.Follow Position 

As stated earlier, in order to increase randomness of the algorithm, SSA generates follow position 

based on a little deviation from the target position. SSA performs this by some arithmetic 

calculations on numbers, and  a random sparse matrix  . Because DSSA aims to solve adaptive 

optimization problems, the real number-based calculation used in SSA does not address the 

requirements of such problems. DSSA utilizes a novel method to gain following position based on 

target position and mask matrix as follows: 

 

  (9) 

           

For example, suppose =[12345678910],and =[0100000100] (i.e.,i=2,j=8), 

then  =  = [1 8 3 4 5 6 7 2 910]. 

3.4.Movement 

Inspired from [3] [20], DSSA utilizes a combined method to perform a random walk for each spider 

towards the following position. In the proposed method, a combination of five well- known 

successor operators have been used to determine new position of the spider s at step t+1 based on its 

position at step t: 

                                                                            (10) 

 

 

These operators are defined as follows: 

Vertex insertion ( ): This operator randomly selects a node of the tour in position i(

) ,removes it and reinserts in another random position (position j) [20]. Random Swapping 

(rand ): This operator selects  two nodes  randomly  ( at position 

s, i and j) and swap their positions [20]. Swapping (s ): This operator selects one 
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node of  randomly (for example ), find its corresponding index in follow position ( 

) and swap the nodes( ). 2-opt ( ): This operator was 

defined by Lin in 1965 [21]. The action of this function is: selecting two random edges from the path 

and remove them, then generating two new edges. The function doesn't create sub tour when 

generate new edges [3]. In this case, is a random number between 1, and the Hamming distance of 

current position of spider s and its follow position [3]: 

 (11) 

3-opt ( ): The 3-opt operator was defined by Lin [21]. The action of this function 

is: selecting three random edges from the path and remove them, then generating three new edges. 

Similar to 2-opt, the function doesn't create sub tour [3]. It's worth noting that the complexity of this 

function is much greater than the 2-opt function [22] [23]. 

3.5. Fitness Function 

DSSA similar to TSP is designed for minimization problem. Therefore, the sum of the cost of all arcs 

of the solution has been used as the fitness function in this implementation. 

3.6. Adaptive Social Spider Algorithm (DSSA) 

DSSA needs some changes to the SSA algorithm to be able to solve adaptive optimization problems 

such as TSP and ATSP. The pseudo-code of the proposed DSSA is depicted in Algorithm 2. 

Assign values to the parameters of DSSA. 

Algorithm 2: Adaptive Social Spider Algorithm 

1. Create the population of spiders pop and memory to them 

2. Initialize VStar for each spider  

3. while stopping criteria not met do 

4. for each spider s in pop do 

5.  Evaluate the fitness value of s  

6.  Generate a vibration at the position of s 

7. End for 

8. for each spider s in pop do 

9. Calculate the intensity of the vibrations V generated by all spiders 

10.  Select the strongest vibration VSbest from V 

11.  if the intensity of VSbest is larger than VStar then 

12. Store VSbest as VStar 

13.  End if 

14.  Update CS 

15.   Generate a random number r from [0,1) 

16.  if r > CS then 

17.   Update the dimension mask mS  

18.  End if 
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19.  for each spider s in pop do 

20.  if mS = 0 then 

21. Psfo = Psstar 

22.  Else 

23. Select two index i, j where mS,i = 0 and mS = 0 

24. Psfo = swap(Ps,istar , Ps,jstar) 

25. End if 

26. Select at random a combination of these operators 

27. PS(t+1) <- Vinsert (PS,i(t),j) 

28. Swap(PS,i(t), PS,j(t)) 

29. 3-opt(PS(t), δS(t)) 

30.  End for 

31. Select one solution among the best ones    

32. Generate a new spider selecting the best neighbor around the chosen spider using the mentioned 

operators 

33. End for 

34. End while ,  Output the best solution found     

4. Results and discussion 

In this work, 36 instances of TSPLIB with 17 to 439 nodes are used to evaluate the performance of 

the proposed DSSA algorithm. According to [3], For TSP problem, 21 instances and for ATSP 

problem, 15 instances have been chosen. MATLAB 2017 is used on a Windows 10 operating system 

for this simulation. The experiments are based on 50 spiders which move on the web based on five 

successive operators with ra = 5. Number of iterations is variable depending on the length of the tour 

(>=5000), and Pm is changed based on Eq. (7) and Eq. (8) as demonstrated in Figure 6. A summary 

of parameter setting is shown in Table1. 

Table 1: Parameter setting DSSA 

Parameter Value 

Population size 50 

Movement functions Eq. 10 

Maximum iteration <=5000 

Ra 5 

Pc 0.8 

 

The results of experiments of DSSA as well as the comparison with other algorithms is shown in 

Table 2, where the Optima column shows optimal tour length reported in TSPLIB, and Best 

columns show the tour length of the best solutions obtained from DSSA and other mentioned 

algorithms. Each row of Table 2 also shows one instance of TSPLIB [3]. In this comparison, we 
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used the results of experiments for other algorithms were reported in [3]. As mentioned in [3] the 

algorithms are: “dynamic bat algorithm (IBA), evolutionary simulated annealing (ESA), genetic 

algorithm (GA), an island based distributed genetic algorithm (IDGA), a dynamic firefly 

algorithm (DFA) and an imperialist competitive algorithm (DICA)”. 

Table 2: Comparing the results of DSSA and IBA, ESA, GA, IDGA, DFA, DICA for the TSP 

and ATSP 

Instance  DSSA IBA ESA GA IDGA DFA DICA 

Name Optima Best Best Best Best Best Best Best 

Oliver30 420 420 420 420 420 420 420 420 

Eilon50 425 425 425 427 426 425 425 425 

Eil51 426 426 426 426 427 426 426 426 

Berlin52 7542 7542 7542 7542 7542 7542 7542 7542 

St70 675 675 675 675 675 675 675 675 

Eilon75 535 535 535 545 550 544 535 537 

Eil76 538 538 539 546 545 545 543 544 

KroA100 21,282 21,282 21,282 21,282 21,350 21,345 21,282 21,282 

KroB100 22,140 22,140 22,140 22,202 22,176 22,208 22,183 22,180 

KroC100 20,749 20,749 20,749 20,749 20,861 20,830 20,756 20,756 

KroD100 21,294 21,294 21,294 21,500 21,492 21,582 21,408 21,399 

KroE100 22,068 22,068 22,068 22,099 22,150 22,110 22,079 22,083 

Eil101 629 629 634 650 655 650 643 644 

Pr107 44,303 44,303 44,303 44,413 44,392 44,428 44,303 44,303 

Pr124 59,030 59,030 59,030 59,030 59,030 59,072 59,030 59,030 

Pr136 96,772 97,022 97,547 98,499 98,432 98,532 97,716 97,736 

Pr144 58,537 58,537 58,537 58,574 58,599 58,581 58,546 58,563 

Pr152 73,682 73,682 73,921 74,172 74,520 74,249 74,033 74,052 

Pr264 49,135 49,235 49,756 51,603 51,712 51,653 50,491 50,553 

Pr299 48,191 48,765 48,310 49,242 49,659 49,572 48,579 48,600 

Pr439 107,217 113,148 111,538 113,497 113,576 113,207 111,967 111,983 

Similarly         

         

br17 39 39 39 39 39 39 39 39 

ftv33 1286 1286 1286 1286 1290 1286 1286 1286 

ftv35 1473 1473 1473 1473 1490 1498 1473 1473 

ftv38 1530 1530 1530 1530 1565 1560 1530 1530 

p43 5620 5620 5620 5620 5620 5620 5620 5620 

ftv44 1613 1613 1613 1645 1649 1645 1620 1622 

ftv47 1776 1777 1796 1795 1820 1822 1795 1799 
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ry48p 14,422 14,422 14,422 14,485 14,545 14,530 14,453 14,463 

ft53 6905 6987 7001 6990 7270 7076 6993 7002 

ftv55 1608 1618 1608 1725 1700 1842 1628 1630 

ftv64 1839 1909 1879 1955 2014 2080 1903 1900 

ftv70 1950 2046 2111 2200 2184 2135 2173 2167 

ft70 38,673 39,785 39,901 39,650 39,407 39,241 39,668 39,660 

kro124p 36,230 36,580 37,538 40,019 39,265 39,099 39,438 39,400 

rbg323 1326 1591 1615 1620 1514 1510 1599 1600 

Table 2 shows all the cases for which the algorithms found the optimal solutions in bold font, where 

DSSA found the optimal solution for 24 instances out of 36 dataset. As it can be seen, DSSA 

generally shows better results than IBA, ESA, GA, IDGA, DFA and DICA. Additionally, in 12 cases 

for which the algorithms could not find the best solutions, DSSA achieved a solution closer to the 

optimal ones as compared to the other algorithms. Specially, the comparison between DSSA and 

IBA shows that DSSA found the optimal solution in 24 cases while IBA found the optimal solutions 

in 22 cases. It can be said that DSSA has performed better than IBA. The Comparison of the results 

of DSSA and IBA, ESA, GA, IDGA, DFA, DICA for the TSP and ATSP is demonstrated in Figure 

2. 

Results                    instance name: 1: Optima  3: IBA 5: GA  7: DFA 

Algorithm  : 2: DSSA 4: ESA  6: IDGA  8: DICA 

 

Figure 2. Comparing results of DSSA and IBA, ESA, GA, IDGA, DFA, DICA for the TSP and 

ATSP 

Figure 3 compares DSSA to other algorithms based on the number of cases that they obtained the 

optimal results. The main conclusion that we can made from the experiments is that DSSA is the best 

algorithm for solving TSP problem 
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Figure 3. Comparison of algorithms based on the number of cases that found the optimal result. 

5. Conclusion 

In this paper, the Adaptive Social Spider Algorithm (DSSA) is proposed based on original SSA 

for solving adaptive optimization problem such as TSP and ATSP. DSSA is implemented with 

some changes in original SSA which consists of distance function and movement method. The 

DSSA results to solve TSP and ATSP have been compared to “dynamic bat algorithm, 

evolutionary simulated annealing, genetic algorithm, an island based distributed genetic 

algorithm, a dynamic firefly algorithm and an imperialist competitive algorithm” that reported in 

[3]. The results prove that the proposed DSSA achieves the best performance to solve both the 

TSP and ATSP. The proposed DSSA in this work can be applied for any adaptive optimization 

problem such as routing problem and any problem that formulated by complex graph. 
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