
Self-Adaptive Social Spider Algorithm optimization for Solving Travelling Salesman Problem

3577

Turkish Online Journal of Qualitative Inquiry (TOJQI)

Volume 12, Issue 7, July 2021: 3577-3588

Self-Adaptive Social Spider Algorithm optimization for Solving Travelling
Salesman Problem

Dr.Ajit Kumar Raut
a
, AbhisekSethy

b

a
Professor of Department of Information Technology, GMR Institute of Technology, Rajam, India.

b
Assistant Professor ofDepartment of Information Technology, GMR Institute of Technology, Rajam, India.

Abstract

In this paper, a new method is presented based on Social Spider Algorithm (SSA) for solving

travelling salesman problem (TSP). Since the SSA is applied to continuous problem and TSP is

discrete NP-hard problem, adaptive version of the SSA is introduced that called Adaptive SSA

(DSSA). The DSSA algorithm was implemented on 36 instances of TSPLIB benchmarks (a library

of sample instances for the TSP) that include symmetric and asymmetric traveling salesman

problems. In order to implement the DSSA, MATLAB 2017 was used. After simulation, DSSA

found the optimal solution for 24 instances out of 36 datasets. The simulation results showed that

DSSA is superior to other algorithms for solving both the TSP and ATSP problems. We propose the

Adaptive Social Spider Algorithm (DSSA) based on SSA for solving adaptive optimization problems

such as TSP problem. The DSSA is main contribution of this paper. In this section, the changes of

original SSA are described to create adaptive version of SSA.

Keywords: Adaptive Social Spider Algorithm, Traveling Salesman Problem, Optimization.

1. Introduction

The Traveling Salesman Problem is one of the most intractable problem in NP-Hard class. The TSP

can be modeled as adaptive optimization problem. Studies show that many evolutionary computing

and swarm intelligence algorithms have been used for solving optimization problem and in particular

TSP problem. For example, genetic algorithm (GA), bat algorithm (BA), firefly algorithm (FA) and

so on. From the last 50 years so far, The TSP has been important research topic in the world [1]. The

purpose of this problem is to find a Hamiltonian cycle in the connected graph while the cost of the

tour is minimized. The Hamilton cycle is a path that visits each vertex of the graph exactly once and

returns to the origin vertex. Social Spider Algorithm (SSA) is a type of swarm intelligence algorithm

that developed by James J.q. Yu and Victor O.K. Li in 2015 [2] and is developed for solving

continuous optimization problem. In this work, we proposed DSSA algorithm and then applied it to

solve adaptive optimization problems. The main contribution of this work is DSSA algorithm that

adaptive type of SSA to solve TSP and ATSP (Asymmetric TSP) problems. The DSSA algorithm

was implemented on 36 instances of TSPLIB benchmarks (a library of sample instances for the

TSP). After simulation, the results are compared to IBA, ESA, GA, IDGA, DFA and DICA

algorithms that implemented in this problem in [3].This paper is continued as follows: Related

Dr.Ajit Kumar Raut, AbhisekSethy

3578

research is presented in Section 2. The proposed algorithm is explained in Section 3. In addition, the

results are presented in Section4. Finally, conclusions are explained in Section 5.

2. Related Work

There are various techniques for solving TSP problem. Investigation and study of various references

indicate that evolutionary algorithms have been widely applied in optimization problem and in

particular TSP problem that in this part we mentioned a number of them as examples. In [3] authors

presented aadaptive Bat algorithm for solving routing problems. They implemented the proposed

algorithm on 37 instances of TSPLIB. In [1] [4] applied simulated annealing and tabu search

algorithm for solving TSP problem. In [5], ant colony optimization algorithms are used for solving

traveling salesman problem. In another article [6], authors proposed a hybrid evolutionary fuzzy

learning algorithm to solve large scale TSP problem. They results demonstrated that their algorithm

is suitable for routing problem and has acceptable computing time. In another study [7], proposed a

generalized heuristic method based on ant colony algorithm. The proposed method was applied to

TSP problem and achieved acceptable results. In [8] authors proposed a Hybrid algorithm for solving

Probabilistic TSP based on Particle Swarm Optimization. Hybrid evolutionary algorithms proposed

in [9] and applied to solve Multi objective TSP problem. Firefly algorithm and ant colony algorithm

were used for solving TSP problem in [10], [11], respectively. In [12], adaptive invasive weed

optimization algorithm proposed to solve TSP and in [11] a Tabu Search Approach is designed for

the Prize Collecting Traveling Salesman Problem.

2.1. The Traveling Salesman Problem

The Traveling Salesman Problem is one of the most intractable problem, and it takes a lot of time to

solve it. There are a number of cities in the TSP problem. The distance between each pair of cities in

this problem is fixed and constant. The aim of this problem is to find a Hamilton cycle with

minimum cost. In a directed graph, the Hamiltonian cycle is a path from one vertex to itself. In this

cycle, the salesman passes from all the other cities exactly once. Mathematically, the problem is

determined by finding the number of permutations and then evaluating each state.

This problem can be simulated as follows [1]:

If G = (V, A) is a complete graph, the Hamilton cycle with minimum cost can be formulated as:

 (1)

In this Equation, lij indicate the distance between the cities i and j. If this distance is equal for every

pair of cities, TSP is symmetrical TSP and otherwise is Asymmetrical TSP.

2.2.Social Spider Algorithm

The original Social Spider Algorithm (SSA) is introduced here, SSA is a type of swarm intelligence

algorithm that introduced in 2015 for solving continuous optimization problems [2]. According to

reference [2], spiders have a web that formulated the search space of problem. When spiders move

on the web, vibration is produced. The vibration is propagated in the web, and another spider

Self-Adaptive Social Spider Algorithm optimization for Solving Travelling Salesman Problem

3579

receives it. In fact, spiders shared information by the web. Moreover, each spider has a position and

fitness of the position on the web. Spiders can move from one position to another position on the

web. As mentioned in [2], the pseudo-code of Social Spider Algorithm is presented as:

Algorithm-1: Social spider algorithm

1. Assign values to the parameters of SSA

2. Create the population of spiders’ pop and assign memory for them

3. Initialize for each spider

4. While stopping criteria not met do

5. for each spider s in pop do

6. Evaluate the fitness value of s

7. Generate a vibration at the position of s

8. End for

9. for each spider s in pop do

10. Calculate the intensity of the vibrations V, generated by all spiders

11. Select the strongest vibration from V

12. if the intensity of is larger than then

13. Store as

14. End if

15. Update CS

16. Generate a random number r from [0,1)

17. if then

18. Update the dimension mask

19. End if

20. Generate .

21. Perform a random walk.

22. Address any violated constraints

23. End for

24. End while

Dr.Ajit Kumar Raut, AbhisekSethy

3580

25. Output the best solution found

This pseudo-code has 5 important steps: fitness evaluation, vibration generation, mask changing,

random walks and constraints handling. Details of each step are described below.

In fitness evaluation step, fitness function is calculated for each spider. Since the SSA is designed for

minimization problem, each spider with minimum fitness is known as the best spider in swarm.

Let 𝐟(𝐏𝐬) be a spider fitness in its position and c is a small constant. Each spider produces a

vibration in accordance with the 𝐟(𝐏𝐬) as [2, 14, 15, 16]

 (2)

The vibration attenuation is defined in accordance with distance as [2]:

 (3)

Where D(Pa, Pb) is the Manhattan distance between the spiders a and b, is the standard deviation

of spider positions, and is the user-defined parameter that controls the attenuation rate

[14][16].After this step, SSA propagates these vibrations and each spider receives the produced

vibration from another spider. Then spiders find the strongest received intensity.

According to [2] [16], mask is a sparse matrix that spiders use it as a guide to walk. In mask

changing step, each spider generates a new mask. and are user-defined parameter in (0,1). SSA

uses these parameters to changing mask. As mentioned in [2] [16], probability of changing mask is

. represents the probability of being 1 in each cell of the mask, when the mask is decided

to be changed. It is worth noting that each bit of a mask is changed independently.

 Then a new following position generated as [2]:

 (4)

A random walk is represented as [2] [14] [16]:

 (5)

Where R is a vector of random floating-point numbers between 0 to 1 and ʘ is element-wise

multiplication, respectively [2].

The final step is the constraint handling. In this step, SSA is the consideration of optimization

problem’s limitation and testing the position of each spider. If the spider was out of the search space,

the position is modified as follows [2]:

 (6)

Self-Adaptive Social Spider Algorithm optimization for Solving Travelling Salesman Problem

3581

As mentioned in [2] [16], , are the upper bound and the lower bound of the search space in

problem and r is a random floating point number between 0 and 1.

3. The proposed method

Motivated by [3], we propose the Adaptive Social Spider Algorithm (DSSA) based on SSA for

solving adaptive optimization problems such as TSP problem. The DSSA is main contribution of this

paper. In this section, the changes of original SSA are described to create adaptive version of SSA.

3.1.Controlling Randomness

SSA has two user-controlled parameters for adjusting randomness in order to control exploration

and exploitation of the algorithm ,i.e. is a user-defined parameter[2] [16] that represents

“the probability of changing mask”, and that determines the probability of being 1 in each cell

of the mask matrix. Unlike SSA that used fixed parameter scheme [17] [18], DSSA used the

parameters in a deterministic [17] [19] manner to control the randomness of the algorithm in such a

way that the algorithm gains maximum randomness in the beginning of the search and achieves

maximum exploration. The randomness then decreases toward the end of the algorithm in order to

converge on the solutions.

 In doing so, DSSA calculates (at iteration i) and (at iteration i) as follows:

 (7)

and

 (8)

where is the iteration number, is the number of iterations, and are control parameters

determined by user.Figure1 show how the parameters Pc and Pm change during the execution of

the algorithm in which the horizontal coordinates represent the iteration number and vertical

coordinates represent the value of these parameters.

Figure 1. The Changes of Pc and Pm throughout the algorithm

As depicted in these Figures, the trade-off between exploration and exploitation is established in

DSSA algorithm.

Dr.Ajit Kumar Raut, AbhisekSethy

3582

3.2.Distance Function

DSSA uses Hamming distance (HD) [3] to measure the distance between two spiders, instead of

Manhattan distance as in original SSA. Each permutation of cities represents a spider. To calculate

the HD between two permutations, consider two spiders as a two permutation consist five nodes,

e.g., , and , then that is the result of comparing peer-

to-peer elements in two permutations. Firstly, . If any element of doesn't match to

corresponding element in , .

3.3.Follow Position

As stated earlier, in order to increase randomness of the algorithm, SSA generates follow position

based on a little deviation from the target position. SSA performs this by some arithmetic

calculations on numbers, and a random sparse matrix . Because DSSA aims to solve adaptive

optimization problems, the real number-based calculation used in SSA does not address the

requirements of such problems. DSSA utilizes a novel method to gain following position based on

target position and mask matrix as follows:

 (9)

For example, suppose =[12345678910],and =[0100000100] (i.e.,i=2,j=8),

then = = [1 8 3 4 5 6 7 2 910].

3.4.Movement

Inspired from [3] [20], DSSA utilizes a combined method to perform a random walk for each spider

towards the following position. In the proposed method, a combination of five well- known

successor operators have been used to determine new position of the spider s at step t+1 based on its

position at step t:

 (10)

These operators are defined as follows:

Vertex insertion (): This operator randomly selects a node of the tour in position i(

) ,removes it and reinserts in another random position (position j) [20]. Random Swapping

(rand): This operator selects two nodes randomly (at position

s, i and j) and swap their positions [20]. Swapping (s): This operator selects one

Self-Adaptive Social Spider Algorithm optimization for Solving Travelling Salesman Problem

3583

node of randomly (for example), find its corresponding index in follow position (

) and swap the nodes(). 2-opt (): This operator was

defined by Lin in 1965 [21]. The action of this function is: selecting two random edges from the path

and remove them, then generating two new edges. The function doesn't create sub tour when

generate new edges [3]. In this case, is a random number between 1, and the Hamming distance of

current position of spider s and its follow position [3]:

 (11)

3-opt (): The 3-opt operator was defined by Lin [21]. The action of this function

is: selecting three random edges from the path and remove them, then generating three new edges.

Similar to 2-opt, the function doesn't create sub tour [3]. It's worth noting that the complexity of this

function is much greater than the 2-opt function [22] [23].

3.5. Fitness Function

DSSA similar to TSP is designed for minimization problem. Therefore, the sum of the cost of all arcs

of the solution has been used as the fitness function in this implementation.

3.6. Adaptive Social Spider Algorithm (DSSA)

DSSA needs some changes to the SSA algorithm to be able to solve adaptive optimization problems

such as TSP and ATSP. The pseudo-code of the proposed DSSA is depicted in Algorithm 2.

Assign values to the parameters of DSSA.

Algorithm 2: Adaptive Social Spider Algorithm

1. Create the population of spiders pop and memory to them

2. Initialize VStar for each spider

3. while stopping criteria not met do

4. for each spider s in pop do

5. Evaluate the fitness value of s

6. Generate a vibration at the position of s

7. End for

8. for each spider s in pop do

9. Calculate the intensity of the vibrations V generated by all spiders

10. Select the strongest vibration VSbest from V

11. if the intensity of VSbest is larger than VStar then

12. Store VSbest as VStar

13. End if

14. Update CS

15. Generate a random number r from [0,1)

16. if r > CS then

17. Update the dimension mask mS

18. End if

Dr.Ajit Kumar Raut, AbhisekSethy

3584

19. for each spider s in pop do

20. if mS = 0 then

21. Psfo = Psstar

22. Else

23. Select two index i, j where mS,i = 0 and mS = 0

24. Psfo = swap(Ps,istar , Ps,jstar)

25. End if

26. Select at random a combination of these operators

27. PS(t+1) <- Vinsert (PS,i(t),j)

28. Swap(PS,i(t), PS,j(t))

29. 3-opt(PS(t), δS(t))

30. End for

31. Select one solution among the best ones

32. Generate a new spider selecting the best neighbor around the chosen spider using the mentioned

operators

33. End for

34. End while , Output the best solution found

4. Results and discussion

In this work, 36 instances of TSPLIB with 17 to 439 nodes are used to evaluate the performance of

the proposed DSSA algorithm. According to [3], For TSP problem, 21 instances and for ATSP

problem, 15 instances have been chosen. MATLAB 2017 is used on a Windows 10 operating system

for this simulation. The experiments are based on 50 spiders which move on the web based on five

successive operators with ra = 5. Number of iterations is variable depending on the length of the tour

(>=5000), and Pm is changed based on Eq. (7) and Eq. (8) as demonstrated in Figure 6. A summary

of parameter setting is shown in Table1.

Table 1: Parameter setting DSSA

Parameter Value

Population size 50

Movement functions Eq. 10

Maximum iteration <=5000

Ra 5

Pc 0.8

The results of experiments of DSSA as well as the comparison with other algorithms is shown in

Table 2, where the Optima column shows optimal tour length reported in TSPLIB, and Best

columns show the tour length of the best solutions obtained from DSSA and other mentioned

algorithms. Each row of Table 2 also shows one instance of TSPLIB [3]. In this comparison, we

Self-Adaptive Social Spider Algorithm optimization for Solving Travelling Salesman Problem

3585

used the results of experiments for other algorithms were reported in [3]. As mentioned in [3] the

algorithms are: “dynamic bat algorithm (IBA), evolutionary simulated annealing (ESA), genetic

algorithm (GA), an island based distributed genetic algorithm (IDGA), a dynamic firefly

algorithm (DFA) and an imperialist competitive algorithm (DICA)”.

Table 2: Comparing the results of DSSA and IBA, ESA, GA, IDGA, DFA, DICA for the TSP

and ATSP

Instance DSSA IBA ESA GA IDGA DFA DICA

Name Optima Best Best Best Best Best Best Best

Oliver30 420 420 420 420 420 420 420 420

Eilon50 425 425 425 427 426 425 425 425

Eil51 426 426 426 426 427 426 426 426

Berlin52 7542 7542 7542 7542 7542 7542 7542 7542

St70 675 675 675 675 675 675 675 675

Eilon75 535 535 535 545 550 544 535 537

Eil76 538 538 539 546 545 545 543 544

KroA100 21,282 21,282 21,282 21,282 21,350 21,345 21,282 21,282

KroB100 22,140 22,140 22,140 22,202 22,176 22,208 22,183 22,180

KroC100 20,749 20,749 20,749 20,749 20,861 20,830 20,756 20,756

KroD100 21,294 21,294 21,294 21,500 21,492 21,582 21,408 21,399

KroE100 22,068 22,068 22,068 22,099 22,150 22,110 22,079 22,083

Eil101 629 629 634 650 655 650 643 644

Pr107 44,303 44,303 44,303 44,413 44,392 44,428 44,303 44,303

Pr124 59,030 59,030 59,030 59,030 59,030 59,072 59,030 59,030

Pr136 96,772 97,022 97,547 98,499 98,432 98,532 97,716 97,736

Pr144 58,537 58,537 58,537 58,574 58,599 58,581 58,546 58,563

Pr152 73,682 73,682 73,921 74,172 74,520 74,249 74,033 74,052

Pr264 49,135 49,235 49,756 51,603 51,712 51,653 50,491 50,553

Pr299 48,191 48,765 48,310 49,242 49,659 49,572 48,579 48,600

Pr439 107,217 113,148 111,538 113,497 113,576 113,207 111,967 111,983

Similarly

br17 39 39 39 39 39 39 39 39

ftv33 1286 1286 1286 1286 1290 1286 1286 1286

ftv35 1473 1473 1473 1473 1490 1498 1473 1473

ftv38 1530 1530 1530 1530 1565 1560 1530 1530

p43 5620 5620 5620 5620 5620 5620 5620 5620

ftv44 1613 1613 1613 1645 1649 1645 1620 1622

ftv47 1776 1777 1796 1795 1820 1822 1795 1799

Dr.Ajit Kumar Raut, AbhisekSethy

3586

ry48p 14,422 14,422 14,422 14,485 14,545 14,530 14,453 14,463

ft53 6905 6987 7001 6990 7270 7076 6993 7002

ftv55 1608 1618 1608 1725 1700 1842 1628 1630

ftv64 1839 1909 1879 1955 2014 2080 1903 1900

ftv70 1950 2046 2111 2200 2184 2135 2173 2167

ft70 38,673 39,785 39,901 39,650 39,407 39,241 39,668 39,660

kro124p 36,230 36,580 37,538 40,019 39,265 39,099 39,438 39,400

rbg323 1326 1591 1615 1620 1514 1510 1599 1600

Table 2 shows all the cases for which the algorithms found the optimal solutions in bold font, where

DSSA found the optimal solution for 24 instances out of 36 dataset. As it can be seen, DSSA

generally shows better results than IBA, ESA, GA, IDGA, DFA and DICA. Additionally, in 12 cases

for which the algorithms could not find the best solutions, DSSA achieved a solution closer to the

optimal ones as compared to the other algorithms. Specially, the comparison between DSSA and

IBA shows that DSSA found the optimal solution in 24 cases while IBA found the optimal solutions

in 22 cases. It can be said that DSSA has performed better than IBA. The Comparison of the results

of DSSA and IBA, ESA, GA, IDGA, DFA, DICA for the TSP and ATSP is demonstrated in Figure

2.

Results instance name: 1: Optima 3: IBA 5: GA 7: DFA

Algorithm : 2: DSSA 4: ESA 6: IDGA 8: DICA

Figure 2. Comparing results of DSSA and IBA, ESA, GA, IDGA, DFA, DICA for the TSP and

ATSP

Figure 3 compares DSSA to other algorithms based on the number of cases that they obtained the

optimal results. The main conclusion that we can made from the experiments is that DSSA is the best

algorithm for solving TSP problem

Self-Adaptive Social Spider Algorithm optimization for Solving Travelling Salesman Problem

3587

Figure 3. Comparison of algorithms based on the number of cases that found the optimal result.

5. Conclusion

In this paper, the Adaptive Social Spider Algorithm (DSSA) is proposed based on original SSA

for solving adaptive optimization problem such as TSP and ATSP. DSSA is implemented with

some changes in original SSA which consists of distance function and movement method. The

DSSA results to solve TSP and ATSP have been compared to “dynamic bat algorithm,

evolutionary simulated annealing, genetic algorithm, an island based distributed genetic

algorithm, a dynamic firefly algorithm and an imperialist competitive algorithm” that reported in

[3]. The results prove that the proposed DSSA achieves the best performance to solve both the

TSP and ATSP. The proposed DSSA in this work can be applied for any adaptive optimization

problem such as routing problem and any problem that formulated by complex graph.

References

1. Yu, L., Zheyong, B., Xiang, L., 2016. Developing a discrete neighborhood structure for an adaptive

hybrid simulated annealing – tabu search algorithm to solve the symmetrical traveling salesman problem.

Appl. Soft Comput. 49, 937-952.

2. James, J.Q. Yu., Victor, O.K. Li., 2015. A social spider algorithm for global optimization. Appl. Soft

Comput. 30,614-627.

3. Osaba, E., Yang, X., Diaz, F., Lopez-Garcia, P., Carballedo, R., 2016. An improved discrete bat algorithm

for symmetric and asymmetric Traveling Salesman Problems. EngApplArtif Intell.48,59-71.

4. Geng, X., Chen, Z., Yang, W., Shi, D., Zhao, K., 2011. Solving the traveling salesman problem based on

an adaptive simulated annealing algorithm with greedy search. Appl. Soft Comput. 11(4),3680-3689.

5. Ariyasingha, I.D.I.D., Fernando, T.G.I., 2015. Performance analysis of the multi –objective ant colony

optimization algorithms for the traveling salesman problem. Swarm EvolComput. 23,11-26.

6. Feng, H-M., Liao, K-L., 2014. Hybrid evolutionary fuzzy learning scheme in the applications of traveling

salesman problems. Inf Sci. 270,204-225.

7. Abd Aziza, Z., 2015. Ant Colony Hyper-heuristics for Travelling Salesman Problem. In: IEEE

International Symposium on Robotics and Intelligent Sensors,534-538.

8. Marinakis, Y., Marinaki, M., 2010. A Hybrid Multi-Swarm Particle Swarm Optimization algorithm for the

Probabilistic Traveling Salesman Problem. ComputOper Res. 37,432-442.

9. Psychas, I., Delimpasi, E., Marinakis, Y., 2015. Hybrid evolutionary algorithms for the Multi objective

Traveling Salesman Problem. Expert Syst. 42,8956-8970.

10. Kumbharana, Sh., Pandey, G., 2013. Solving Travelling Salesman Problem using FireflyAlgorithm.

Dr.Ajit Kumar Raut, AbhisekSethy

3588

11. International Journal for Research in Science & Advanced Technologies. 2, 053-057.

12. Ghafurian, S., Javadian, N., 2011. An ant colony algorithm for solving fixed destination multi-depot

multiple traveling salesman problems. Appl. Soft Comput. 11,1256-1262.

13. Zhou, Y., Luo, Q., Chen, H., He, A., Wu, J., 2015. A discrete invasive weed optimization algorithm for

solving traveling salesman problem. Neurocomputing. 151,1227-1236.

14. Pedro, O., Saldanha, R., 2013. A Tabu Search Approach for the Prize Collecting Traveling Salesman

Problem. Electron Notes Discrete Math. 41,261-268.

15. Ochoa, A., Juarez-Casimiro, K., Olivier, T., Camarena, R., Vazquez, I., 2017. Social Spider Algorithm to

Improve Intelligent Drones Used in Humanitarian Disasters Related to Floods. In: Melin, P., Castillo, O.,

Kacprzyk, J. (eds). Nature-Inspired Design of Hybrid Intelligent Systems. Studies in Computational

Intelligence, Springer, Cham. 667,457-476.

16. Agarwal, P., Singh, R., Kumar, S., Bhattacharya, M. 2016. Social Spider Algorithm Employed Multi-level

Thresholding Segmentation Approach. In: Satapathy, S., Das, S. (eds) Proceedings of First International

Conference on Information and Communication Technology for Intelligent Systems: Volume 2. Smart

Innovation, Systems and Technologies, Springer, Cham. 51,249-259.

17. James, J. Q. Yu., Victor, O. K. Li., 2015 “Parameter sensitivity analysis of Social Spider Algorithm” IEEE

Congress on Evolutionary Computation (CEC)

18. A. Y. S. Lam, V. O. K. Li, J. J. Q. Yu, 2012, “Real-coded chemical reaction optimization”, IEEE Trans.

Evol. Comput. 16 (3), 339–353.

19. K. Price, R.M. Storn, J.A. Lampinen, 2005. Differential Evolution – A Practical Approach to Global

Optimization, Springer.

20. W.-N. Chen, J. Zhang, Y. Lin, N. Chen, Z.-H. Zhan, H.S.-H. Chung, Y. Li, Y.-H. Shi, 2013. Particle

swarm optimization with an aging leader and challengers, IEEE Trans. Evol. Comput. 17(2), 241–258

21. Osaba, E., Diaz, F., Oniva, E., 2014. Golden ball: a novel meta-heuristic to solve combinatorial

optimization problems based on soccer concepts. Appl Intell.41, 145-166.

22. Lin, S., 1965. Computer solutions of the traveling salesman problem. Bell Syst. Tech. J. 44, 2245- 2269.

23. Alfa, A., Heragu, S., Chen, M., 1991. A 3-opt based simulated annealing algorithm for vehicle routing

problems. Comput. Ind. Eng. 21,635–639.

24. Rocki, K., Suda, R., 2012. Accelerating 2-opt and 3-opt local search using GPU in the Travelling

salesman problem. In: IEEE International Conference on High Performance Computing and Simulation,

489–495.

