Certain Results on Pair Sum Labeling of Newly Constructed Graphs

P. Noah Antony Daniel Renai,S. Roy
Department of MathematicsVellore Institute of TechnologyVellore, India
Email: danielrenay@gmail.com

Abstract

For a (p, q) graph G, an injective map f from $V(G)$ to $\{ \pm 1, \pm 2, \ldots, \pm p\}$ is said to be a pair sum labeling if the induced edge function f_{e} from $E(G)$ to $\{Z-0\}$ defined by $f_{e}(u v)=f(u)+f(v)$ is $1-1$ and $f_{e}(E(G))$ is either of the form $\left\{ \pm m_{1}, \pm m_{2}, \ldots, \pm m_{\frac{q}{2}}\right\}$ or $\left\{ \pm m_{1}, \pm m_{2}, \ldots, \pm m_{\frac{q-1}{2}}\right\} \cup$ $\left\{m_{\frac{q+1}{2}}\right\}$ depending on q which is either even or odd. A graph that admits the behavior of pair sum labeling is named a pair sum graph. In this manuscript we study the pair sum labeling of uniform $(3, n)$-cyclic graph, n-cyclic copies of C_{3} and path union of ladders.

Keywords: Pair Sum Labeling, Uniform, (3,n)-Cyclic Graph, n-Cyclic Copies of C_{3}, Path Union of Ladders.

1. Introduction

Among the miscellaneous types of graph labeling, pair sum labeling of graphs is a newest form of labeling strategy. The labeling concept of pair sum graphs was introduced by Ponraj et al. [1]. The considered graph G in this article is of simple, undirected, finite. Terms not characterized here are utilized in the feeling of Harary [4]. An investigation of Pair sum labeling for certain standard graphs like cycle, path, bi-star complete graph, and some more kinds of graphs are discussed in [1-3]. Also they have proved most of all categories of trees admits pair sum labeling up to order $n \geq 8$ [5].

Definition 1

For a (p, q) graph G, an injective map f from $V(G)$ to $\{ \pm 1, \pm 2, \ldots, \pm p\}$ is said to be a pair sum labeling if the induced edge function f_{e} from $E(G)$ to $\{Z-0\}$ defined by $f_{e}(u v)=f(u)+f(v)$ is $1-1$ and $f_{e}(E(G))$ is either of the form $\left\{ \pm m_{1}, \pm m_{2}, \ldots, \pm m_{\frac{q}{2}}\right\}$ or $\left\{ \pm m_{1}, \pm m_{2}, \ldots, \pm m_{\frac{q-1}{2}}\right\} \cup$ $\left\{m_{\frac{q+1}{2}}\right\}$ depending on q which is either even or odd. A graph that admits the behavior of pair sum labeling is named a pair sum graph.

2. Main Result

Definition 2

A uniform (3,n)-cyclic graph $S C_{3}^{n}$ where n is even is obtained by attaching cycles of length 3 to all the pendent vertices of a star graph S_{n+1} (See Figure 2(a)).

Definition 3

Let the graphs $G_{1}, G_{2}, . ., G_{n}, n \geq 2$ be all replicated copies of a constant cycle graph G. Adding an edge in between any two vertices of G_{i} and G_{i+1} consecutively for $i=1,2, \ldots,(n-1)$ and an edge between G_{n} and G_{1} is named as a uniform n-cyclic graph.

Let $L_{3}^{1}, L_{3}^{2}, \ldots, L_{3}^{m}$ be m copies of ladder graph L_{3} are labeled as follows (See Figure. 1).

Figure. 1 m copies of ladder graph L_{3}

Definition 4

Let us consider the m-copies of ladder graphs L_{3} where $m \geq 4$ is even. The graph $P\left(L_{3}^{m}\right)$ is obtained by joining an edge in between the vertices v_{i} of L_{3}^{i} and u_{i+1} of L_{3}^{i+1} where $i=1,2, \ldots, m-1$ consecutively is named as path union of ladders.

Theorem 1

The uniform ($3, n$)-cyclic graph $S C_{3}^{n}$ is a pair sum graph if n is even.

Proof:

Let the vertex set of $S C_{3}^{n}$ be $\left\{u_{1}, u_{2}, \ldots, u_{\frac{3 n}{2}} ; 1 \leq i \leq n, v_{1}, v_{2}, \ldots, v_{\frac{3 n}{2}} ; 1 \leq i \leq n\right\}$ and w be the hub vertex.

Now let us define $f: V\left(S C_{3}^{n}\right) \rightarrow\left\{ \pm 1, \pm 2, \ldots, \pm \frac{3 n}{2}\right\}$
such that

$$
f(w)=1
$$

$f\left(u_{i}\right)=2 i$ where $i=1,2, . . \frac{3 n}{2}$
$f\left(v_{i}\right)=-2 i$ where $i=1,2, . . \frac{3 n}{2}$
Furtherly from the edge function which is induced, we have
$f_{e}: E\left(S C_{3}^{n}\right) \rightarrow\{Z-0\}$,
$f_{e}\left(u_{i} u_{j}\right)=2 i+2 j, i \neq j$
$f_{e}\left(v_{i} v_{j}\right)=-2 i-2 j, i \neq j$
$f_{e}\left(w u_{i}\right)=1+2 i$,
$f_{e}\left(w v_{j}\right)=1-2 j$,
then
$f\left(E\left(S C_{3}^{n}\right)\right)=$
$\{\{ \pm 3, \pm 9, \pm 15, \ldots, \pm(3 n-3)\}, \cup\{ \pm 6, \pm 18, \pm 30, \ldots, \pm(6 n-6)\}, \cup\{ \pm 8, \pm 20, \pm 32, \ldots, \pm(6 n-$ $4)\}, \cup\{ \pm 10, \pm 22, \pm 34, \ldots, \pm(6 n-2)\}\}$.
(See Figure 2(b))
Hence the graph $S C_{3}^{n}$ is a pair sum graph.

Figure $2(a) S C_{3}^{4}$

Figure 2(b) Pair sum labeling of SC_{3}^{4}

Theorem 2

The n-cyclic graph $C_{3}^{n}, n \geq 2$ is a pair sum graph if n is even.

Proof:

Let the vertex set of C_{3}^{n} be $\left\{u_{1}, u_{2}, \ldots, u_{\frac{3 n}{2}} ; 1 \leq i \leq n, v_{1}, v_{2}, \ldots, v_{\frac{3 n}{2}} ; 1 \leq i \leq n\right\}$
Now let us define $f: V\left(C_{3}^{n}\right) \rightarrow\left\{ \pm 1, \pm 2, \ldots, \pm \frac{3 n}{2}\right\}$
such that
$f\left(u_{i}\right)=i$ where $i=1,2, . ., \frac{3 n}{2}$
$f\left(v_{i}\right)=-i$ where $i=1,2, . . \frac{3 n}{2}$
Furtherly from the edge function which is induced, we have
$f_{e}: E\left(C_{3}^{n}\right) \rightarrow\{Z-0\}$,
$f_{e}\left(u_{i} u_{j}\right)=i+j, i \neq j$
$f_{e}\left(v_{i} v_{j}\right)=-i-j, i \neq j f_{e}\left(u_{i} v_{i+1}\right)=-1$

$$
f_{e}\left(u_{i} v_{i-1}\right)=1
$$

then
$f\left(E\left(C_{3}^{n}\right)\right)=$
$\{ \pm 1, \pm 7, \pm 13, \ldots, \pm(3 n-5)\}, \cup\{ \pm 3, \pm 9, \pm 15, \ldots, \pm(3 n-3)\}, \cup\{ \pm 4, \pm 10, \pm 16, \ldots, \pm(3 n-$ 2) $\},\{ \pm 5, \pm 11, \pm 17, \ldots, \pm(3 n-1)\}$,$\} .$
(See Figure 3(b))
Hence the graph C_{3}^{n} is a pair sum graph.

Figure $3(a) C_{3}^{4}$

Figure 3(b) Pair sum labeling of C_{3}^{4}

Theorem 3

The graph $P\left(L_{3}^{m}\right)$ is a pair sum graph when $m \geq 4$ is even.

Proof:

Let the vertex set of $P\left(L_{3}^{m}\right)$ be $\left\{u_{1}, u_{2}, \ldots, u_{3 m}, 1 \leq i \leq n, v_{1}, v_{2}, \ldots, v_{3 m}, 1 \leq i \leq n\right\}$
Now let us define $f: V\left(P\left(L_{3}^{m}\right)\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm 3 m\}$
such that
$f\left(u_{i}\right)=i$ where $i=1,2, . .3 m$
$f\left(v_{i}\right)=-i$ where $i=1,2, . ., 3 m$
Furtherly from the edge function which is induced, we have
$f_{e}: E\left(P\left(L_{3}^{m}\right)\right) \rightarrow\{Z-0\}$,

Certain Results on Pair Sum Labeling of Newly Constructed Graphs

$$
\begin{aligned}
& f_{e}\left(u_{i} u_{j}\right)=i+j, i \neq j \\
& f_{e}\left(v_{i} v_{j}\right)=-i-j, i \neq j
\end{aligned}
$$

$$
f_{e}\left(v_{i} u_{i+1}\right)=1
$$

then

```
\(f\left(E\left(P\left(L_{3}^{m}\right)\right)=1 \cup\{ \pm 3, \pm 15, \pm 27, \ldots, \pm(6 m-9)\} \cup\{ \pm 4, \pm 16, \pm 28, \ldots, \pm(6 m-8)\} \cup\right.\)
\(\{ \pm 6, \pm 18, \pm 30, \ldots, \pm(6 m-6)\} \cup\{ \pm 7, \pm 19, \pm 31, \ldots, \pm(6 m-5)\} \cup\{ \pm 8, \pm 20, \pm 32, \ldots, \pm(6 m-\)
\(4)\} \cup\{ \pm 10, \pm 22, \pm 34, \ldots, \pm(6 m-2)\} \cup\{ \pm 11, \pm 23, \pm 35, \ldots, \pm(6 m-1)\} \cup\)
\(\{ \pm 9, \pm 21, \pm 33, \ldots, \pm(6 m-15)\}\).
```

(See Figure (4(b))
Hence the graph $P\left(L_{3}^{m}\right)$ is a pair sum graph.

Figure 4(a) L_{3}^{4}

Figure 4(b) Pair sum labeling of L_{3}^{4}

3.Conclusion

Therefore as a progress in this manuscript, we have determined pair sum labeling for certain graphs such as, uniform $(3, n)$-cyclic graph, uniform n-cyclic graph, path union of ladder graphs. Pair sum labeling for interconnection networks is under examination.

References

[1] R. Ponraj and J. V. X. Parthipan, "Pair Sum Labeling of Graphs," The Journal of Indian Academy of Mathematics, Vol. 32, No. 2, 2010.
[2] R. Ponraj, J. V. X. Parthipan and R. Kala, "Some Results on Pair Sum Labeling," International Journal of Mathematical Combinatorics, Vol. 4, 2010.
[3] R. Ponraj, J. V. X. Parthipan and R. Kala, "A Note on Pair Sum Graphs," Journal of Scientific Research, Vol. 3, No. 2, 2011.
[4] F. Harary, "Graph Theory," Narosa Publishing House, New Delhi, 1998.
[5] R. Ponraj, J. V. X. Parthipan and R. Kala, "Pair Sum Labeling of Some Trees," The Journal of Indian Academy of Mathematics.

