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. Abstract: In this paper, we investigate the topological properties of the image under the mapping 

between two topological spaces. We show then image mapping is almost topological space with certain 

condition subset of a given space. The space is called normal regular and normal regular compact space.  

Then we show that every regular compact space and for any two disjoint regularly closed subsets. is 

almost mildly normal compact regular space. 

Keywords: Almost Compact Regular Space, Almost Completely Compact Regular Space, Normal 

Regular Space, Normal Compact Regular Space, Almost Normal compact Regular Space, Almost Mildly 

Normal Compact Regular Space.  

1.  Introduction  

Topological spaces have been investigated roughly in topological spaces, as an important and 

fundamental topic for the study of topology parts, several authors have presented studies of several 

stronger and weaker forms with continuous and multifunctional functions on certain subsets. Some use 

weak continuity under the name "almost continuity". And it has a great influence on topological dynamics 

and Banach space theory, see [1], [2], [3]. As these types of studies give different types of semi-

continuous jobs. These types prompt us to further investigate the weak continuum properties of subgroups 

under two topological spaces. 

 

After much research, other and new concepts have been introduced in almost weak topological 

spaces which are compact if each open cover of space contains closed finite subfamily. Meanwhile, the 

concept of continuous for weak topological approximate groups was introduced. In 1968, the concept of 

semi-continuous functions was introduced, and scientists identified a new class of functions called 

continuous functions. More research has been done on these functions. which introduced the concept of 

nearly weakly connected functions. The idea of a continuous weak function resulted between the 

topological spaces. Research and studies continued to produce the idea of semi-continuous jobs. Later on, 

the idea of continuous jobs was born almost weakly. Implicit is weak continuity through both 

approximately continuity and weak continuity independent of each other. 

Later several descriptions of weak semi-continuous functions were introduced and some results 

improved, with some sufficient conditions for weak semi-continuous jobs to be semi-continuous. While 
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showing that the assumption 'semi-continuous' in many specific outcomes can be replaced by the phrase 

'weakly quasi-continuous'. 

 

 

 

 

 

 

 

2. Preliminary  

2.1. Topological space 

A topological space, also called an abstract topological space, is a set that meets the four conditions 

along with a series of open subsets: 

Definition 2.1 [4]: Let 𝑿 be a set. A topology on X is a set 𝑻 ⊂  𝑷(𝑿) of subsets of 𝑿, called open 

sets, such that 

(1) ∅ and X are open 

(2) The intersection of finitely many open sets is open 

(3) Any union of open sets is open A topological space is a set X together with a topology T on X. The 

members of τ are called open sets. 

Let 𝑿 be a non empty set. Then 𝝉𝒊 = {{∅}, 𝑿} and 𝜏𝑑  =  𝑷(𝑿) are topologies and are called as the 

indiscrete topology and the discrete topology, respectively. Note that if 𝝉 is any other topology on 𝑿, then 

𝝉𝒊 ⊂ 𝝉  ⊂ 𝝉𝒅 . 

• A topological space 

 

Definition 2.2 [5]: A set 𝑺, together with a collection of subsets called 𝒐𝒑𝒆𝒏 𝒔𝒆𝒕𝒔, is called a topological 

space if and only if the collection of open sets satisfy the following axioms: 

Axiom 𝟏. Every open set is a set of points. 

Axiom 𝟐. The empty set is an open set. 

Axiom 𝟑. For each point 𝒑, there is at least one open set containing 𝒑. 

Axiom 𝟒. The union of any collection of open sets is an open set. 

Axiom 𝟓. The intersection of any finite collection of open sets is an open set. 

 

Definition 2.3 [6]. Let 𝑿 be a set. A 𝒕𝒐𝒑𝒐𝒍𝒐𝒈𝒚 on 𝑿 is a collection 𝝉 of subsets of 𝑿 with the following 

properties. 

(i) ∅  ∈   𝝉  and 𝑿 ∈  . 

(ii) Whenever (𝑼i)i∈ I is a family (finite or not) of subsets of 𝑿 such that (𝑼i) ∈  𝝉  for all 𝒊 ∈  𝑰, then ∪ i∈ 

I 𝑼i  ∈  𝝉. 

(iii) Whenever 𝑼1; 𝑼2 ∈  𝝉 , then 𝑼1 ∩  𝑼2  ∈  𝝉 . 

A 𝒕𝒐𝒑𝒐𝒍𝒐𝒈𝒊𝒄𝒂𝒍 𝒔𝒑𝒂𝒄𝒆 (𝑿, 𝝉) is a set 𝑿 together with a topology 𝜏 on 𝑿. 
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• A Limit Point  

 

Definition 2.4 [7]: Let 𝑨 be a subset of a topological space 𝑿. A point 𝒙 ∈ 𝑿 is 𝒂 𝒍𝒊𝒎𝒊𝒕 𝒑𝒐𝒊𝒏𝒕 of 𝑨 if 

each neighborhood 𝑼 of 𝒙 contains a point of 𝑨 other than 𝒙, or equivalently, of 𝒙 belongs to the closure 

of 𝑨 – {𝒙}. (If 𝒙 ∉  𝑨, recall that 𝑨 – {𝒙} =  𝑨) The set of limit points of 𝑨 is often denoted 𝑨′, and is 

called 𝒕𝒉𝒆 𝒅𝒆𝒓𝒊𝒗𝒆𝒅 set of A in 𝑿. 

 

 

 

 

 

• Subspace  

 

Definition 2.5 [8]: Let 𝑿 be a topological space with topology 𝝉, and let A be a non-empty subset of 𝑿. 

Although it is possible to assign many different topologies to 𝑨 without making any reference to the 

topology 𝝉. yet we would like to assign to 𝑨 a definite topology, which it inherits from 𝝉.  

 

A Subsets : 

 

Definition 2.6 [7]. Let 𝐗 be a set. A topology on 𝐗 is a collection 𝝉 of subsets of 𝐗, such that:  

(1) ∅ and 𝑿 in 𝝉. 

(2) For any 𝒔𝒖𝒃𝒄𝒐𝒍𝒍𝒊𝒄𝒕𝒊𝒐𝒏 { 𝐔𝛂 }𝛂 ∈ 𝐉  of 𝝉, the union ⋃ 𝑼𝜶 𝛂∈𝐉 is in 𝝉. 

(3) For any finite subcollection { 𝑼1 , … , 𝑼n } of 𝝉 the intersection 𝑼1∩ … ∩ 𝑼n is in 𝝉. 

A topological space (𝐗, 𝛕𝑿) is a set 𝑿 with a chosen topology 𝛕. 

 

 

 

 

 

Definition 2.7 [9]. We say that 𝑨 is a 𝒔𝒖𝒃𝒔𝒆𝒕 of 𝑩 and we write 𝑨 ⊂  𝑩 or 𝑩 ⊃  𝑨 if every element of 𝑨 

is also an element of 𝑩. (We also say that 𝑨 is included in 𝑩 or 𝑩 includes 𝑨 or 𝑩 is a superset of 𝑨. ) 

 

Definition 2.8 [10]. If 𝑨 and 𝑩 are sets, then 𝑨 − 𝑩 = { 𝒙 ∈ 𝑨 ∶ 𝒙 ∉ 𝑩 }  is called the  𝒄𝒐𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕 of 

𝑩 in 𝑨. If the set 𝑨 is clearly understood, we might simply refer to 𝑨 − 𝑩 as the 𝒄𝒐𝒎𝒑𝒍𝒆𝒎𝒆𝒏𝒕 of 𝑩. 

sometimes written as 𝑩c or −𝑩 or �̅� . 

 

• Neighbourhood Points  
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Definition 2.9 [11]: Let (𝑿, 𝝉) be a (topological) space, 𝒑 an element of 𝑿 and 𝑵 a subset of 𝑿. We call 𝑵 

a 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒉𝒐𝒐𝒅 of 𝒑 (or, when we need to be fussy, a 𝝉-𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒖𝒓𝒉𝒐𝒐𝒅 of 𝒑) if there is an open 

set 𝑮 in 𝝉  for which 𝒑 ∈  𝑮 ⊆  𝑵. 

 

Examples 2.1. Throughout 𝑿 denotes a non-empty set. 

1) 𝝉 = {∅, 𝑿} is a topology on 𝑿 . This topology is called indiscrete topology on 𝑿 and the topological 

space (𝑿, 𝝉)  is called indiscrete topological space. 

2) 𝝉 =  𝑷(𝑿), 𝑷(𝑿) = power set of 𝑿 is a topology on 𝑿 and is called discrete topology on 𝑿 and the 

topological space(𝑿, 𝝉)   is called discrete topological space. 

3) Let 𝑿 =  {𝒂, 𝒃, 𝒄} then 𝝉𝟏 = {∅, {𝒂}, {𝒃, 𝒄}𝑿} , and 𝝉𝟐 = {∅, {𝒂}, {𝒃}, {𝒂, 𝒃}, 𝑿} are topologies on 𝑿 

whereas 𝝉𝟑 = {∅, {𝒂}, {𝒃}, 𝑿} is a not a topology on 𝑿. 

4) Let 𝑿 be an infinite set. Define 𝝉 = {∅} ∪ {𝑨 ⊆ 𝑿 | 𝑿 − 𝑨 is finit} then 𝝉 is topology on 𝑿. 

i) ∅ ∈  𝝉. (by definition 𝝉). As 𝑿 − 𝑿 = ∅, a finite set, 𝑿 ∈ 𝝉. 

ii) Let 𝑨, 𝑩 ∈ 𝝉. If either 𝑨 = ∅ or 𝑩 = ∅, then 𝑨 ∩ 𝑩 ∈ 𝝉. Assume that 𝑨 ≠ ∅ and 𝑩 ≠ ∅ then 𝑿 −

𝑨 is finite and 𝑿 − 𝑩 is finite. Hence 𝑿 − (𝑨 ∩ 𝑩) = (𝑿 − 𝑨) ∪ (𝑿 − 𝑩) is finite set. Therefore 𝑨 ∩ 𝑩 ∈

𝝉. Thus 𝑨, 𝑩 ∈ 𝝉. 

iii) Let 𝑨𝝀 ∈  𝝉, for each 𝝀 ∈ 𝜦 (where Λ is any indexing set). If each 𝑨𝝀 = ∅, then ⋃ 𝑨𝝀 = ∅ ∈𝝀∈𝜦

𝝉. 

If ∃ 𝝀𝟎 ∈ 𝜦  such that 𝑨𝝀𝟎
≠ ∅ then  𝑨𝝀𝟎

⊆ ⋃ 𝑨𝝀 ⇒ 𝑿 −𝝀∈𝜦  𝑨𝝀𝟎
⊇ 𝑿 − ⋃ 𝑨𝝀𝝀∈𝜦 . 

As 𝑿 −  𝑨𝝀𝟎
 is a finite set and subset of finite set being finite we get 𝑿 − ⋃ 𝑨𝝀𝝀∈𝜦  is finite and hence 

⋃ 𝑨𝝀 ∈ 𝝉𝝀∈𝜦 ,  Thus in either case, 𝑨𝝀 ∈ 𝝉, ∀ 𝝀 ∈ 𝜦 ⇒ ⋃ 𝑨𝝀 ∈ 𝝉𝝀∈𝜦 . 

From (i), (ii) and (iii) is a topology on 𝑿. This topology is called co-finite topology on 𝑿 and the 

topological space is called co-finite topological space. 

 

Proposition 2.1 [12] : The following properties of a topological space 𝐗 are equivalent: 

(i) The set of closed neighborhoods of any point of 𝑿 is a fundamental system of neighborhoods of the 

point. 

(ii) Given any closed subset 𝑭 of 𝑿 and any point 𝒙 ∉  𝑭 there is a neighbourhood of 𝒙 and a 

neighbourhood of 𝑭 which do not intersect. 

 

 

 

• Interior Points  

 

Definition 2.10 [13]: For any subset 𝑨 of a topological space 𝑿, the 𝒊𝒏𝒕𝒆𝒓𝒊𝒐𝒓 of 𝑨 is defined to be the 

largest open set contained inside 𝑨. It is denoted by 𝑨𝟎. 

 

Definition 2.11 [14] : Let 𝑨 be a subset of a space 𝑿. The interior of 𝑨 in 𝑿, denoted as 𝑨° or 𝑰𝒏𝒕(𝑨), is 

the open set defined as: 𝑰𝒏𝒕(𝑨)  = ∪  {𝑮 ⊆  𝑿 ∶  𝑮 is open and 𝑮 ⊆  𝑨}. 

 

Theorem 2.1 [15] : Let 𝑨 and 𝑩 be subsets of 𝑿. Then,  

(1) 𝑰𝒏𝒕(𝑨)  ⊆  𝑨.  
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(2)  If 𝑨 ⊆  𝑩, then 𝑰𝒏𝒕(𝑨)  ⊆  𝑰𝒏𝒕(𝑩).  

(3)  𝑰𝒏𝒕(𝑿)  =  𝑿.  

(4)  𝑰𝒏𝒕(𝑰𝒏𝒕(𝑨))  =  𝑰𝒏𝒕(𝑨).  

(5)  𝑰𝒏𝒕(𝑨 ∩  𝑩)  =  𝑰𝒏𝒕(𝑨) ∩  𝑰𝒏𝒕(𝑩).  

(6)  𝑰𝒏𝒕(𝑨) ∪  𝑰𝒏𝒕(𝑩)  ⊆  𝑰𝒏𝒕(𝑨 ∪  𝑩).  

(7)  𝑨 is open iff 𝑰𝒏𝒕(𝑨)  =  𝑨. 

 

 

 

 

• Closure Points  

 

Definition2.12 [16]: Let 𝑿 be a topological space and 𝑨 ⊆  𝑿. The closure of 𝑨, denoted as �̅� or 𝑪𝒍(𝑨), 

is the closed set defined as: 𝑪𝒍(𝑨) = ∩ {𝑲 ⊆  𝑿 ∶  𝑲 is closed and 𝑨 ⊆  𝑲}.  

 

Theorem 2.2 [16] : Let 𝑨 and 𝑩 be subsets of 𝑿. Then:  

(1) 𝑨 ⊆  𝑪𝒍(𝑨).  

(2) If 𝑨 ⊆  𝑩, then 𝑪𝒍(𝑨)  ⊆  𝑪𝒍(𝑩).  

(3) 𝑪𝒍(𝝓)  =  𝝓.  

(4) 𝑪𝒍(𝑪𝒍(𝑨))  =  𝑪𝒍(𝑨).  

(5) 𝑪𝒍(𝑨 ∪  𝑩)  =  𝑪𝒍(𝑨)  ∪  𝑪𝒍(𝑩).  

(6) 𝑪𝒍(𝑨 ∩  𝑩)  ⊆  𝑪𝒍(𝑨)  ∩  𝑪𝒍(𝑩).  

(7) 𝑨 is closed iff 𝑪𝒍(𝑨)  =  𝑨. 

 

 

 

 

• Isolated Points  

  

Definition 2.13 [13]: The closure �̅� of a subset 𝑭 ⊂  𝑿 is the smallest closed set containing  . Members 

of �̅� are called 𝒄𝒍𝒐𝒔𝒖𝒓𝒆 𝒑𝒐𝒊𝒏𝒕𝒔 of  . Closure points which are not a limit points are 

called 𝒊𝒔𝒐𝒍𝒂𝒕𝒆𝒅 𝒑𝒐𝒊𝒏𝒕𝒔. (It is clear that 𝑭′ ⊂ �̅�). 

 

 

 

 

 

• The Boundary Points 

 

Definition 2.14 [13]: 𝑻𝒉𝒆 𝒃𝒐𝒖𝒏𝒅𝒂𝒓𝒚 of 𝑨 ⊂  𝑿 is defined by 𝝏𝑨 =  �̅�  ∩  (𝑨𝒄).̅̅ ̅̅ ̅̅ ̅ 

 

•  

•  
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• Separation Axioms  

 

Definition 2.15 [17]: Let (𝑿, 𝑻 ) be a topological space. The following are called 𝑺𝒆𝒑𝒂𝒓𝒂𝒕𝒊𝒐𝒏 𝑨𝒙𝒊𝒐𝒎𝒔.  

(i) 𝑿 is called 𝑻𝒐 if for every pair of distinct points 𝒙, 𝒚 ∈  𝑿 there exists an open set 𝑼 containing 𝒙 

which does not contain 𝒚. 

(ii) 𝑿 is called 𝑻𝟏 if one point sets are closed. 

(iii) 𝑿 is called 𝑻𝟐 or Hausdorff if 𝑿 is 𝑻𝟏 and for any pair of distinct points 𝒙, 𝒚 ∈ 𝑿 there exist disjoint 

open sets 𝑼 and 𝑽 where 𝒙 ∈ 𝑼 and 𝒚 ∈ 𝑽 .  

(iv) 𝑿 is called 𝑻𝟑 or regular if 𝑿 is 𝐓𝟏 and for any point 𝒙 ∈  𝑿 and any closed set 𝑪 not containing 𝒙 

there exist open sets 𝑼 and 𝑽 where 𝒙 ∈  𝑼 and 𝑪 ⊆  𝑽 .  

(v) 𝑿 is called 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒍𝒚 𝒓𝒆𝒈𝒖𝒍𝒂𝒓 if for any point 𝒙 ∈  𝑿 and closed set 𝑪 not containing 𝒙 there 

exists a continuous function 𝒇 ∶  𝑿 →  [𝟎, 𝟏] where 𝒇(𝒙) = 𝟎 and 𝒇(𝑪)  =  𝟏. 

(vi) 𝑿 is called 𝑻𝟒 or normal if 𝑿 is 𝐓𝟏 and for any pair of disjoint closed sets 𝑪 and 𝑫 there exist disjoint 

open sets 𝑼 and 𝑽 where 𝑪 ⊆  𝑼 and 𝑫 ⊆  𝑽 

 

 

 

2.2.  Compact space 

 

Definition 2.16 [19] : A space 𝒀 is 𝑯𝒂𝒖𝒔𝒅𝒐𝒓𝒇𝒇 (or separated)  if each two distinct points have 

nonintersecting nbds, that is whenever 𝒑 ≠ 𝒒 there are nbds 𝑼(𝒑), 𝑽(𝒒) such that 𝑼 ∩ 𝑽 = ∅. 

Proof [50]. (𝐓𝟐 ⇒ 𝐓𝟏 ) (𝐓𝟏 ⇒ 𝐓𝟎). Let 𝒙 ∈  𝑿 and 𝒚 ∈  {𝒙}𝒄. Since 𝑿 is 𝐓𝟐 there exist disjoint open sets 

𝑼 and 𝑽 where 𝒙 ∈  𝑼 and 𝒚 ∈  𝑽 .  

 

Theorem 2.3 [20] : A topological space is a Hausdorff space if and only if for each point 𝒂 the 

intersection of all closed neighborhoods of a is the set {𝒂}. 

Proof. Let 𝑿 be a Hausdorff space and let 𝒃 ≠  𝒂. Choose disjoint open sets 𝓞𝜶 , and 𝓞𝒃 , such that 𝒂 ∈

 𝓞𝜶  , and 𝒃 ∈  𝓞𝒃. Then 𝒂 ∈  𝓞𝜶  ⊆ c 𝓞𝒃 but 𝒃 ∉ c𝓞𝒃 and so c𝓞𝒃 is a closed neighborhood of 𝒂 not 

containing 𝒃. Hence the intersection of all closed neighborhoods of 𝒂 does not contain any 𝒃 ≠ 𝒂. 

Conversely, if this intersection is {𝒂}, then given any 𝒃 ≠ 𝒂 there exist an open 𝓞𝜶  , and a closed 𝑪𝒂, 
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such that 𝒂 ∈  𝓞𝜶  ⊆ 𝑪𝒂  and 𝒃 ∉ 𝑪𝒂. Then 𝓞𝒃 = c𝓞𝒂 is open, 𝒃 ∈  𝓞𝒃, and 𝓞𝜶  ∩  𝓞𝒃  =  ∅ . Hence 

Hausdorff’s axiom holds in 𝑿. There exist (𝑻𝟏) spaces which are not (𝐓𝟐) spaces. For instance, let 𝑿 be an 

infinite set and let the topology on 𝑿 be the topology of finite complements. For any pair of distinct points 

𝒂, 𝒃 the open sets 𝓞𝒃 =  𝑿 −  {𝒂} and 𝓞𝜶   =  𝑿 −  {𝒃} fulfill the requirements of axiom (𝑻𝟏) but not of 

(𝑻𝟐). Since any two nonvoid open sets have a nonvoid intersection, there exists no pair 𝓞𝜶  , 𝓞𝒃 which 

would satisfy the requirements of axiom (𝑻𝟐). 

 

Theorem 2.3 [18] : Every finite point set in a Hausdorff space 𝑿 is closed. 

Proof: It suffices to show that every one-point set {𝒙0} is closed. If 𝒙 is a point of 𝑿 different from 𝒙0 , 

then 𝒙 and 𝒙0 have disjoint neighborhoods 𝑼 and 𝑽 , respectively. Since 𝑼 does not intersect {𝒙0} ,the 

point x cannot belong to the closure of the set {𝒙0}. As a result, the closure of the set {𝒙0} is {𝒙0} itself, so 

that it is closed. 

 

Theorem 2.4 [21] : If 𝑿 is a Hausdorff space and 𝑨 ⊂  𝑿, then 𝑨 with the subspace topology is a 

Hausdorff space. If {𝑿𝒊: 𝒊 ∈  𝑰} is a 𝒇𝒂𝒎𝒊𝒍𝒚 𝒐𝒇 𝑯𝒂𝒖𝒔𝒅𝒐𝒓𝒇𝒇 𝒔𝒑𝒂𝒄𝒆𝒔, then ∏ 𝑿𝒊𝑖∈𝐼  is Hausdorff. 

Proof. Suppose that 𝒂, 𝒃 are distinct points in 𝑨. Because 𝑿 is Hausdorff, there are disjoint open sets 𝑼, 𝑽 

in 𝑿 with 𝒂 ∈  𝑼, 𝒃 ∈  𝑽 . Then 𝑼 ∩  𝑨, 𝑽 ∩  𝑨 are disjoint open sets in A with the subspace topology 

and 𝒂 ∈  𝑼 ∩  𝑨, 𝒃 ∈  𝑽 ∩  𝑨, showing that 𝑨 is Hausdorff. Suppose that 𝒙, 𝒚 are distinct elements of 

∏ 𝑿𝒊𝑖∈𝐼 . 𝒙 and 𝒚 being distinct means there is some 𝒊 ∈  𝑰 such that 𝒙(𝒊)  ≠  𝒚(𝒊). Then 𝒙(𝒊), 𝒚(𝒊) are 

distinct points in 𝑿𝒊 , which is Hausdorff, so there are disjoint open sets 𝑼𝒊, 𝑽𝒊 in 𝑿𝒊 with 𝒙(𝒊)  ∈ 

𝑼𝒊, 𝒚(𝒊)  ∈ 𝑽𝒊. Let U = 𝝅𝒊
−𝟏(𝑼𝒊), V = 𝝅𝒊

−𝟏(𝑽𝒊), where 𝝅𝒊 is the projection map from the product to 𝑿𝒊. 

𝑼 and 𝑽 are disjoint, and 𝒙 ∈  𝑼, 𝒚 ∈  𝑽 , showing that ∏ 𝑿𝒊𝑖∈𝐼  is Hausdorff. 

 

Theorem 2.5 [15] : If a topological space satisfies axioms (𝑻𝟎) and (𝑻𝟑), then it is a Hausdorff space. 

Proof. Given any pair of distinct points 𝒂, 𝒃 ∈  𝑿, by axiom (𝑻𝟎) there exists an open set 𝓞 which 

separates these points. We may assume that 𝒂 ∉ 𝓞 and 𝒃 ∈ 𝓞. We apply axiom (𝑻𝟑) with 𝑨 = 𝒄𝓞 and 

find open sets 𝓞𝑨 , and 𝓞𝒃, such that 𝑨 ⊆ 𝓞𝑨 , 𝒃 ∈ 𝓞𝒃 , and 𝓞𝑨 ∩ 𝓞𝒃 =  ∅. Therefore ∈ 𝑨 ⊆ 𝓞𝑨 , and 

𝒃 ∈ 𝓞𝒃 , This shows that 𝑿 is a Hausdorff space. 

 

Examples 2.2 

1. Any discrete topological space (𝑿, 𝝉 ) with |𝑿|  ≥ 𝟐 is a 𝑻𝟐 –  𝒔𝒑𝒂𝒄𝒆. 

Foe 𝒙 ≠ 𝒚 in 𝑿, {𝒙} and {𝒚} are two disjoint open sets containing 𝒙 and 𝒚 respectively. 

2. (ℝ, 𝝉𝒖) is a 𝑻𝟐 –  𝒔𝒑𝒂𝒄𝒆. 

Let 𝒙 ≠ 𝒚 in ℝ, Then |𝒙 − 𝒚  | =  𝒓 > 0. (𝒙 −
𝒓

𝟑
, 𝒙 +

𝒓

𝟑
) and  (𝒚 −

𝒓

𝟑
, 𝒚 +

𝒓

𝟑
) are disjoint open sets in ℝ 

containing 𝒙 and 𝒚 respectively. Hence (ℝ, 𝝉𝒖) is a 𝑻𝟐 –  𝒔𝒑𝒂𝒄𝒆. 

 

 

 

 

 

 

 

Preposition 2.2 [12] : Let 𝑿 be a topological space. Then the following statements are equivalent: 
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(i) Any two distinct points of 𝑿 have disjoint neighbourhood. (Hausdorff) . 

(ii) The intersection of the closed neighbourhood of any point of 𝑿 consists of that point alone. 

(iii) The diagonal of the product space 𝑿 ×  𝑿 is a closed set.  

(iv) For every set 𝑰, the diagonal of the product space 𝒀 =  𝑿𝑰  is closed in 𝒀. 

 

Theorem 2.6 [7] : Let 𝑨 be a subset of a Hausdorff space 𝑿. A point 𝒙 ∈  𝑿 is a limit point of 𝑨 if and 

only if each neighborhood 𝑼 of 𝒙 meets 𝑨 in infinitely many points. 

Proof. If 𝑼 ∩  𝑨 consists of infinitely many points, then it certainly contains other points than 𝒙, so 𝑼 

meets 𝑨 − {𝒙}. 

Conversely, if 𝑼 ∩  𝑨 is finite, then then 𝑼 ∩  (𝑨 − {𝒙} )  =  {𝒙1, … . 𝒙n} is closed, so 𝑽 =  𝑼 −

 {𝒙1, … . 𝒙n}  =  𝑼 ∩ (𝑿 −  {𝒙1, … . 𝒙n}) is open. Then 𝒙 ∈  𝑽 , 𝑽 is open, and 𝑽 ∩  (𝑨 – {𝒙})  =  ∅ ,so 𝒙 

is not a limit point of 𝑨. 

 

Theorem 2.7 [7] : Each finite subset 𝑨 ⊂  𝑿 in a Hausdorff space is closed. 

Proof. The set 𝑨 is the union of a finite collection of singleton sets {𝒙}, so it suffices to prove that each 

singleton set {𝒙} is closed in 𝑿.  

 Consider any other point 𝒚 𝝐 𝑿, with 𝒙 ≠  𝒚. By the Hausdorff property there are open subsets 𝑼, 𝑽 ⊂

 𝑿 with 𝒙 ∈  𝑼 and ∈  𝑽 , such that 𝑼 ∩  𝑽 =  ∅. Then ∉  𝑽 , so 𝑿 −  𝑽 is a closed set that contains {𝒙}. 

Hence {𝒙}  ⊂  𝑿 −  𝑽 , so 𝒚 ∉  𝑪𝒍{𝒙}. Since 𝑪𝒍{𝒙} cannot contain any other points than 𝒙, it follows that 

{𝒙}  =  𝑪𝒍{𝒙} and{𝒙} is closed. 

 

Claim 2.1 [22]. Every subspace of a Hausdorff space is Hausdorff. 

Proof. Suppose 𝑿 is a Hausdorff space, and 𝑨 is a subspace of 𝑿. The spoiler now picks two distinct 

points 𝒙 and 𝒚 in 𝑨, and the prover must demonstrate that there are disjoint sets containing 𝒙 and 

𝒚 respectively that are open in the subspace topology for 𝑨. Since 𝒙 and 𝒚 are distinct points of 𝑿, the 

prover has at his disposal disjoint open sets of 𝑿, namely 𝑼 and 𝑽, such that 𝑼 contains 𝒙 and 𝑽 contains 

𝒚. He them picks 𝑼 ∩ 𝑨 and 𝑽 ∩ 𝑨 as subsets of 𝑨. Clearly: 

• 𝒙 ∈  𝑨 and 𝒙 ∈  𝑼, so 𝒙 ∈  𝑼 ∩  𝑨. Similarly, 𝒚 ∈  𝑽 ∩  𝑨. 

• 𝑼 and 𝑽 themselves are disjoint, so 𝑼 ∩  𝑨 and 𝑽 ∩  𝑨 are disjoint. 

• 𝑼 ∩  𝑨 is open relative to 𝑨, because it is the intersection with 𝑨 of an open set in 𝑿. Similarly: 𝑽 ∩  𝑨 

is also open relative to 𝑨. Hence, the prover has managed to pick disjoint open sets containing 𝒙 and 𝒚, 

relative to the subspace topology of 𝑨. 

 

 

 

 

 

Definition 2.17 [23] : A 𝒄𝒐𝒗𝒆𝒓𝒊𝒏𝒈 of a topological space 𝑿 is a collection of sets whose union is 𝑿. It is 

an 𝒐𝒑𝒆𝒏 𝒄𝒐𝒗𝒆𝒓𝒊𝒏𝒈 if the sets are open. A 𝒔𝒖𝒃𝒄𝒐𝒗𝒆𝒓 is a subset of this collection which still covers the 

space. 

If 𝑨 ⊂  𝑿 then, for convenience, we sometimes use "𝒄𝒐𝒗𝒆𝒓 𝑨" for a collection of subsets of 𝑿 whose 

union contains 𝑨. 
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Examples 2.3. Let 𝑿 =  ℝ and let 𝑼𝒏 =  (−𝒏, +𝒏), 𝒇𝒐𝒓 𝒏 =  𝟏, 𝟐, . . .. Then {𝑼𝒏 | 𝒏 ∈  𝚴} is an open 

cover of ℝ , i.e. ℝ =  ⋃  𝑼𝒏
∞
𝒏=𝟏   . This is so because, for 𝒓 ∈  ℝ we can choose a positive integer 𝒎 

greater than |𝒓| and then 𝒓 ∈  (−𝒎, +𝒎) ⊂ 𝑼𝒎, so 𝒓 ∈  𝑼𝒎 ⊂  ⋃  𝑼𝒏
∞
𝒏=𝟏 . 

Hence ⋃  𝑼𝒏
∞
𝒏=𝟏  contains every real number, i.e. ⋃  𝑼𝒏

∞
𝒏=𝟏 =  𝑹. 

A subcover of this open cover is {𝑼𝒏| 𝒏 ∈  𝑱} where 𝑱 is the set of even positive integers. 

 

Example 2.4. Let 𝑿 =  [𝟎, 𝟏] (with the subspace topology induced from ℝ). Let 𝑼𝟏 = [𝟎, 𝟏/𝟒) and 

𝑼𝒏 =  (𝟏/𝒏, 𝟏], for 𝒏 =  𝟐, 𝟑, 𝟒, . . .. Then 𝑼𝟏 =  [𝟎, 𝟏] ∩ (−𝟏/𝟒, 𝟏/𝟒) is open in the subspace topology 

and so is 𝑼𝒏 =  [𝟎, 𝟏] ∩ (𝟏/𝒏, 𝟐), for 𝒏 ≥  𝟐. Note that {𝑼𝒏| 𝒏 =  𝟏, 𝟐, . . . } is an open cover and 

{𝑼𝟏, 𝑼𝟓} is a subcover. 

 

 

 

 

Definition 2.18 [23] : A topological space 𝑿 is said to be 𝒄𝒐𝒎𝒑𝒂𝒄𝒕 if every open covering of 𝑿 has a 

finite subcover. (This is sometimes referred to as the Heine-Borel property.) 

 

Examples 2.5. 

1.  Any subset of an indiscrete topological space (𝑿, 𝝉) is compact, as {𝑿} is the only open cover for any 

𝑬 ⊆ 𝑿. 

2.   Any finite subset of any topological space (𝑿, 𝝉)  is compact. 

Co-finite topological space is compact. 

   

Theorem 2.8 [10] : The following are equivalent for any topological space (𝑿, 𝝉) 

(1) 𝑿 is compact. 

(2)  Every family 𝓕 of closed sets in 𝑿 with the finite intersection property also has ⋂ 𝓕 =  ∅. 

Proof 𝟏)  ⇒ 𝟐) Suppose 𝑿 is compact and that 𝓕 is a family of closed sets with 𝐅𝐈𝐏 (the finite 

intersection property) Let 𝒖 = { 𝑿 − 𝑭 ∶ 𝑭 ∈  𝓕 }. For any 𝑭𝟏 , 𝑭𝟐 , … , 𝑭𝒏  ∈ 𝓕 . the 𝐅𝐈𝐏 tells us that  

𝑿 ≠ 𝑿 − ⋂ 𝑭𝒏
𝒏
𝒊=𝟏  = (𝑿 − 𝑭𝟏) ∪ … ∪ (𝑿 − 𝑭𝒏). In other words, no finite subcollection of 𝒖 𝒄𝒐𝒗𝒆𝒓𝒔 𝑿. 

Since 𝑿 is compact, 𝒖 cannot be a cover of cover 𝑿, that is, 𝑿 = ∪ 𝒖 = ∩ {𝑿 − 𝑼 ∶ 𝑼 ∈ 𝒖} = ∩  𝓕 ≠ ∅. 

 

Lemma 2.1 [19] : Let 𝒀 be a subspace of 𝑿. Then 𝒀 is compact if and only if every covering of 𝒀 by sets 

open in 𝑿 contains a finite subcollection covering 𝒀. 

Proof. Suppose that 𝒀 is compact and 𝓐 =  {𝑨α}𝜶 ∈ 𝑱 is a covering of 𝒀 by sets open in 𝑿. Then the 

collection. {𝑨α ∩  𝒀 | 𝜶 ∈ 𝑱 is a covering of 𝒀 by sets open in 𝒀; hence a finite subcollection (𝑨α1 ∩ 𝒀,…, 

𝑨αn ∩ 𝒀) covers 𝒀. Then ( 𝑨,, , . . . , 𝑨,, ] is a subcollection of 𝑨 that covers 𝒀. Conversely, suppose the 

given condition holds; we wish to prove 𝒀 compact. Let  𝑨′ =  { 𝑨′α } be a covering of 𝒀 by sets open in 

𝒀. For each 𝜶 choose a set  , open in 𝑿 such that  𝑨′α  =  𝑨, ∩  𝒀. The collection 𝓐 =  ( 𝑨, ) is a covering 

of 𝒀 by sets open in 𝑿. By hypothesis, some finite subcollection { 𝑨,, , . . . , 𝑨,, ] covers Y . Then 

{𝑨′α1 , . . . , 𝑨′αn } is a subcollection of 𝑨′ that covers. 

  

Theorem 2.9 [19] : Every closed subspace of a compact space is compact. 
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Proof. Let 𝒀 be a closed subspace of the compact space 𝑿. Given a covering 𝑨 of 𝒀 by sets open in 𝑿, let 

us form an open covering 𝓑  of 𝑿 by adjoining to 𝓐 the single open set 𝑿 −  𝒀, that is,  𝓑  = 𝓐 𝑼 ( 𝑿 − 

𝒀 ) .Some finite subcollection of  covers 𝑿. If this subcollection contains the set 𝑿 −  𝒀, discard 𝑿 −  𝒀 ; 

otherwise, leave the subcollection alone. The resulting collection is a finite subcollection of. 𝓐 that 

covers 𝒀. 

 

 

 

 

 

Theorem 2.10 [24] : A closed subset of a compact set is also compact. 

Proof. Take a compact space 𝑿 with a closed subset C let F be a family of open subsets of 𝑿 such that 

𝑪 ⊂ ∪ 𝕱. Add the open set 𝑼 =  𝑿 − 𝑪 to F and we get a cover of 𝑿. 𝑿 is compact so 𝕱 ∪  𝑼 admits a 

finite subcover 𝑶1 ∪ 𝑶2 ∪ ... ∪ 𝑶k ∪  (𝑿 −  𝑪). C ⊂ 𝑶 1 ∪ 𝑶 2 ∪ ... ∪ 𝑶k since (𝑿 −  𝑪)  ∩  𝑪 =  ∅ and 

this new set { 𝑶1 ∪  𝑶2 ∪ ...∪ 𝑶k is a finite subcover of 𝑪. 

 

 

 

 

 

 

Theorem 2.11 [19] : Every compact subspace of a Hausdorff space is closed. 

Proof.  Let 𝒀 be a compact subspace of the Hausdorff space 𝑿. We shall prove that 𝑿 −  𝒀 is open, so that 

𝒀 is closed. Let 𝒙o be a point of 𝑿 −  𝒀. We show there is a neighborhood of 𝒙o that is disjoint from  𝒀. 

For each point 𝒚 of 𝒀, let us choose disjoint neighborhoods 𝑼y and 𝑽y of the points 𝒙o and 𝒚, respectively 

(using the Hausdorff condition). The collection { 𝑽y | 𝒚 ∈  𝒀 } is a covering of 𝒀 by sets open in 𝑿; 

therefore, finitely many of them 𝑽y1 , . . . , 𝑽yn cover Y . The open set 𝑽 = 𝑽y1 ∩ . . .∩  𝑽yn contains  𝒀, and it 

is disjoint from the open set 𝑼 = 𝑼 y1 ∩ . . .∩  𝑼yn formed by taking the intersection of the corresponding 

neighborhoods of 𝒙o. For if 𝒛 is a point of 𝑽 ,then 𝒛 ∈  𝑽yi for some i, hence 𝒛 ∉  𝑼yi and so 𝒛 ∉  𝑼 . See 

Figure. Then 𝑼 is a neighborhood of 𝒙o disjoint from 𝒀, as desired. 

 

Lemma 2.2 [19] : If 𝒀 is a compact subspace of the Hausdorff space 𝑿 and 𝒙o is not in 𝒀, then there exist 

disjoint open sets 𝑼 and 𝑽 of 𝑿 containing 𝒙o and 𝒀, respectively. 

 

Theorem 2.12 [23] : The unit interval 𝑰 =  [𝟎, 𝟏] is compact. 

Proof. Let 𝑼 be an open covering of 𝑰. Put 𝑺 =  {𝒔 ∈ 𝑰| [𝟎, 𝒔] is covered by a finite subcollection of 𝑼}. 

Let 𝒃 the least upper bound of 𝑺. Clearly S must be an interval of the form 𝑺 =  [𝟎, 𝒃) or  𝑺 =  [𝟎, 𝒃]. In 

the former case, however, consider a set 𝑼 ∈  𝐔 containing the point  𝒃. This set must contain an interval 

of the form [𝒂, 𝒃]. But then we can throw 𝑼 in with the hypothesized finite cover of [𝟎, 𝒂] to obtain a 

finite cover of [𝟎, 𝒃]. Thus we must have that  𝑺 =  [𝟎, 𝒃] for some 𝒃 ∈  [𝟎, 𝟏]. But if 𝒃 <  𝟏, then a 

similar argument shows that there is a finite cover of [𝟎, 𝒄] for some 𝒄 >  𝒃, contradicting the choice of 

𝒃. Thus  𝒃 =  𝟏 and we have found the desired finite cover of [𝟎, 𝟏].  
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2.3 . Topological mapping 

 

• A Functions  

 

Definition 2.18 [8]. Let 𝑿 and 𝒀 be two non-empty sets (which may be equal). A rule 𝒇 which assigns to 

each element of 𝑿 a unique element of 𝒀 is called a function or (single-valued) mapping (or ma) from 𝑿 

to 𝒀. If 𝒙 ∈ 𝑿 then the element 𝒚 of 𝒀 assigned to 𝒙, under the rule 𝒇, is called the image of 𝒙, or the 

value of f at the point x. If 𝒚 is the image of 𝒙, we write 𝒚 =  𝒇(𝒙). 

 

Definition 2.19 [9]. Let 𝑿 and 𝒀 be sets. A relation 𝒇 ⊂  𝑿 ×  𝒀 is called 𝑎 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 from 𝑿 to 𝒀 if 

(i) 𝑫(𝒇)  =  𝑿 ,  

(ii) ∀𝒙 ∈  𝑿 .The set { 𝒚 ∈  𝒀 ∶  (𝒙, 𝒚)  ∈  𝒇 } has exactly one element. 

 

• A Continuous Functions  

 

Definition 2.20 [8]: A function 𝒇: 𝑿 → 𝒀 is called 𝒐𝒏𝒆 − 𝒐𝒏𝒆  or 𝒊𝒏𝒋𝒆𝒄𝒕𝒊𝒗𝒆 if distinct elements of 𝑿 

have distinct image in 𝒀 ( i.e.) whenever 𝒇(𝒙𝟏) =  𝒇(𝒙𝟐)  for 𝒙𝟏 , 𝒙𝟐 ∈ 𝑿 then 𝒙𝟏 = 𝒙𝟐. 

 

Definition 2.21 [8]: A function 𝒇: 𝑿 → 𝒀 is called 𝒐𝒏𝒕𝒐 or 𝒔𝒖𝒓𝒋𝒆𝒄𝒕𝒊𝒗𝒆 if elements of 𝐘 is the image of 

some element of 𝑿, (i.e.) if the range of 𝒇 is 𝒀. 

 

Definition 2.22 [8]:  A function 𝒇: 𝑿 → 𝒀 is called 𝒃𝒊𝒋𝒆𝒄𝒕𝒊𝒗𝒆 if it is both 𝒐𝒏𝒆 − 𝒐𝒏𝒆 (𝒊𝒏𝒋𝒆𝒄𝒕𝒊𝒗𝒆) and 

𝒐𝒏𝒕𝒐 (𝒔𝒖𝒓𝒋𝒆𝒄𝒕𝒊𝒗𝒆). 

 

Definition 2.23 [8]. Let 𝒇: 𝑿 → 𝒀  be a function from a topological space 𝑿 to a topological space 𝒀. Let 

𝒙𝟎 ∈ 𝑿. Then 𝒇 is said to be continuous at 𝒙𝟎 If and only if for every open set 𝑽 containing 𝒇(𝒙𝟎) in 𝒀. 

there exist an open set 𝒖 in 𝑿 such that 𝒙 ∈ 𝒖 ⊆ 𝒇−𝟏(𝑽).  

 

Examples 2.6. 

1. Let 𝒇: 𝑿 → 𝑿 ∗  be a function. Let 𝜶 ∈ 𝑿 ∗ be any fixed point. 

Define 𝒇(𝒙) = 𝜶, for each in 𝑿. 𝒇 is continuous at each 𝒙 ∈ 𝑿  since for every open set 𝑮 ∗ containing 

𝒇(𝒙) = 𝜶, here is an open set 𝑮 = 𝑿 containing 𝒙 such that 𝒇(𝑮) ⊆  𝑮 ∗. Hence 𝒇 is continues on 𝑿. 

2. Let 𝒇: 𝑿 → 𝑿 ∗  be a function. Let 𝜶 ∈ 𝑿 such that {𝒂} ∈ 𝝉. Then is 𝒇 continuous at 𝜶. 

Let  𝑮 ∗ ∈ 𝝉 ∗ such that 𝒇(𝒂) ∈  𝑮 ∗. Then 𝜶 ∈ 𝒇−𝟏( 𝑮 ∗)  ⇒  {𝒂} ⊆ 𝒇−𝟏( 𝑮 ∗). Define 𝑮 = {𝒂}. Then 𝑮 ∈

𝝉 such that 𝑎 ∈ 𝐺 and 𝒇(𝑮) ⊆  𝑮 ∗. Hence 𝒇 is continues on 𝒂. 

 

Definition 2.24 [25]: Suppose 𝒇 ∶  𝑨 →  𝑩 and 𝒈 ∶  𝑩 →  𝑪 are functions with the property that the 

codomain of 𝒇 equals the domain of 𝒈. 𝑻𝒉𝒆 𝒄𝒐𝒎𝒑𝒐𝒔𝒊𝒕𝒊𝒐𝒏 of 𝒇 with 𝒈 is another function, denoted as 

𝒈°𝒇 and defined as follows: If 𝒙 ∈  𝑨, then  𝒈°𝒇 (𝒙)  =  𝒈(𝒇 (𝒙)). Therefore 𝒈°𝒇 sets elements of 𝑨 to 

elements of 𝑪, so 𝒈°𝒇: 𝑨 →  𝑪. 
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Definition 2.25 [25]: For a set 𝑨, 𝒕𝒉𝒆 𝒊𝒅𝒆𝒏𝒕𝒊𝒕𝒚 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏 on 𝑨 is the function  𝒊𝑨 ∶  𝑨 →  𝑨 defined as 

𝒊𝑨(𝒙)  =  𝒙 for every 𝒙 ∈  𝑨. 

 

Definition 2.26 [25]: Given a relation 𝑹 from 𝑨 to 𝑩, 𝒕𝒉𝒆 𝒊𝒏𝒗𝒆𝒓𝒔𝒆 𝒓𝒆𝒍𝒂𝒕𝒊𝒐𝒏 of 𝑹 is the relation from 

𝑩 to A defined as 𝑹−𝟏 =  {(𝒚, 𝒙): (𝒙, 𝒚) ∈  𝑹}. In other words, the inverse of 𝑹 is the relation 𝑹−𝟏  

obtained by interchanging the elements in every ordered pair in 𝑹. 

 

Definition 2.27 [25]: If 𝒇 ∶  𝑨 →  𝑩 is bijective then its 𝒊𝒏𝒗𝒆𝒓𝒔𝒆 is the function  𝒇−𝟏 : 𝑩 → 𝑨. The 

functions 𝒇 and 𝒇−𝟏 obey the equations 𝒇−𝟏◦ 𝒇 = 𝒊𝑨 and 𝒇 ◦ 𝒇−𝟏 = 𝒊𝑩. 

 

Definition 2.29 [8]. Let 𝒇: 𝑿 → 𝒀  be a function from a topological space 𝑿 to a topological space 𝒀. Let  

𝒙𝟎 ∈ 𝑿. Then 𝒇 is said to be 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 at 𝒙𝟎 If and only if for every open set 𝑽 containing 𝒇(𝒙𝟎) in 𝒀. 

there exist an open set 𝒖 in 𝑿 such that 𝒙 ∈ 𝒖 ⊆ 𝒇−𝟏(𝑽). 

 

 

 

 

 

 

Proposition 2.3 [23]. A function 𝒇: 𝑿 →  𝒀 between topological spaces is continuous ⇔ it is continuous 

at each point 𝒙 ∈ 𝑿. 

 

Definition 2.30 [8]. the function 𝒇−𝟏: 𝒀 → 𝑿 is called the inverse of 𝒇: 𝑿 → 𝒀 

 

 

 

 

 

 

Theorem 2.14 [14]. Suppose 𝒇: (𝑿, 𝝉) → (𝒀, 𝝉′). The following are equivalent. 

1. is continuous. 

2. if 𝓞 𝝐 𝝉′ then 𝒇−𝟏[𝓞] ∈  𝝉 (the inverse image of an open set is open). 

3. if 𝑭 is closed in 𝒀 , then 𝒇−𝟏[𝑭] is closed in 𝑿. (the inverse image of a closed set is closed) 

4. for every 𝑨 ⊂ 𝑿 ∶ 𝒇[𝒄𝒍𝑿(𝑨)] ⊂  𝒄𝒍𝒀(𝒇[𝑨])). 

 

Definition 2.31 [8]: Let 𝒇 ∶ 𝑿 →  𝒀 be a function. 

(i) If 𝑨 is a subset of  𝑿 , then its image set 𝒇(𝑨) is a subset of 𝒀 defined by 

𝒇(𝑨) =  {𝒇(𝒙): 𝒙 ∈  𝑨}. 

 

 

 

 

 

Definition 3.22 [4]. Let 𝒇 ∶ 𝑿 →  𝒀 be a function. 

(i) If 𝑨 is a subset of  𝑿 , then its image set 𝒇(𝑨) is a subset of 𝒀 defined by 𝒇(𝑨) =

 {𝒇(𝒙): 𝒙 ∈  𝑨}. 

 

𝑿                                 𝒇                                       𝒀 

𝑨                                                                                  𝒇(𝑨) 

 

 

 

 

 

(i) If B is a subset of Y , then is inverse image𝒇−𝟏(𝑩) is the subset of 𝑿 defined by  𝒇−𝟏(𝑩) =

{𝒙 ∶ 𝒇(𝒙) ∈ 𝑩} 

 

 

                     𝑿                        𝒇                             𝒀 

              𝒇−𝟏(𝑩)                                                    𝑩 

 

 

 

Theorem 3.4 [5]. Suppose 𝒇: 𝑿 → 𝒀 where (𝑿, 𝒅) and (𝒀, 𝒔) are pseudometric spaces.The 

following are equivalent: 
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(ii) If B is a subset of Y , then is inverse image𝒇−𝟏(𝑩) is the subset of 𝑿 defined by  𝒇−𝟏(𝑩) = {𝒙 ∶

𝒇(𝒙) ∈ 𝑩} 

 

Examples 2.7. Let 𝑿 and 𝒀 be any two non-empty sets and let 𝒇: 𝑿 → 𝒀 be any function. Let 𝝉 be 

topology on 𝒀. Define 𝝉 ∗ = {𝒇−𝟏(𝑮)| 𝑮 ∈ 𝝉}, Where 𝒇−𝟏(𝑮) = {𝒙 ∈ 𝑿| 𝒇(𝒙) ∈ 𝑮} Then 𝝉 ∗ is topology 

on X. 

1. 𝒇−𝟏(∅) = ∅ ⇒ ∅ ∈ 𝝉 ∗ and 𝒇−𝟏(𝒀) = 𝑿 ⇒ 𝑿 ∈ 𝝉 ∗. 

2. Let 𝒇−𝟏(𝑮) ∈ 𝝉 ∗ and 𝒇−𝟏(𝑯) ∈ 𝝉 ∗, For 𝑯 ∈ 𝝉. Then 𝒇−𝟏(𝑮 ∩ 𝑯) = 𝒇−𝟏(𝑮) ∩ 𝒇−𝟏(𝑯) and 𝑮, 𝑯 ∈ 𝝉 

will imply 𝒇−𝟏(𝑮) ∩ 𝒇−𝟏(𝑯) ∈ 𝝉 ∗. 

3. Let 𝒇−𝟏(𝑮𝝀) ∈ 𝝉 ∗ ∀ 𝝀 ∈ 𝜦, where 𝜦 any indexing set is. Then 

𝒇−𝟏 (⋃ 𝑮𝝀

𝝀∈𝜦

) = ⋃ 𝒇−𝟏(𝑮𝝀)

𝝀∈𝜦

. As ⋃ 𝑮𝝀

𝝀∈𝜦

∈ 𝝉, we get ⋃ 𝒇−𝟏(𝑮𝝀)

𝝀∈𝜦

∈ 𝝉 ∗. 

Thus from (i), (ii) and (iii) we get 𝝉 ∗ is a topology on 𝑿. 

 

 

 

 

 

 

Definition 2.32 [8]: Let 𝒇: 𝑿 → 𝒀 and 𝒈: 𝒀 → 𝒁  be any two functions. The composition (or resultant) 

(𝒈𝒐𝒇) of this functions is defined to be the function from 𝑿 to 𝒁 given by (𝒈𝒐𝒇)(𝒙) = 𝒈(𝒇(𝒙)).   

 

 

 

 

 

 

Theorem 2.15 [8]: The composition (𝒈𝒐𝒇) ∶ 𝑿 → 𝒁 to tow objective functions  𝒇 ∶ 𝑿 →  𝒀 and 𝒈 ∶ 𝒀 →

 𝒁 is objective function.  

Proof. We shall first prove that 𝒈𝒐𝒇 is one to one. Let 𝒙𝟏 , 𝒙𝟐 ∈ 𝑿 then (𝒈𝒐𝒇)(𝒙𝟏) = (𝒈𝒐𝒇)(𝒙𝟐)  ⇒ 

𝒈(𝒇(𝒙𝟏)) = 𝒈(𝒇(𝒙𝟐))   ⇒ 𝒇(𝒙𝟏) =  𝒇(𝒙𝟐) for 𝒈 is one to one. ⇒ 𝒙𝟏 =  𝒙𝟐 as 𝒇 is one to one. Hence 

(𝒈𝒐𝒇) is one to one. 

 

Theorem 2.16 [8]: Let 𝒇 ∶ 𝑿 →  𝒀 and 𝒈 ∶ 𝒀 →  𝒁 be tow continuous functions. Then (𝒈𝒐𝒇) ∶ 𝑿 → 𝒁 is a 

continuous function. 

Proof. Let 𝒉 =  𝒈𝒐𝒇  to prove that 𝒉 is continuous we have to establish that for every open set 𝑾 in  , 

𝒉−𝟏(𝑾) is open in 𝑿.  

 

Examples 2.8. 

1. Let 𝑿 =  {𝒂, 𝒃, 𝒄}, 𝝉 = {∅, {𝒂}, 𝑿}, 𝑿∗ = {𝒑, 𝒒, 𝒓} and 𝝉∗ = {∅, {𝒑}, {𝒑, 𝒓}, 𝑿∗}. 

i) Define 𝒇: 𝑿 → 𝑿 ∗, by 𝒇(𝒂) =  𝒑,  𝒇(𝒃) =  𝒒 and 𝒇(𝒄) =  𝒓. Then 𝒇  is an open map (Note that 𝒇 is 

not a continuous map). 

ii) Define 𝒈: 𝑿 → 𝑿 ∗, by 𝒈(𝒂) =  𝒑,  𝒈(𝒃) =  𝒒 and 𝒈(𝒄) =  𝒓. Then 𝒈  is an open map (Note that 𝒈 

Theorem 3.3 [4]. Let 𝒇 ∶ 𝑿 →  𝒀 and 𝒈 ∶ 𝒀 →  𝒁 be tow continuous functions. Then (𝒈𝒐𝒇) ∶

𝑿 → 𝒁 is a continuous function. 

Proof. Let 𝒉 =  𝒈𝒐𝒇  to prove that 𝒉 is continuous we have to establish that for every open set 

𝑾 in  , 𝒉−𝟏(𝑾) is open in 𝑿. 

𝑿                              𝒀                                 𝒁 

         𝒇                                  𝒈 

   𝒙 •                              𝒇(𝒙) •                                   •  𝒈(𝒇(𝒙)) 

 

𝒈𝒐𝒇
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is not a continuous map). 

2. Let (X, τ) be any topological space. Let X ∗ = {a, b, c} and τ∗ = {∅, {a}, {a, c}, 𝑿 ∗}. 

i) Define 𝜽: 𝑿 → 𝑿 ∗, by 𝜽(𝒙) =  𝒂,  ∀ 𝑥 ∈ 𝑋. Then 𝜽 is an open map but not a closed map. 

ii) Define 𝝋: 𝑿 → 𝑿 ∗, by 𝝋(𝒙) 𝒂, ∀ 𝑥 ∈ 𝑋. Then 𝝋 is closed map but not an open map. 

 

Preposition 2.4 [12]. Let 𝒇, 𝒈 be two continuous mappings of a topological space 𝑿 into a Hausdorff 

space 𝒀. then the  set of all 𝒙 ∈  𝑿 such that 𝒇(𝒙)  =  𝒈 (𝒙) is closed in 𝑿. 

 

Corollary 2.1 [12]: Let 𝒇, 𝒈 be two continuous mappings of a topological space 𝑿 into a Hausdorff space 

𝒀. If 𝒇(𝒙)  =  𝒈 (𝒙) at all points of a dense subset of 𝑿, then 𝒇 =  𝒈. 

 

Corollary 2.2 [12]: If 𝒇 is a continuous mapping of a topological space 𝑿 into a Hausdorff space 𝒀, then 

the graph of 𝒇 is closed in 𝑿 ×  𝒀. For this graph is the set of all   (𝒙, 𝒚)  ∈  𝑿 ×  𝒀 such that 𝒇(𝒙)  =  𝒚, 

and the two mappings (𝒙, 𝒚) → 𝒚 and (𝒙, 𝒚) → 𝒇(𝒙) are continuous. 

 

Theorem 2.17 [8]:  

(a) The continuous image of a compact space is compact. 

(b) A compact subset of Hausdorff space is closed. 

(c) A closed subset of a compact space  is compact. 

(d) A compact Hausdorff space is normal.  

 

Theorem 2.18 [14] : For any space (𝑿, 𝝉) 

(a) If  𝑿  is compact and  𝑭  is closed in 𝑿 , then  𝑭 is compact. 

(b) If  𝑿  is a Hausdorff space and 𝑲 is a compact subset, then 𝑲 is closed in 𝑿. 

Proof. 𝒂) Suppose 𝑭  is a closed set in a compact space  , and let 𝒖 = {∪ 𝑼𝜶 ∶ 𝜶 𝝐 𝑼} be a cover of 𝑭 by 

sets open in 𝑭. For each α , pick an open set 𝑽𝜶 in 𝑿 such that 𝑼𝜶 = 𝑽𝜶 ∩ 𝑭. Since 𝑭  is closed, the 

collection 𝒗 = {𝑿 − 𝑭} ∪ {𝑽𝜶: 𝜶 𝝐 𝑨} is an open cover of  . Therefore we can find 𝑽𝜶𝟏 , … , 𝑽𝜶𝒏  so that 

{𝑿 − 𝑭, 𝑽𝜶𝟏 , … , 𝑽𝜶𝒏} covers 𝑿. Then {𝑼𝜶𝟏 , … , 𝑼𝜶𝟐} covers 𝑭 , so  𝑭 is compact. 

𝒃) Suppose 𝑲 is a compact set in a Hausdorff space𝑿. Let 𝒚 ∈ 𝑿 − 𝑲 For each 𝒙 ∈ 𝑲, we can choose 

disjoint open sets 𝑼𝒙 and 𝑽𝒙 in 𝑿 where 𝒙 ∈  𝑼𝒙 and 𝒚 ∈  𝑽𝒙. Then 𝒖 = {𝑼𝒙 ∶ 𝒙 ∈ 𝑲} covers 𝑲 so there 

are finitely many points 𝒙𝟏 , … , 𝒙𝒏  ∈ 𝑲 such that. Then , 𝑼𝒙𝟏 , … , 𝑼𝒙𝒏 covers 𝑲, then 𝒚 ∈ 𝑽 =  𝑽𝒙𝟏  ∩

… ∩  𝑽𝒙𝒏  ⊆ 𝑿 − 𝑲, so 𝑿 − 𝑲 is open and 𝑲 is closed. 

 

Theorem 2.19 [23] : If 𝑿 is compact and 𝒇: 𝑿 → 𝒀 is continuous, then 𝒇(𝑿) is compact. 

Proof. We may as well replace 𝒀 by 𝒇(𝑿) and so assume that 𝒇 is onto. For any open cover of 𝒀 look at 

the inverse images of its sets and apply the compactness of 𝑿. 

 

Theorem 2.20 [24] : The continuous image of a compact space is compact. 

Proof: Suppose we have 𝒇: 𝑿 → 𝒀 an onto continuous function with 𝑿 compact. 

We must show 𝒀 is also compact. Take any open cover, 𝕱 of 𝒀. Since 𝒇 is continuous for each open set 𝑶 

∈  𝕱 𝒇-1(𝑶) is open in 𝑿. Define the set 𝝑 = {𝒇−𝟏(𝑶)|∀ 𝑶 ∈  𝕱 }. 

Which is an open cover of 𝑿. 𝑿 is compact, therefore 𝝑 admits a finite subcover. 

𝑿 =  ⋃ 𝒇𝒌
𝒊=𝟏  -1(𝑶i). 
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• Homeomorphism  

 

Definition 2.33 [23]: A function 𝒇 ∶  𝑿 →  𝒀 between topological spaces is called a 𝒉𝒐𝒎𝒆𝒐𝒎𝒐𝒓𝒑𝒉𝒊𝒔𝒎 

if 𝒇−𝟏 ∶  𝑿 →  𝒀 exists (i.e., 𝒇 is one-one and onto) and both 𝒇 and 𝒇−𝟏 are continuous. The notation 𝑿 ≈

 𝒀 means that 𝑿 is homeomorphic to 𝒀. 

 

Theorem 2.21 [8]: Let 𝑿 ≃ 𝒀 mean that there exists a homeomorphism from 𝑿 onto 𝒀. Then:  

1. 𝑿 ≃ 𝒀 ∀ 𝑿 ∈  𝝉 

2. 𝑿 ≃ 𝒀 ⇒  𝒀 ≃ 𝑿 , ∀ 𝑿 , 𝒀 ∈  𝝉 

3. 𝑿 ≃ 𝒀 and 𝒀 ≃ 𝒁 ⇒  𝑿 ≃ 𝒁 , ∀ 𝑿 , 𝒀 , 𝒁 ∈  𝝉 

Proof. 

(1) let 𝒊𝑿 ∶ 𝑿 → 𝑿 be the identity function on a topological space X. Then 𝒊𝑿 is homeomorphism. By 

definition 𝒊𝑿(𝑿) = 𝑿 , ∀ 𝒙 ∈ 𝑿 , it follows that 𝒊𝑿 is bijective. Let 𝒖 be an open set in 𝑿. Then 

𝒊𝑿
−𝟏(𝒖) = 𝒖 and 𝒊𝒙(𝒖) = 𝒖. Therefore, 𝒊𝑿 is bicontinuous. Hence 𝒊𝑿 a homeomorphism. Hence 𝑿 ≃ 𝒀. 

(2) Let 𝒇 ∶ 𝑿 →  𝒀 be a homeomorphism. Then 𝒇−𝟏 ∶ 𝒀 →  𝑿 exists and is continuous. Since (𝒇−𝟏)−𝟏 =

𝒇 is continuous and 𝒇−𝟏 is bijective, it follows that 𝒇−𝟏 is a homeomorphism from 𝒀 onto 𝑿. Hence 𝑿 ≃

𝒀 ⇒  𝒀 ≃ 𝑿. 

(3) Let 𝒇 ∶ 𝑿 → 𝒀 and 𝒇 ∶ 𝒀 → 𝒁 be a homeomorphism. Then 𝒈𝒐𝒇 ∶ 𝑿 → 𝒁 is also continuous (By 

definition homeomorphism ). Since 𝒇−𝟏 and 𝒈−𝟏 are continuous, 𝒇−𝟏𝒐𝒈−𝟏 =  (𝒈𝒐𝒇)−𝟏 is also 

continuous. The function 𝒈𝒐𝒇 ∶ 𝑿 → 𝒁 is bijective because the resultant of tow bijective function is also a 

bijective function. Hence 𝒈𝒐𝒇 ∶ 𝑿 → 𝒁 is a homeomorphism. Hence 𝑿 ≃ 𝒀 and 𝒀 ≃ 𝒁 ⇒  𝑿 ≃ 𝒁. 

 

Theorem 2.22 [7] : A one-to-one, onto, and continuous function from a compact space 𝑿 to a Hausdorff 

space 𝒀 is a homeomorphism. 

Proof: Let 𝒇: 𝑿 → 𝒀 be a function as described above, and take a closed subset of 𝑿, 𝑪. 𝑪 is compact by 

(by definition compact) and 𝒇(𝑪) must be compact (by definition compact ), it is also closed in 𝒀. Our 

function f takes closed sets to closed sets, proving 𝒇-1 is continuous, making 𝒇 a homeomorphism. 

 

• Completely Hausdorff Spaces  

 

• Definition 2.34 [26]: A topological space 𝑿 is called Completely Hausdorff Spaces or if whenever 

𝒙, 𝒚 ∈  𝑿, 𝒙 ≠  𝒚, there is a continuous function 𝒇 ∶  𝑿 →  [𝟎, 𝟏] such that 𝒇 (𝒙)  =  𝟎 and 𝒇 (𝒚)  =  𝟏. 

Every completely Hausdorff space is Hausdorff. 

 

 

 

   ( ) 

Definition 3.25 [9]. A function 𝒇 ∶  𝑿 →  𝒀 between topological spaces is called a 

𝒉𝒐𝒎𝒆𝒐𝒎𝒐𝒓𝒑𝒉𝒊𝒔𝒎 if 𝒇−𝟏 ∶  𝑿 →  𝒀 exists (i.e., 𝒇 is one-one and onto) and both 𝒇 and 𝒇−𝟏 are 

continuous. The notation 𝑿 ≈  𝒀 means that 𝑿 is homeomorphic to 𝒀. 

 

𝑿 

    (𝑿, 𝝉𝑿)                𝒇                (𝒀, 𝝉𝒀)             (𝑿, 𝝉𝑿) ≅ (𝒀, 𝝉𝒀) 
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2.4. Regular space and Normal space 

 

Definition 2.35 [27]: A topological space 𝑿 is called 𝒓𝒆𝒈𝒖𝒍𝒂𝒓 if whenever 𝑭 is a closed set and 𝒙 ∉  𝑭, 

containing 𝒙, there exist disjoint open sets  𝑼 and 𝑽 such that 𝒙 ∈  𝑼 and    𝑭 ⊆  𝑽 . 

 

Definition 2.36 [11] : We call (𝑿, 𝝉)  𝑻𝟑 or 𝒓𝒆𝒈𝒖𝒍𝒂𝒓 if 

(i) it is 𝑻𝟏 and 

(ii) for each closed subset 𝑭 of 𝑿 and each point 𝒙 ∈  𝑿 \ 𝑭, ∃ 𝑮, 𝑯 ∈  𝝉 such that 𝒙 ∈  𝑮, 𝑭 ⊆  𝑯, 𝑮 ∩

 𝑯 =  ∅  

 

Definition 2.37 [16] : Let 𝑨 be a subset of a topological space 𝑿. Then 𝑨 is called a 𝒓𝒆𝒈𝒖𝒍𝒂𝒓 𝒐𝒑𝒆𝒏 set if 

𝑨 =  𝑰𝒏𝒕(𝑪𝒍(𝑨)). A set 𝑨 is called 𝒓𝒆𝒈𝒖𝒍𝒂𝒓 𝒄𝒍𝒐𝒔𝒆𝒅 if 𝑨𝒄 is regular open; that is, 𝑨 =  𝑪𝒍(𝑰𝒏𝒕(𝑨)).  

 

Examples 2.9. 

1. Every discrete 𝑻 − 𝒔𝒑𝒂𝒄𝒆 (𝑿, 𝝉) with |𝑿|  ≥  𝟏 is a regular space. 

2. Let X= {a, b, c}, 𝝉 = {∅, {𝒂}, {𝒃, 𝒄}, 𝑿} The topological space(𝑿, 𝝉) is a regular space. 

The family of closed sets in (𝑿, 𝝉) is 𝒌 = {∅, 𝑿, {𝒂}, {𝒃, 𝒄}}. 

Case 1: 𝒂 ∉ {𝒃, 𝒄}. Then take 𝑮 =  {𝒂} and 𝑯 =  {𝒃, 𝒄}. 𝑮, 𝑯 ∈ 𝝉. 𝑮 ∩ 𝑯 = ∅, {𝒂} ∈ 𝑮 and {𝒃, 𝒄} ∈ 𝑯.  

Case 2: 𝒃 ∉ {𝒂}. Take 𝑮 = {𝒃, 𝒄} and 𝑯 =  {𝒂}. Then 𝑮, 𝑯 ∈ 𝝉. 𝑮 ∩ 𝑯 = ∅, 𝒃 ∈ {𝒃, 𝒄} ⊆ 𝑮 and {𝒂} ⊆

𝑭.  

Case 3: 𝒄 ∉ {𝒂}. Take 𝑮 = {𝒃, 𝒄} and 𝑯 = {𝒂}. Then 𝑮, 𝑯 ∈ 𝝉. 𝑮, 𝒄 ∈ 𝑮, {𝒂} ⊆ 𝑯 and 𝑮 ∩ 𝑯 = ∅. 

Thus given a closed set 𝑭 and a point 𝒑 ∉ 𝑭there exist disjoint open sets one containing 𝒑 and the other 

containing 𝑭. This shows that the 𝑻 − 𝒔𝒑𝒂𝒄𝒆 (𝑿, 𝝉)  is a regular space. 

3. (ℝ, 𝝉𝒖) is a regular space: Let 𝒅(𝒙, 𝒚) = |𝒙 − 𝒚| and 𝑺(𝒙, 𝒓) = (𝒙 − 𝒓, 𝒙 + 𝒓). Then the topology  𝝉𝒖 

is induced by the metric 𝒅 on 𝑹. (ℝ, 𝝉𝒖) is a regular space. 

 

Theorem 2.23 [16] : If 𝑨 and 𝑩 are both regular open sets, then 𝑨 ∩  𝑩 is regular open set. 

 

Theorem 2.24 [16] : Let 𝑿 be a topological space and 𝑨, 𝑩 subsets of 𝑿. Then the following statements 

are equivalent:  

(1)  𝑨 is regular open set.  

(2) 𝑨 =  𝑰𝒏𝒕(𝑪𝒍(𝑼)) for some open set 𝑼.  

(3) 𝑨 =  𝑬𝒙𝒕(𝑶) for some open set 𝑶.  

(4) 𝑨 =  𝑰𝒏𝒕(𝑪) for some closed set 𝑪.  

And all the following statements are equivalent:  

(1) 𝑨 is regular closed set.  

(2) 𝑨 =  𝑪𝒍(𝑰𝒏𝒕(𝑪)) for some closed set 𝑪.  

(3) 𝑨 =  𝑪𝒍(𝑼) for some regular open set 𝑼.  

(4) 𝑨 =  𝑪𝒍(𝑶) for some open set 𝑶. 

 

Lemma 2.3 [11] : A 𝐓𝟏 space (𝑿, 𝝉) is 𝐓𝟑 ⇔ given 𝒙 ∈ open 𝑮, ∃ open 𝑯 such that 𝒙 ∈  𝑯 ⊆  �̅� ⊆  𝑮. 

 

Theorem 2.25 [27]. The following are equivalent for any space 𝑿: 
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(i)  𝑿 is regular . 

(ii)  if 𝑶 is an open set containing 𝒙 , then there exists an open set 𝑼 ⊆ 𝑿  such that 𝒙 ∈  𝑼 ⊆ 𝒄𝒍 𝑼 ⊆ 𝑶. 

(iii) at each point 𝒙 ∈ 𝑿 there exists a neighborhood base consisting of closed neighborhoods. 

Proof. 𝒊) ⟹  𝒊𝒊) Suppose 𝑿 is regular and 𝑶 is an open set with 𝒙 ∈  𝑶. Letting  𝑭 =  𝑿 –  𝑶 , we use 

regularity to get disjoint open sets 𝑼 , 𝑽 with 𝒙 ∈  𝑼 and 𝑭 ⊆  𝑽 as illustrated below. Then 𝒙 ∈  𝑼 ⊆

 𝒄𝒍 𝑼 ⊆  𝑶 (since  𝑈 ⊆  𝑋 −  𝑉 ). 

𝒊𝒊) ⇒  𝒊𝒊𝒊) If 𝑵 ∈  𝑵x , then 𝒙 ∈  𝑶 =  𝒊𝒏𝒕 𝑵 . By 𝒊𝒊), we can find an open set 𝑼 so that 𝒙 ∈  𝑼 ⊆

 𝒄𝒍 𝑼 ⊆  𝑶 ⊆ 𝑁 Since 𝒄𝒍 𝑼 is a neighborhood of 𝒙, the closed neighborhoods of 𝒙 form a neighborhood 

base at 𝒙. 

𝒊𝒊𝒊) ⇒  𝒊) Suppose 𝑭 is closed and ∉  𝑭 . (By 𝒊𝒊), there is a closed neighborhood 𝑲 of 𝒙 such 𝒙 ∈ 𝑲 ⊆

𝑿 − 𝑭 . We can choose 𝑼 = 𝒊𝒏𝒕 𝑲 and 𝑽 = 𝑿 − 𝑲 to complete the proof that 𝑿 is regular. 

 

Proposition 2.5 [12] : if every point 𝒙 of a topological space 𝑿 has a closed neighbourhood which is a 

regular subspace of 𝑿, then 𝑿 is regular. 

 

Proposition 2.6 [12] : Every subspace of a regular space is regular. 

 

Corollary 3.1 [12] : Every compact space is regular. 

 

• Completely Regular Space 

 

 

 

 

 

Definition 2.38 [20] : We call (𝑿, 𝝉)  𝑻𝟑𝟐
𝟏 or Completely Regular Space or Tychonoff if: 

(i) it is 𝑻𝟏 and 

(ii) for each closed (non-empty) subset 𝑭 of 𝑿 and each point 𝒙 ∈  𝑿 \𝑭, ∃ 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒇 ∶  𝑿 →  [𝟎, 𝟏] 

such that 𝒇 (𝒙)  =  𝟏 and 𝒇 (𝑭)  =  {𝟎}. 

 

Examples 2.10. 

1. Every metric space is a completely regular space. 

2. (𝑿, 𝝉𝒖) is a completely regular space. 

 

Theorem 2.26 [27] : 𝐓𝟑𝟏

𝟐

 ⟹ 𝐓𝟑 (⟹ 𝐓𝟐  ⟹ 𝐓𝟏 ⟹ 𝐓𝟎) 

Proof. Suppose is a closed set in not containing 𝒙. If 𝑿 is 𝐓𝟑𝟏

𝟐

 , we can choose 𝒇 ∈ 𝑪(𝑿) with 𝒇(𝒙) = 𝟎 

and 𝒇\𝑭 = 𝟏. Then 𝑼 =  𝒇−𝟏 [(−∞,
𝟏

𝟐
)] and  𝒇−𝟏 [(

𝟏

𝟐
, ∞)] are disjoint open sets with 𝒙 ∈ 𝑼 , 𝑭 ⊆ 𝑽. 

Therefore 𝑿 is regular. Since 𝑿 is 𝑻𝟏 , 𝑿 is 𝑻𝟑. 
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• Normal Space 

 

 

 

Definition 2.39 [11] : We call (𝑿, 𝝉) 𝐓𝟒 or 𝒏𝒐𝒓𝒎𝒂𝒍 if : 

(i) it is 𝑻𝟏 and 

(ii) for each two disjoint closed (non-empty) subsets 𝑭0 and 𝑭1 of 𝑿, ∃ 𝑮, 𝑯 ∈  𝝉 such that     𝑭0  ⊆  𝑮, 𝑭1 

⊆  𝑯, 𝑮 ∩  𝑯 =  ∅ . 

 

Definition 2.40 [26] : Let 𝑿 be a topological space. Then 𝑿 is 𝒏𝒐𝒓𝒎𝒂𝒍 if and only if whenever 𝑨 is a 

closed subset in 𝑿 and  𝒇 ∶  𝑨 →  ℝ  is a continuous function, there is a continuous extension of 𝒇 to all 

𝑿, i.e. there is a continuous function 𝑭 ∶  𝑿 →  ℝ  such that 𝑭|𝑨 =  𝒇 . 

 

Example 2.11. 

 

1. (𝑿, 𝝉𝒖) is a normal space: Let 𝑭𝟏 and 𝑭𝟐 be any two disjoint closed sets in (𝑿, 𝝉𝒖).  𝑭𝟏 ∩  𝑭𝟐 =  ∅ ⇒

 𝑭𝟏 ⊆ 𝑿 − 𝑭𝟏. Thus for each 𝒙 ∈ 𝑭𝟏, ∃ 𝒓 > 𝟎 such that (𝒙 − 𝒓, 𝒙 + 𝒓) ⊆ 𝑿 − 𝑭𝟐 (since  𝑿 − 𝑭𝟐  is an 

open set in 𝑿 ). Hence (𝒙 −
𝒓

𝟐
, 𝒙 +

𝒓

𝟐
) ∩ 𝑭𝟐 = ∅. 

Let 𝑮 = ⋃ (𝒙 −
𝒓

𝟐
, 𝒙 +

𝒓

𝟐
) .𝒙∈𝑭𝟏

 Then 𝑮 ∈ 𝝉𝒖 and  𝑭𝟏 ⊆ 𝑮 ----(1).  

Similarly for each 𝒙 ∈ 𝑭𝟐, ∃ 𝒓 > 𝟎 such that (𝒙 − 𝒓, 𝒙 + 𝒓) ⊆ 𝑿 − 𝑭𝟏. Hence (𝒙 −
𝒓

𝟐
, 𝒙 +

𝒓

𝟐
) ∩ 𝑭𝟏 = ∅. 

Let 𝑯 = ⋃ (𝒙 −
𝒓

𝟐
, 𝒙 +

𝒓

𝟐
) .𝒙∈𝑭𝟐

 Then 𝑯 ∈ 𝝉𝒖 and  𝑭𝟐 ⊆ 𝑯 -----(2) 

Only to prove that 𝑮 ∩ 𝑯 = ∅. 

Let 𝒂 ∈ 𝑮 ∩ 𝑯. 𝒂 ∈ 𝑮 ⇒ 𝒂 ∈ (𝒙 −
𝒓

𝟐
, 𝒙 +

𝒓

𝟐
), , for some 𝒙 ∈ 𝑭𝟏. 𝒂 ∈ 𝑯 ⇒ 𝒂 ∈ (𝒚 −

∈

𝟐
, 𝒚 +

∈

𝟐
), , for 

some 𝒚 ∈ 𝑭𝟐. |𝒙 − 𝒂|  <
𝒓

𝟐
  and |𝒚 − 𝒂|  <

∈

𝟐
. Hence |𝒙 − 𝒚| =  |𝒙 − 𝒂 + 𝒚 − 𝒂| ≤ |𝒙 − 𝒂| + |𝒚 − 𝒂|. 

As 𝒓 and ∈ . are real numbers, they are comparable. 

Case 1: Let 𝒓 <∈:  

Then|𝒙 − 𝒚| <∈ Hence 𝒙 ∈ (𝒚−∈, 𝒚+∈) By the choice of  ∈. (𝒚−∈, 𝒚+∈) ⊆ 𝑿 − 𝑭𝟏 Hence 𝒙 ∈

(𝒚−∈, 𝒚+∈) ⇒  𝒙 ∈ 𝑿 − 𝑭𝟏 ⇒  𝒙 ∉ 𝑭𝟏; which is contradiction.  

Case 2. Let ∈< 𝒓:  

Then|𝒙 − 𝒚| < 𝒓 Hence 𝒚 ∈ (𝒙 − 𝒓, 𝒙 + 𝒓) By the choice of  𝒓. (𝒙 − 𝒓, 𝒙 + 𝒓) ⊆ 𝑿 − 𝑭𝟐, will imply 𝒙 ∈

𝑿 − 𝑭𝟐 i.e 𝒚 ∉ 𝑭𝟐; which is contradiction.  

Hence 𝑮 ∩ 𝑯 = ∅. 

Thus given two disjoint closed sets 𝑭𝟏 and 𝑭𝟐 in ℝ , two disjoint open sets 𝑮 and 𝑯  such that 𝑭𝟏 ⊆ 𝑮 

and 𝑭𝟐 ⊆ 𝑯. Hence (𝑿, 𝝉𝒖)  is a normal space. 

2. Let 𝑿 = {𝒂, 𝒃, 𝒄}, 𝝉 = {∅, {𝒂}, {𝒃}, {𝒂, 𝒃}, 𝑿} Then(𝑿, 𝝉) is a topological space. The Family of closed 

sets 𝜿 is given by 𝜿 = {∅, {𝒃, 𝒄}, {𝒂, 𝒄}, {𝒂}, 𝑿}. 

Each pair of disjoint closed sets contains ∅. Hence the space is (𝑿, 𝝉) a normal space. 

 

Lemma 2.4 [17] : 𝑻𝟒 ⇒ 𝑻𝟑𝟐
𝟏 ⇒ 𝑻𝟑 ⇒ 𝑻𝟐 ⇒ 𝑻𝟏 ⇒ 𝑻𝟎 . 

Proof. (𝑻𝟒  ⇒  𝑻𝟑𝟐
𝟏). Let 𝑿 be 𝑻𝟒 . Let 𝒙 ∈  𝑿 and 𝑪 ⊆  𝑿 be closed. Since 𝑿  
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is 𝑻𝟏 {𝒙} is closed. Hence by Urysohn’s Lemma there exists a continuous function 𝒇 ∶  𝑿 →  [𝟎, 𝟏] where 

𝒇(𝒙)  =  𝟎 and 𝒇(𝑪)  =  𝟏. Therefore 𝑿 is completely regular. 

 

Theorem 2.27 [23] : A compact Hausdorff space is normal. 

Proof. Suppose 𝑿 is compact Hausdorff. We will first show that 𝑿 is regular. For this, suppose 𝑪 is a 

closed subset and 𝒙 ∉  𝑪. Since 𝑿 is Hausdorff, for any point 𝒚 ∈  𝑪 there are open sets 𝑼y and 𝑽y with 𝒙 

∈  𝑼y  , 𝒚 ∈  𝑽y and  𝑼y ∩ 𝑽y =  ∅. Since 𝑪 is closed, it is compact, and the sets 𝑽y cover it. Thus there are 

points 𝒚1, … , 𝒚n so that 𝑪 ⊂ 𝑽y1, ∪ … ∪ 𝑽yn, If we put 𝑼 = 𝑼y1  ∩ ...∩ 𝑼yn and 𝑽 = 𝑽y1, ∪ … ∪ 𝑽yn  then 

𝒙 ∈  𝑪, 𝑪 ⊂  𝑽, and 𝑼 ∩  𝑽 =  ∅ as desired. The remainder of the proof goes exactly the same way with 

𝑪 playing the role of 𝒙 and the other closed set playing the role of 𝑪. 

 

• Completely Normal Space or 𝑻𝟓 : 

 

Definition 2.41 [26] : A topological space is called completely normal if every subspace of 𝑿 is normal.  

A topological space is 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒍𝒚 𝒏𝒐𝒓𝒎𝒂𝒍 if and only if whenever 𝑨 and 𝑩 are subsets in 𝑿 with 𝑨 ∩

 𝑩 =  𝑨 ∩  𝑩 =  ∅, then there are disjoint open subsets 𝑼 ⊇  𝑨 and 𝑽 ⊇  𝑩. (Hint : To do necessity, 

consider the subspace 𝑿 \ (𝑨 ∩  𝑩) which contains both 𝑨 and 𝑩 and in which 𝑨 and B have disjoint 

closures. Sufficiency is easy.) 

Definition 2.42 [26] :  

(1) Arbitrary subspaces of a normal (resp. 𝐓𝟒) spaces need not be normal (resp.𝐓𝟒). But every closed 

subspace of a normal (resp. 𝐓𝟒) space is normal (resp. 𝐓𝟒) If every subspace of a topological space is 

normal, then 𝑿 is said to be 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒍𝒚 𝒏𝒐𝒓𝒎𝒂𝒍.  

(2) The closed continuous image of a normal (resp.𝐓𝟒) space is normal (resp. 𝐓𝟒). 

 

• Urysohn’s Characterisation of Normality - Urysohn’s Lemma or 𝑻𝟐𝟐
𝟏 : 

 

Definition 2.43 [26] : Let 𝑿 be a topological space. Then 𝑿 is 𝒏𝒐𝒓𝒎𝒂𝒍 if and only if whenever 𝑨 and 𝑩 

are closed subsets in 𝑿, there is a continuous function 𝒇 ∶  𝑿 →  [𝟎, 𝟏] such that 𝒇 (𝑨)  =  𝟎 and 𝒇 (𝑩)  =

 𝟏 . In particular, every 𝑻𝟒 space is Tychonoff. (Remark : Such a function is called a Urysohn function . 

Note that it is nowhere claimed, nor, is it true, that 𝒇 is 𝟎 only on 𝑨 and 𝟏 only on 𝑩. It other words we 

merely claim that 𝑨 ⊆  𝒇−𝟏(𝟎) and ⊆ 𝒇−𝟏 (𝟏) . There may be points outside 𝑨 ∪  𝑩 at which 𝒇 is either 

𝟎 or 𝟏). 

 

• Tietze’s Characterisation of  Normality - Tietze’s (also known as the Tietze–Urysohn–Brouwer 

extension theorem states that continuous functions on a closed subset of a normal topological space can 

be extended to the entire space, preserving boundedness if necessary.) 

 

2.5 Mildly Normal Space 

 

https://en.wikipedia.org/wiki/Continuous_function_(topology)
https://en.wikipedia.org/wiki/Closed_subset
https://en.wikipedia.org/wiki/Normal_space
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Definition 2.44 [14]: A topological space 𝑿 is called 𝒎𝒊𝒍𝒅𝒍𝒚 𝒏𝒐𝒓𝒎𝒂𝒍 (𝐜𝐚𝐥𝐥𝐞𝐝 𝐚𝐥𝐬𝐨 𝒌 − 𝒏𝒐𝒓𝒎𝒂𝒍) if 

for any two disjoint regularly closed subsets 𝑨 and B of 𝑿, there exist two open disjoint subsets 𝑼 and 𝑽 

of 𝑿 such that 𝑨 ⊆  𝑼 and 𝑩 ⊆  𝑽 . 

 

Definition 2.45 [28] : A topological space 𝑿 is called 𝒏𝒆𝒂𝒓𝒍𝒚  𝒄𝒐𝒎𝒑𝒂𝒄𝒕 if, for each open cover 𝓾 of 𝑿, 

there exists a finite subcollection 𝓻 ⊂  𝓾  such that ∪  {𝑰𝒏𝒕(𝑪𝒍(𝑽 )) | 𝑽 ∈  𝓻 }  =  𝑿. 

 

• Almost Continuous in Topology  

 

Definition 2.46 [29] : A mapping 𝒇: 𝑿 → 𝒀 is said to be 𝒂𝒍𝒎𝒐𝒔𝒕 –  𝒐𝒑𝒆𝒏 if the image of every  

𝒓𝒆𝒈𝒖𝒍𝒂𝒓 –  𝒐𝒑𝒆𝒏 subset of 𝑿 is an open subset of 𝒀. 

 

Definition 2.47 [29] : A mapping 𝒇: 𝑿 → 𝒀 is said to be 𝒂𝒍𝒎𝒐𝒔𝒕 –  𝒄𝒍𝒐𝒔𝒆𝒅 if the image of every  

𝒓𝒆𝒈𝒖𝒍𝒂𝒓 –  𝒄𝒍𝒐𝒔𝒆𝒅 subset of 𝑿 is an closed subset of 𝒀. 

 

Definition 2.48 [30] : A function 𝒇: 𝑿 → 𝒀 is called 𝒂𝒍𝒎𝒐𝒔𝒕 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 if the inverse images of 

regularly open sets of 𝒀 are open in 𝑿. 

 

Definition 2.49 [16] : A function 𝒇 ∶  𝑿 →  𝒀 is called an 𝒂𝒍𝒎𝒐𝒔𝒕 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 if for each 𝒙 ∈  𝑿 and 

for each regular open set 𝑽 containing 𝒇(𝒙), there exists an open set 𝑼 containing 𝒙 such that 𝒇(𝑼) ⊆  𝑽. 

 

Lemma 2.5 [31] : For a mapping  𝒇: 𝑿 → 𝒀 following are equivalent : 

(1) 𝒇 is almost continuous 

(2) Inverse image of each regular open subset of 𝒀 is open subset of 𝑿. 

(3) Inverse image of each regular closed subset of 𝒀 is closed subset of 𝑿. 

 

Theorem 2.28 [29] : Let 𝒇 map 𝑿 into 𝒀 and let 𝒙 be a point of 𝑿. If there exists a neighbourhood 𝑵 of 𝒙 

such that the restriction of 𝒇 to 𝑵 is almost-continuous at 𝒙, then 𝒇 is almost-continuous at 𝒙. 

Proof. Let 𝑼 be any regularly-open set containing 𝒇(𝒙). Since 𝒇/𝑵 is almost continuous at 𝒙, therefore, 

there is an open set 𝑽𝟏 such that 𝒙 ∈  𝑵 ∩ 𝑽𝟏 and  𝒇(𝑵 ∩ 𝑽𝟏 ) ⊂ 𝑼. The result now follows from the 

fact that 𝑵 ∩ 𝑽𝟏 is a neighbourhood of x . 

 

Definition 2.50 [29] : A mapping  𝒇 ∶  𝑿 →  𝒀 is said to be 𝒂𝒍𝒎𝒐𝒔𝒕 − 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 at a point ∈  𝑿 , if 

for neighbourhood 𝑴 of 𝒇(𝒙) there is a neighbourhood 𝑵 of 𝒙 such that 𝒇(𝑵) ⊂ 𝑴−𝟎 . It is easy to see 

that the neighbourhood 𝑴 and 𝑵 can be replaced by open neighbourhood. 

 

Definition 2.51 [32] : The function 𝒇 ∶  𝑿 →  𝒀 is almost continuous at 𝒙𝟎  ∈  𝑿 if and only if for each 

open 𝑽 ⊂  𝒀 containing 𝒇(𝒙𝒐), 𝑪𝒍(𝒇−𝟏(𝑽)) is a neighborhood of 𝒙𝟎 . Iff is almost continuous at each 

point of 𝑿, then 𝒇 is called almost continuous. 

 

Definition 2.52 [32] : The function 𝒇 ∶  𝑿 →  𝒀 is almost continuous if and only if given any open set 𝑾 

containing the graph of 𝒇 , there exists a continuous 𝒈 ∶  𝑿 →  𝒀 such that the graph of g is a subset of 𝑾. 
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Corollary 2.3 [33] : A function 𝒇 ∶  𝑿 →  𝒀 (almost) continuous if and only if 𝒇(𝑪𝒍 𝑼) ⊆ 𝑪𝒍 𝒇(𝑼) for 

each (open) subset 𝑼 of 𝑿 

 

Lemma 2.6 [32] : Let 𝒇 ∶  𝑿 →  𝒀 be a.c. at 𝒙𝟎  ∈  𝑿 where 𝑿 is 𝑻𝟏 and 𝒙𝟎  ∈  𝑿 is a limit point of 𝑿. 

Thenfor everypair of open sets 𝑼 ⊂ 𝑿 and 𝑽 ⊂  𝒀 containing 𝒙𝟎 and 𝒇(𝒙𝟎), respectively, there exists an 

𝒙 ∈  𝑼\ {𝒙𝟎} such that 𝒇(𝑿) ∈ 𝑽. 

Proof. Assume the conclusion false. Then there exist open sets 𝑼𝟏 and 𝑽𝟏containing 𝒙𝟎 and 𝒇(𝒙𝟎), 

respectively, such that 𝑼𝟏  ∩  𝒇−𝟏(𝑽𝟏) = {𝒙𝟎}. Thus no point of 𝑼𝟏 is a limit point of 𝒇−𝟏(𝑽𝟏) in the 𝐓𝟏 

space 𝑿. Therefore 𝑼𝟏  ∩  𝑪𝒍 (𝒇−𝟏(𝑽𝟏)) =  {𝒙𝟎}  which contradicts the hypothesis that 𝒇 is a.c. at 𝒙𝟎 . 

 

Theorem 2.29 [29] : If 𝒇 is an open continuous mapping of 𝑿 onto 𝒀 and if 𝒈 is a mapping of 𝒀 into 𝒁, 

then 𝒈𝒐𝒇 is almost-continuous iff 𝒈 is almost-continuous . 

Proof. First, let 𝒈𝒐𝒇 be almost-continuous. Let 𝑨 be a regularly-open subset of  𝒁. Since 𝒈𝒐𝒇 is almost-

continuous, therefore (𝒈𝒐𝒇)−𝟏(𝑨) is open, that is, 𝒇−𝟏(𝒈−𝟏(𝑨)) is open. Also, 𝒇 is open. Therefore 

𝒇[𝒇−𝟏(𝒈−𝟏(𝑨))] is open, that is, 𝒈−𝟏(𝑨) is open and consequently 𝒈 is almost continuous. Now, let 𝒈 be 

almost-continuous and let 𝑺 be any regularly-open subset of  𝒁. Then 𝒈−𝟏(𝑨) is an open subset of 𝒀. 

Since 𝒇 is continuous, therefore 𝒇−𝟏(𝒈−𝟏(𝑨)) is an open subset of 𝑿. (i.e.) (𝒈𝒐𝒇)−𝟏(𝑨) is an open subset 

of 𝑿. Hence 𝒈𝒐𝒇 is almost-continuous. 

 

Theorem 2.29 [29] : If 𝒇 is a mapping of 𝑿 into 𝒀 and 𝑿 = 𝑿𝟏 𝑼 𝑿𝟐 , where 𝑿𝟏 and 𝑿𝟐, are closed and 

𝒇\𝑿𝟏 and 𝒇\𝑿𝟐 are almost-continuous, then 𝒇 is almost continuous. 

Proof. Let 𝑨 be a regularly-closed subset of 𝒀. Then, since 𝒇\𝑿𝟏 and 𝒇\𝑿𝟐 are both almost-continuous, 

therefore if (𝒇\𝑿𝟏)−𝟏(𝑨) and (𝒇\𝑿𝟐)−𝟏(𝑨) are both closed 𝑿𝟏 and 𝑿𝟐 respectively. Since 𝑿𝟏 and 𝑿𝟐 are 

closed subsets of 𝑿, therefore (𝒇\𝑿𝟏)−𝟏(𝑨) and (𝒇\𝑿𝟐)−𝟏(𝑨) are also closed subsets of 𝑿. Also, 

𝒇−𝟏(𝑨) =  (𝒇\𝑿𝟏)−𝟏(𝑨) ∪ (𝒇\𝑿𝟐)−𝟏(𝑨). Thus 𝒇−𝟏(𝑨) is the union of two closed sets and is therefore 

closed. Hence f is almost-continuous . 

 

Theorem 2.30 [29] : If 𝒇 is an almost-continuous, closed mapping of regular space 𝑿 onto a space 𝒀 such 

that 𝒇−𝟏(𝒚) is compact for each point 𝒚 ∈ 𝒀, then 𝒀 is almost-regular . 

Proof. Let 𝑨 be a regularly-closed subset of 𝒀 and suppose that 𝒚 ∉ 𝑨. Then, 𝒇−𝟏(𝒚) ∩ 𝒇−𝟏(𝑨) = ∅ , 

𝒇−𝟏(𝑨) is closed by the almost continuity of f and 𝒇−𝟏(𝒚)  is compact . Since 𝑿 is regular, there exist 

disjoint open sets 𝑮 and 𝑯 such that 𝒇−𝟏(𝑨) ⊂ 𝑮, 𝒇−𝟏(𝒚) ⊂ 𝑯. Now, let 𝑷 = {𝒛: 𝒇−𝟏(𝒛) ⊂  𝑮} and 𝑸𝒚= 

{𝒛 :𝒇−𝟏(𝒛)  ⊂ H }. Then, 𝒚 ∈ 𝑷, 𝑨 ⊂ 𝑸, 𝑷 ∩ 𝑸 = ∅. Also since 𝒇 is closed, therefore 𝑷 and 𝑸 are open. 

Hence 𝒀 is almost-regular . 

3. A Space Properties Under The Mapping  

 

Definition 3.1. Let (𝑿, 𝝉) is almost regular space. If ∀𝑨 ⊂ 𝑿, 𝒙 ∉ 𝑨 , such that 𝑨 ⊂ 𝑼, 𝒙 ∈ 𝑽, 𝑼 ∩ 𝑽 =

 ∅. and 𝑨 is compact. then (𝑿, 𝝉) is almost compact regular space. 

 

Theorem 3.1. Let  𝒇: 𝑿 → 𝒀  is a mapping from topological space 𝑿 in to topological space 𝒀. If 𝑿 is 
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compact regular space. and 𝒇 is continuous mapping. Then 𝒇(𝑨) is almost compact regular space in 𝒀. 

Proof: Assume 𝒇: 𝑿 → 𝒀 is a continuous mapping in to 𝒀 with 𝒇|𝑨 ∶  𝑨 → 𝒇(𝑨) and (by  

Definition 2.31) (by Theorem 2.21) then(𝑨, 𝝉𝑨) ≅ (𝒇(𝑨), 𝝉𝒇(𝑨)) such that 𝝉 = {𝑨𝒊 | 𝑨𝒊  ⊂ 𝑿 } ; 𝑨𝒊 ∈ 𝝉 ⇒ 

𝑨𝒊 ∈  𝝉 ⇒ 𝑨 is closed (𝑨 is regular space) and 𝑨 = ∪ 𝑨𝒊,  𝑨𝒊 ∈  𝝉𝑨. and (by Definition Proof 2.16) 

Then 𝑿 is compact regular, and (by Theorem 2.24) (𝑿 , 𝝉 )  is said to be almost regular if for each 𝝉 - 

regularly closed subset 𝑨 of 𝑿 and each point 𝒙 ∉  𝑨 there are disjoint 𝝉𝒔 - open sets 𝑼 and 𝑽 such that 

𝑨 ⊂  𝑼 and 𝒙 ∈  𝑽, and 𝑼 ∩ 𝑽 =  ∅ ⇒ 𝑼 is compact and 𝑽 also compact such that 𝑼 =  ∪ 𝑼𝒊; 𝑼𝒊∈𝝉𝒔, 

𝑽 =∪ 𝑽𝒊 ; 𝑽𝒊∈𝝉𝒔 

∴ 𝑨 is almost compact regular space in 𝑿, then 𝒇(𝑨) is almost compact regular space in 𝒀. ∎ 

 

Definition 3.2. Let (𝑿, 𝝉)is almost regular space ∀𝑨 ⊂  𝑿, 𝒙 ∉  𝑨, 𝑨 ⊂ 𝑼, 𝒙 ∉ 𝑨 but 𝒙 ∈ 𝑽such that 𝑼 ∩

𝑽 = ∅  and  𝑭 is closed subset in 𝑿. Then (𝑿, 𝝉)is almost completely compact regular space. 

 

Theorem 3.2. Let  𝒇: 𝑿 → 𝐴𝑐  is a mapping from topological space 𝑿 in to 𝑨𝒄 in topological space 𝒀. If 𝑿 

is regular compact space. And 𝒇 is a continuous mapping. Then 𝒇(𝑭) is almost completely compact 

regular space in 𝒀. 

Proof: Assume𝒇: 𝑿 → 𝑨 is a continuous mapping in to 𝒀 with 𝒇/𝑭: 𝑭 → 𝒇(𝑭)and (by Definition 2.31) 

(and Theorem 2.2) then (𝑨, 𝝉𝑭) ≅ (𝒇(𝑭), 𝝉𝒇(𝑭)) such that 𝝉 = {𝑭𝒊| 𝑭𝒊  ⊂ 𝑿 } ; 𝑭𝒊 ∈ 𝝉 ⇔ 𝑭𝒊 is closed. (𝑭 

is regular space)  and ( by Theorem 2.8.a) and (by Definition Proof 2.16). 𝑿 is compact regular of closed 

sets such that 𝑭𝒊 = ∪ 𝑭𝒊,  𝑭𝒊 ∈  𝝉𝑭. and (by Definition 2.37) if for each closed (non-empty) subset 𝑭of 

𝑿 and each point 𝒙 ∈  𝑿 \𝑭, ∃ 𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒐𝒖𝒔 𝒇 ∶  𝑿 →  [𝟎, 𝟏] such that 𝒇 (𝒙) = {𝟏} and 𝒇 (𝑭)  =  𝟎. 

Then (𝑿, 𝝉)  is completely regular. and 𝑭 ∩ {𝒙} =  ∅ therefore 𝑭 is compact such that 𝑭 = ∪ 𝑭𝒊 ; 𝑭𝒊 ϵ 

𝝉,{𝒙} = ∪ {𝒙𝒊} , 𝒙𝒊 ϵ 𝑿.  

∴ 𝑭 is almost completely compact regular space in 𝑿, then 𝒇(𝑭) is almost completely compact regular 

space in 𝒀.  ∎ 

 

Definition 3.3. Let (𝑿, 𝝉)is regular space such that if  ∀𝑭 ⊂ 𝑿, 𝒙 ∉ 𝑭, 𝑯 ⊂ 𝝉 , 𝑭 ⊂ 𝑯 , 𝒙 ∈ 𝑮 , 𝑮 ∩ 𝑯 =

 ∅.  and 𝑭 is normal such that 𝑭0 and 𝑭1 of 𝑿, 𝑭0  ⊆  𝑮, 𝑭1⊆  𝑯, 𝑮 ∩  𝑯 =  ∅. Then (𝑿, 𝝉) is normal 

regular space. 

 

Theorem 3.3. Let  𝒇: 𝑿 → 𝒀  is a mapping from topological space 𝑿 in to topological space 𝒀. If 𝑿 is 

regular space. and for any two disjoint closed subsetsone of which is regularly closed subsets. Then 𝒇 is 

normal regular space in 𝒀. 

Proof: Assume 𝒇: 𝑿 → 𝒀 is a continuous mapping in to 𝒀 with 𝒇/𝑭: 𝑭 → 𝒇(𝑭) and (by Definition 2.31) 

(and by Theorem 2.21) then (𝑭, 𝝉𝑭) ≅ (𝒇(𝑭), 𝝉𝒇(𝑭)) such that 𝝉 = {𝑭𝒊 | 𝑭𝒊  ⊂ 𝑿 } ; 𝑭𝒊 ∈ 𝝉 ⇔ 𝑭𝒊 is 

closed. Then 𝑿 is regular, and (by Definition 2.9) and (by Definition 2.37) for each two disjoint closed 

(non-empty) subsets 𝑭0 and 𝑭1 of 𝑿, ∃ 𝑮, 𝑯 ∈  𝝉 such that 𝑭0  ⊆  𝑮, 𝑭1⊆  𝑯, 𝑮 ∩  𝑯 =  ∅ ⇒ 𝑮 is normal 

compact space and 𝑯 also normal compact space such that𝑭𝟎 ⊂ 𝑮 =  ∪ ( 𝑭𝟎𝒊
⊂  𝑮𝒊); 𝑭𝟎𝒊

⊂ 𝑮𝒊 ∈   𝝉, 

𝑭𝟏  ⊂ 𝑯 = ∪ (  𝑭𝟏𝒊 ⊂  𝑯𝒊); 𝑭𝟏𝒊 ⊂   𝑯𝒊 ∈  𝝉.therefore 𝑭0  and 𝑭1  are normal regular in 𝑿, also 𝒇(𝑭𝟎) and 

𝒇(𝑭𝟏) is normal regular in 𝒀.  ∎ 

 

Definition 3.4. Let (𝑿, 𝝉)is regular space such that if  ∀𝑭 ⊂ 𝑿, 𝒙 ∉ 𝑭, 𝑯 ⊂ 𝝉 , 𝑭 ⊂ 𝑯 , 𝒙 ∈ 𝑮 , 𝑮 ∩ 𝑯 =

 ∅. and 𝑿 is compact space such that every open covering of 𝑿 has a finite subcover.and 𝑭 is normal such 
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that 𝑭0 and 𝑭1 of 𝑿, 𝑭0  ⊆  𝑮, 𝑭1⊆  𝑯, 𝑮 ∩  𝑯 =  ∅. Then (𝑿, 𝝉)is normal regular space. 

 

Theorem 3.4. Let  𝒇: 𝑿 → 𝒀  is a mapping from topological space 𝑿 in to topological space 𝒀. If 𝑿 is 

regular compact space. and for any two disjoint closed subsetsone of which is regularly closed subsets. 

Then 𝒇 is normal compact regular space in 𝒀. 

Proof: Assume 𝒇: 𝑿 → 𝒀 is a continuous mapping in to 𝒀 with 𝒇/𝑭: 𝑭 → 𝒇(𝑭) and (by Definition 2.31) 

(and by Theorem 2.21) then (𝑭, 𝝉𝑭) ≅ (𝒇(𝑭), 𝝉𝒇(𝑭)) such that 𝝉 = {𝑭𝒊 | 𝑭𝒊  ⊂ 𝑿 } ; 𝑭𝒊 ∈ 𝝉⇔𝑭𝒊 is closed. 

and (by Definition Proof 2.16). Then 𝑿 is compact regular space, and (by Theorem 2.19)  ,and (by 

Definition 2.37) or each two disjoint closed (non-empty) subsets 𝑭0 and 𝑭1 of 𝑿, ∃ 𝑮, 𝑯 ∈  𝝉 such that 𝑭0  

⊆  𝑮, 𝑭1⊆  𝑯, 𝑮 ∩  𝑯 =  ∅ ⇒ 𝑮 is normal and 𝑯 also normal such that 𝑭𝟎 ⊂ 𝑮 =  ∪ ( 𝑭𝟎𝒊
⊂

 𝑮𝒊 ) ;  𝑭𝟎𝒊
⊂ 𝑮𝒊 ∈   𝝉, 𝑭𝟏  ⊂ 𝑯 = ∪ (  𝑭𝟏𝒊 ⊂  𝑯𝒊); 𝑭𝟏𝒊 ⊂   𝑯𝒊 ∈  𝝉. 

∴ 𝑭0  and 𝑭1  are normal compact  regular space in 𝑿, also 𝒇(𝑭𝟎)and 𝒇(𝑭𝟏) is normal compact  regular 

space in 𝒀.∎ 

 

Definition 3.5. Let (𝑿, 𝝉)is almost regular space such that ∀𝑵 ⊂ 𝑿, 𝒙 ∉ 𝑵, and ∃ 𝑪, 𝑫 ∈  𝝉𝑿 ⇒ 𝑵𝟏 ⊂ 𝑪 

and 𝑵𝟐 ⊂ 𝑫. and 𝑪 ∩ 𝑫 =  ∅. andfor each two disjoint closed (non-empty) subsets. Then (𝑿, 𝝉)is almost 

normal compact regular space. 

 

Theorem 3.5. Let  𝒇: 𝑿 → 𝒀  is a mapping from topological space 𝑿 in to topological space 𝒀. If 𝑿 is 

regular compact space. and for any two disjoint closed subsets one of which is regularly closed subsets. 

Then 𝒇(𝑵) is almost normal compact regular space in 𝒀. 

Proof: Assume 𝒇: 𝑿 → 𝒀 is a continuous mapping in to 𝒀 with 𝒇/𝑵: 𝑵 → 𝒇(𝑵) and (by Definition 2.31) 

(and by Theorem 2.21) then (𝑵, 𝝉𝑵) ≅ (𝒇(𝑵), 𝝉𝒇(𝑵)) such that𝝉 = { 𝑵𝒊 | 𝑵𝒊  ⊂ 𝑿 } ; 𝑵𝒊 ∈ 𝝉 ⇔ 𝑵𝒊 is 

closed. (𝑵 is regular space) and 𝑵 = ∪ 𝑵𝒊,  𝑵𝒊 ∈  𝝉𝑵. and (by Theorem 2.8.a) and (by Definition Proof 

2.16). Then 𝑿 is compact regular of closed sets, and (by Definition 2.37) if for any two disjoint closed 

subsets 𝑵𝟏 and 𝑵𝟐 of 𝑿 one of which is regularly closed, there exist two open disjoint subsets 𝑪 and 𝑫 of 

𝑿 such that 𝑵𝟏 ⊂ 𝑪 and 𝑵𝟐 ⊂ 𝑫. And 𝑪 ∩ 𝑫 =  ∅ ⇒ 𝑪 is normal and 𝑫 also normal such that 𝑵𝟏 ⊂

𝑪 =  ∪ ( 𝑵𝟏𝒊 ⊂  𝑪𝒊); 𝑵𝒊 ⊂ 𝑪𝒊 ∈   𝝉, 𝑵𝟐 ⊂ 𝑫 = ∪ (  𝑵𝟐𝒊 ⊂  𝑫𝒊); 𝑵𝟐𝒊 ⊂   𝑫𝒊 ∈   𝝉. and (by Definition 3.4) 

therefore 𝑵𝟏 and 𝑵𝟐 are almost normal regular in 𝑿, also 𝒇(𝑵𝟏) and 𝒇(𝑵𝟐) is almost normal compact 

regular in 𝒀.  ∎ 

 

Definition 3.6. Let (𝑿, 𝝉)is almost compact regular space such that ∀𝑺 ⊂ 𝑿, 𝒙 ∉ 𝑺. And that 𝒇 is a 

continuous mapping. Then (𝑿, 𝝉) is almost continuous compact regular space. 

 

Theorem 3.6. Let  𝒇: 𝑿 → 𝒀  is a mapping from topological space 𝑿 in to topological space 𝒀. If 𝑿 is 

regular compact space. and 𝒇 is a continuous mapping at 𝒙0. Then 𝒇(𝑺) is almost continuous compact 

regular space in 𝒀. 

Proof: Assume 𝒇: 𝑿 → 𝒀 is a continuous mapping in to 𝒀 with 𝒇/𝑺: 𝑺 → 𝒇(𝑺) and (by Definition 2.31) 

(and by Theorem 2.21) then (𝑺, 𝝉𝑺) ≅ (𝒇(𝑺), 𝝉𝒇(𝑺)) such that 𝝉 = {𝑺𝒊| 𝑺i ⊂ 𝑿 } ; 𝑺i ∈ 𝝉 ⇔ 𝑺i  is closed. (𝑺 

is regular space) and 𝑺 = ∪ 𝐒i , 𝑺𝒊 ∈  𝝉S . and (by Definition Proof 2.16). Then 𝑿 is compact regular. and 

(by Definition 2.21) Then 𝑿 is almost continuous compact regular space. And (by Definition 2.37) if 𝒇 is 

a continuous mapping at 𝒙0 If and only if for every open set 𝑽 containing 𝒇(𝒙0) in 𝒀. There exist an open 

set 𝑼 in 𝑿 such that  𝒙 ∈ 𝑼 ⊆ 𝒇−𝟏(𝑺). then (by Definition 2.37) if the inverse images of regularly open 
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sets (if 𝑺 = 𝒊𝒏𝒕( �̅� ))(resp. close) of 𝒀 are open in 𝑿 (resp. close) Then 𝒇(𝒙𝟎) is continuous mapping. 

and (by definition continuous compact regular space) Then 𝒇(𝑺) is almost continuous compact regular 

space.  ∎ 

 

Definition 3.7.  Let (𝑿, 𝝉)is almost regular space such that ∀𝑴 ⊂ 𝑿, 𝒙 ∉ 𝑴. And for any two disjoint 

regularly closed subsets. Then (𝑿, 𝝉) is almost mildly normal compact regular space. 

 

Theorem 3.7. Let  𝒇: 𝑿 → 𝒀  is a mapping from topological space 𝑿 in to topological space 𝒀. If 𝑿 is 

regular compact space. and for any two disjoint regularly closed subsets. Then 𝒇(𝑴) is almost mildly 

normal compact regular space in 𝒀. 

Proof: Assume𝒇: 𝑿 → 𝒀 is a continuous mapping in to 𝒀 with 𝒇 ∶  𝑴 → 𝒇(𝑴) and (by Definition 2.31) 

(and by Theorem 2.21) then (𝑴, 𝝉𝑴) ≅ (𝒇(𝑴), 𝝉𝒇(𝑴)) such that 𝝉 = {𝑴𝒊| 𝑴𝒊 ⊂ 𝑿 } ; 𝑴𝒊 ∈ 𝝉 ⇔ 𝑴𝒊 is 

closed. (𝑴 is regular space) and 𝑴 = ∪ 𝑴𝒊,  𝑴𝒊 ∈  𝝉M . and (by Theorem 2.17.a) and (by Definition 

Proof 2.6) . Then 𝑿 is compact regular of closed sets, and (by Definition 2.43) if for any two disjoint 

regularly closed subsets 𝑴𝟏 and 𝑴𝟐 of 𝑿, there exist two open disjoint subsets 𝑼 and 𝑽 of 𝑿 such that 

𝑴𝟏 ⊆ 𝑼 and 𝑴𝟐 ⊆ 𝑽 and 𝑼 ∩ 𝑽 = ∅ ⇒ 𝑼 and 𝑽 are mildly normal such that 𝑴𝟏 ⊂ 𝐔 = ∪ (𝑴𝟏𝒊 ⊂

 𝑼𝒊); 𝑴𝟏𝒊 ⊂ 𝑼𝒊 ∈ 𝛕, 𝑴𝟐 ⊂ 𝑽 =∪ (𝑴𝟐𝒊 ⊂ 𝑽𝒊);𝑴𝟐𝒊 ⊂   𝑽𝒊 ∈   𝛕. 

∴𝑴𝟏 and 𝑴𝟐 are almost mildly normal compact regular space in 𝑿, also 𝒇(𝑴𝟏) and 𝒇(𝑴𝟐) are almost 

mildly normal compact regular space in 𝐘.  ∎ 

4 . Conclussion 

We have already encountered the notion of the weak topology on a given set such that a family of 

functions is continuous (cf. Definition 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 

3.7). The weakly open sets are precisely the class of all arbitrary unions of finite intersections of sets of 

form 𝒇−𝟏 (𝑼) where 𝒇 ∈ 𝑽∗ and 𝑼 is an open set in ℝ (or ℂ, in the case of complex Banach spaces). 

4.1 Future Studies 

In the end, we suggest some problems for future studies. 

1. We can use the concept of pseudocompact to define a new continuous topological space. 

2. Another concept can be used to infer a new space, which is the continuum. 

3. Shrinkability and retractability can be used together to define the continuous recoil area, when a lid 

closed with and retractable, is contractible.” 
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