L^{1}-Convergence of Modified Trignometric Sum

Turkish Online Journal of Qualitative Inquiry (TOJQI) Volume 12, Issue 8, July 2021: 3470-3476

L^{1}-Convergence of Modified Trignometric Sum Under Some Classes of Coefficients and Its Generalization

Sakshi ${ }^{1}$, Karanvir Singh ${ }^{2}$
${ }^{1}$ Research Scholar, Department of Mathematics, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab, India
sakshi.bfcmt@gmail.com
${ }^{2}$ Research Supervisor
Department of Mathematics, Maharaja Ranjit Singh Punjab
Technical University, Bathinda, Punjab, India
karanvir@mrsptu.ac.in

Abstract

In this paper we introduce new modified cosine sums and thenusing the sums we study the necessary and sufficient condition for L^{1} - Convergence of trigonometric cosine series underclass $\mathrm{S} \& \mathrm{C}$. Also we do generalization of this modified sum and proved the necessary and sufficient condition for the L^{1} convergence of this generalized sum.

2010 Mathematics subject classification: 42A20, 42A32.

Key words and phrases: L ${ }^{1}$-convergence ,Fezer Kernel, modifiedcosine sums.

1. Introduction

Let

$$
\begin{equation*}
\frac{a 0}{2}+\sum_{k=1}^{\infty} a_{\mathrm{k}} \operatorname{coskx} \tag{1.1}
\end{equation*}
$$

be the cosine series.and the partial sum of (1.1) be denoted by $\mathrm{S}_{\mathrm{n}}(\mathrm{x})$ and $\mathrm{f}(\mathrm{x})=\lim _{n \rightarrow \infty} S_{\mathrm{n}}(\mathrm{x})$.

The integrabilty and L^{1} convergence of trignometric series is studied by different authors time to time and if we go back to the history of L^{1} convergence of above trignometric series, very first time, it was studied by Young[19] and Kolmogorov[10] and proving the integrability of cosine series by taking the classes of convex and quasi- convex sequences respectively.

Definition 1. [17,18] : A sequence a_{k} is said to belong to class S ifa $\mathrm{a}_{\mathrm{k}}=\mathrm{o}(1), \mathrm{k} \rightarrow \infty$ and there exist a sequence A_{k} such that (a) $\mathrm{A}_{\mathrm{k}} \downarrow 0, \mathrm{k} \rightarrow \infty$ (b) $\sum_{k=0}^{\infty} A_{\mathrm{k}}<\infty$ (c) $\left|\mathrm{a}_{\mathrm{k}}\right| \leq \mathrm{A}_{\mathrm{k}}$

Definition 2. A null sequence ak belongs to the class Cr; $\mathrm{r}=0 ; 1 ; 2 ; 3 ; \ldots \ldots$. . if for every $\varepsilon>0 ; \Delta \mathrm{a}$ >0 such that $\int_{0}^{\pi}\left|\sum_{k=n}^{\infty} \Delta \mathrm{a}_{\mathrm{k}} \mathrm{D}_{\mathrm{k}}{ }^{\mathrm{r}}(\mathrm{x})\right| \mathrm{dx}<\varepsilon$, for all n . where $D_{k}{ }^{r}(x)$ is the r-th derivative of Drichlet Kernel. Whenr $=0$ we denoteCr $=$ Ci.e. A null sequence an belongs to the class C if for every $\varepsilon>0$, there existsa $\Delta(\varepsilon)>0$, independent of n, such that
$\int_{0}^{\delta}\left|\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}(x)\right| d x<\varepsilon$, for all $n \geq 0$

Many authors by studying the behaviour of L1 convergence of above said trignometric series proved the same necessary and sufficient condition, under different classes of coefficients, which is as follows:
$\mathrm{a}_{\mathrm{n}} \log \mathrm{n}=\mathrm{o}(1) ; \mathrm{n} \rightarrow \infty$ iff $\left\|\mathrm{f}-\mathrm{S}_{\mathrm{n}}\right\|=\mathrm{o}(1) ; \mathrm{n} \rightarrow \infty$

So many modifications are done by many authors while proving the L1 convergence of cosine series . although they introduced so many classes to prove the result(*).The famous authors like Rees and C.V. Stanojevic [14], Kumari and Ram [12], K. Kaur, Bhatia and Ram [9] , J. Kaur [8], Braha [3] and Krasniqi [11], proved the necessary and sufficient condition for L^{1} convergence by introducing modified sine and cosine sums.

Rees and Stanojevi'c [14] introduced following modified cosine sums
$\mathrm{g}_{\mathrm{n}}(\mathrm{x})=\frac{1}{2} \sum_{k=0}^{\infty} \Delta a_{\mathrm{k}}+\sum_{k=1}^{n} \sum_{j=k}^{n}\left(\Delta a_{\mathrm{j}}\right) \cos \mathrm{kx}$

Following are the results which are proved by Garett and Stanojevic' by considering the class C [6] of bounded variation Garett and Stanojevic' proved the following Result :

Theorem A. If a_{k} belong to the class C and is of bounded variation, then $\left\|\mathrm{f}-\mathrm{g}_{\mathrm{n}}\right\|=\mathrm{o}(1) ; \mathrm{n} \rightarrow \infty$

By considering the class S , Ram proved the folowing theorem:

Kumari and Ram introduced modified cosine sums as
$\mathrm{h}_{\mathrm{n}}(\mathrm{x})=\frac{a 0}{2}+\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta\left(\frac{a j}{j}\right) k \cos k x$
and studied their L1-convergence under the condition that coefficient sequence ak belong to the class S.

Garret and Stanojevic [1] have introduced modified cosine sums
$\mathrm{f}_{\mathrm{n}}(\mathrm{x})=\frac{1}{2} \sum_{k=0}^{n} \Delta a_{\mathrm{k}}+\sum_{k=1}^{n} \sum_{j=k}^{n}\left(\Delta a_{\mathrm{j}}\right) \cos \mathrm{kx}$

In this paper, we introduce new modified cosine sum and will study the L^{1} convergence of this modified sum under the class S and C as follows:

$$
\begin{aligned}
\mathrm{g}_{\mathrm{n}}(\mathrm{x}) & =\frac{a_{\mathrm{o}}}{2}+\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta\left(\frac{a_{j}}{j^{2}}\right) \mathrm{k}^{2} \cos \mathrm{kx} \\
& =\frac{a 0}{2}+\sum_{k=1}^{n}\left(\frac{a_{k}}{k^{2}}-\frac{a_{(k+1)}}{(k+1)^{2}}+\frac{a_{n}}{n^{2}}-\frac{a_{n+1}}{(n+1)^{2}}\right) k^{2} \cos k x \\
& =\frac{a_{0}}{2}+\sum_{k=1}^{n} a_{k} \operatorname{Cos} k x-\frac{a_{n+1}}{(n+1)^{2}} \sum_{k=1}^{n} k^{2} \cos k x \\
& =\mathrm{S}_{\mathrm{n}}(\mathrm{X})-\frac{a_{n+1}}{(n+1)^{2}} \sum_{k=1}^{n} k^{2} \cos k x \\
& =\mathrm{S}_{\mathrm{n}}(\mathrm{X})-\frac{a_{n+1}}{(n+1)^{2}}\left(-D_{n}^{\prime \prime}(x)\right) \\
& =\mathrm{S}_{\mathrm{n}}(\mathrm{X})+\frac{a_{n+1}}{(n+1)^{2}}\left(D_{n}^{\prime \prime}(x)\right)
\end{aligned}
$$

Under L^{1} convergence, we will prove the following Main results:
Main Result 1: If a_{k} belongs to the class S, then $\left\|g-g_{n}\right\|=o(1)$ as $n \rightarrow \infty$ iff $o\left(n^{r}\right)=1$

Main Result 2: If a_{k} belongs to class C and $\frac{n^{2}}{(n+1)^{2}} a_{n+1} \operatorname{logn}=o(1)$ then $\left\|g-g_{n}\right\|=o(1)$ asn $\rightarrow \infty$ iff $\left|a_{n+1} \operatorname{logn}\right|=o(1)$

2. Lemmas

We require the following Lemmas for the proof of our result:

2.1 Lemma[5]

If $\left|a_{k}\right| \leq 1$, then
$\int_{0}^{\pi}\left|\sum_{k=0}^{n} a_{k} D_{k}(x)\right| d x \leq C(n+1)$
Where C is a positive absolute constant.

2.2 Lemma [2,20]

The results mentioned in this lemma are well known.

If $\mathrm{Dn}(\mathrm{x})$ and $\mathrm{Dn}^{-}(\mathrm{x})$ are Drichlet and Conjugate Drichlet Kernels respectively and are defined by $\mathrm{D}_{\mathrm{n}}(\mathrm{x})=\frac{\sin \left(n+\frac{1}{2}\right) x}{2 \sin x / 2}, \mathrm{D}_{\mathrm{n}}{ }^{-}=\frac{\cos x / 2-\cos \left(n+\frac{1}{2}\right) x}{2 \sin x / 2}$
Then as per [12]
(i) $\left\|D_{n}{ }^{r}(x)\right\|=\frac{4}{\pi}\left(n^{r} \operatorname{logn}\right)+O\left(n^{r}\right), r=0,1,2,3, \ldots \ldots$, where $D_{n}{ }^{r}(x)$ represent r-th derivative of the Drichlet kernel.
(ii) $\left\|\mathrm{D}_{\mathrm{n}}^{-\mathrm{r}}(\mathrm{x})\right\|=O\left(n^{\mathrm{r}} \operatorname{logn}\right), \mathrm{r}=0,1,2,3, \ldots \ldots$

Again if $K_{n}(x)$ denotes Fezer Kernel defined by
$\mathrm{K}_{\mathrm{n}}(\mathrm{x})=\frac{1}{n+1} \sum_{j=0}^{n} D_{\mathrm{j}}(\mathrm{x})$, then
(a) (i) $\mathrm{D}_{\mathrm{n}}(\mathrm{x})=(\mathrm{n}+1) \mathrm{D}_{\mathrm{n}}(\mathrm{x})-(\mathrm{n}+1) \mathrm{K}_{\mathrm{n}}(\mathrm{x})$
(ii) $D_{n}{ }^{r+1}(x)=(n+1) D_{n}{ }^{r}(x)-(n+1) K_{n}{ }^{r}(x)$
(b) (i) $\left\|\mathrm{K}_{\mathrm{n}}(\mathrm{x})\right\|=\mathrm{O}(1)$ (ii) $\left\|\mathrm{K}_{\mathrm{n}}{ }^{\mathrm{r}}(\mathrm{x})\right\|=\mathrm{O}\left(\mathrm{n}^{\mathrm{r}}\right)$

Proof of Main Result 1.

$\left|\mathrm{g}(\mathrm{x})-\mathrm{g}_{\mathrm{n}}(\mathrm{x})\right|=\mathrm{S}_{\mathrm{n}}(\mathrm{x})+\frac{a_{n+1}}{(n+1)^{2}} \mathrm{D}_{\mathrm{n}}{ }^{\prime}{ }^{\prime}(\mathrm{x})$
Applying Abel's Transform
$\mathrm{g}(\mathrm{x})-\mathrm{g}_{\mathrm{n}}(\mathrm{x})=\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}(x)-\mathrm{a}_{\mathrm{n}+1} \mathrm{D}_{\mathrm{n}}(\mathrm{x})+\frac{a_{n+1}}{(n+1)^{2}} \mathrm{D}_{\mathrm{n}}{ }^{\prime \prime}(\mathrm{x})$
$=\sum_{k=n+1}^{\infty} a_{k} D_{k}(x)-\mathrm{a}_{\mathrm{n}+1} \mathrm{D}_{\mathrm{n}}(\mathrm{x})+\frac{a_{n+1}}{n+1} \mathrm{~K}_{\mathrm{n}}{ }^{\prime}(\mathrm{x})$, by using Lemma (2.2)
Now, Making use of Abel's Transformation and Lemma (2.1), we have
$\int_{0}^{\pi}\left|g(x)-g_{n}(x)\right| d x \leq \int_{0}^{\pi}\left|\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}(x)\right| d x-\left|a_{n+1}\right| \int_{0}^{\pi}\left|K_{n}(x)\right| d x-\left|\frac{a_{n+1}}{n+1}\right| \int_{0}^{\pi}\left|K_{n}^{*}(x)\right| d x$
$=\quad \int_{0}^{\pi}\left|\sum_{k=n+1}^{\infty} A_{k} \frac{\Delta a_{k}}{A_{k}} D_{k}(x)\right| d x-\quad\left|a_{n+1}\right| \int_{0}^{\pi}\left|K_{n}(x)\right| d x$
$\left|\frac{a_{n+1}}{n+1}\right| \int_{0}^{\pi}\left|K_{n}^{*}(x)\right| d x \leq \int_{0}^{\pi}\left|\sum_{k=n+1}^{\infty} \Delta A_{k} \sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{k}(x)\right| d x-$
$\left.\left|\mathrm{a}_{\mathrm{n}+1}\right| \int_{0}^{\pi}\left|K_{n}(x)\right| d x\right|_{n+1} ^{a_{n+1}}\left|\int_{0}^{\pi}\right| K_{n}^{*}(x) \mid d x$
$\leq \mathrm{C} \sum_{k=n+1}^{\infty}(k+1) \Delta A_{k}-\left|\mathrm{a}_{\mathrm{n}+1}\right| \int_{0}^{\pi}\left|K_{n}(x)\right| d x-\left|\frac{a_{n+1}}{n+1}\right| \int_{0}^{\pi}\left|K_{n}^{v}(x)\right| d x$
The first term converges as per hypothesis, For $2^{\text {nd }}$ term $\left\|\mathrm{K}_{\mathrm{n}}(\mathrm{x})\right\|=\mathrm{O}(1)$,
For $3^{\text {rd }}$ term $\left\|\mathrm{K}_{\mathrm{n}}{ }^{\mathrm{r}}(\mathrm{x})\right\|=\mathrm{O}\left(\mathrm{n}^{\mathrm{r}}\right), \mathrm{r}=0,1,2,3 \ldots$
So, $3^{\text {rd }}$ term converges iff $\mathrm{O}\left(\mathrm{n}^{\mathrm{r}}\right)=1$

Proof of Main Result 2.

$\left|\mathrm{g}(\mathrm{x})-\mathrm{g}_{\mathrm{n}}(\mathrm{x})\right|=\mathrm{S}_{\mathrm{n}}(\mathrm{x})+\frac{a_{n+1}}{(n+1)^{2}} \mathrm{D}_{\mathrm{n}}{ }^{\prime \prime}(\mathrm{x})$
Applying Abel's Transform
$\mathrm{g}(\mathrm{x})-\mathrm{g}_{\mathrm{n}}(\mathrm{x})=\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}(x)-\mathrm{a}_{\mathrm{n}+1} \mathrm{D}_{\mathrm{n}}(\mathrm{x})+\frac{a_{n+1}}{(n+1)^{2}} \mathrm{D}_{\mathrm{n}}{ }^{\prime \prime}(\mathrm{x})$

Now, Making use of Abel's Transformation and Lemma (2.1), we have
$\int_{0}^{\pi}\left|g(x)-g_{n}(x)\right| d x \leq \int_{0}^{\pi}\left|\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}(x)\right| d x+\left|a_{n+1}\right| \int_{0}^{\pi}\left|D_{n}(x)\right| d x+\left|\frac{a_{n+1}}{n+1}\right| \int_{0}^{\pi}\left|D_{n}^{\prime \prime}(x)\right| d x$ $\left\|\mathrm{g}(\mathrm{x})-\mathrm{g}_{\mathrm{n}}(\mathrm{x})\right\| \leq \int_{0}^{\pi}\left|\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}(x)\right| d x+\left|\mathrm{a}_{\mathrm{n}+1}\right|| | \mathrm{D}_{\mathrm{n}}(\mathrm{x})\left\|+\left|\frac{a_{n+1}}{n+1}\right|\right\| \mathrm{D}_{\mathrm{n}}{ }^{\prime}(\mathrm{x}) \|$
The first term converges as per hypothesis acc. to definition 2 . and for 2 nd and 3rd term we will use Lemma 2.2(ii) and according to given condition $\left\|g-g_{n}\right\|=O(1)$.

We can also do extention of this modified sum as

$$
\begin{aligned}
& \mathrm{g}_{\mathrm{n}}(\mathrm{x})=\frac{a 0}{2}+\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta\left(\frac{a_{j}}{j^{4}}\right) \mathrm{k}^{4} \cos \mathrm{kx} \\
&=\frac{a 0}{2}+\sum_{k=1}^{n}\left(\frac{a_{k}}{k^{4}}-\frac{a_{(k+1)}}{(k+1)^{4}}+\frac{a_{n}}{n^{4}}-\frac{a_{n+1}}{(n+1)^{4}}\right) k^{4} \cos k x \\
&=\frac{a_{0}}{2}+\sum_{k=1}^{n} a_{k} \operatorname{Cos} k x-\frac{a_{n+1}}{(n+1)^{4}} \sum_{k=1}^{n} k^{4} \cos k x \\
&=\mathrm{S}_{\mathrm{n}}(\mathrm{x})-\frac{a_{n+1}}{(n+1)^{4}} \sum_{k=1}^{n} k^{4} \operatorname{Cos} k x \\
&=\mathrm{S}_{\mathrm{n}}(\mathrm{x})-\frac{a_{n+1}}{(n+1)^{4}}\left(D_{n}^{i v}(x)\right) \\
&=\mathrm{S}_{\mathrm{n}}(\mathrm{x})-\frac{a_{n+1}}{(n+1)^{4}}\left(D_{n}^{i v}(x)\right)
\end{aligned}
$$

Using Above modified sum, we will prove the following result:
Main Result 3. If a_{k} belongs to the class S and $\left|a_{n} \operatorname{logn}\right|=O(1)$ then $\left\|g-g_{n}\right\|=O(1)$ as $n \rightarrow \infty$ iff O $\left(\mathbf{n}^{\mathrm{r}}\right)=\mathbf{1}$

Proof of Main Result 3.

$\left|\mathrm{g}(\mathrm{x})-\mathrm{g}_{\mathrm{n}}(\mathrm{x})\right|=\mathrm{S}_{\mathrm{n}}(\mathrm{x})-\frac{a_{n+1}}{(n+1)^{4}} \mathrm{D}_{\mathrm{n}}{ }^{\mathrm{iv}}(\mathrm{x})$
Applying Abel's transform
$\mathrm{g}(\mathrm{x})-\mathrm{g}_{\mathrm{n}}(\mathrm{x})=\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}(x)-\mathrm{a}_{\mathrm{n}+1} \mathrm{D}_{\mathrm{n}}(\mathrm{x})-\frac{a_{n+1}}{(n+1)^{4}} \mathrm{D}_{\mathrm{n}}^{\mathrm{iv}}(\mathrm{x})$
$=\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}(x)-2 \mathrm{a}_{\mathrm{n}+1} \mathrm{D}_{\mathrm{n}}(\mathrm{x})+\mathrm{a}_{\mathrm{n}+1} \mathrm{~K}_{\mathrm{n}}(\mathrm{x})+\frac{a_{n+1}}{n+1} K_{n}^{*}(x)+\frac{a_{n+1}}{(n+1)^{2}} K_{n}^{\prime \prime}(x)+\frac{a_{n+1}}{(n+1)^{\mathrm{s}}} K_{n}^{\prime \prime \prime}(x)$ By using Lemma (2.2)

Now, making use of Abel's Transformation and lemma (2.1), we have
$\int_{0}^{\pi}\left|g(x)-g_{n}(x)\right| d x \leq \int_{0}^{\pi}\left|\sum_{k=n+1}^{\infty} \Delta a_{k} D_{k}(x)\right| d x+2\left|\mathrm{a}_{\mathrm{n}+1}\right| \int_{0}^{\pi}\left|D_{n}(x)\right| d x+\left|\mathrm{a}_{\mathrm{n}+1}\right| \int_{0}^{\pi}\left|K_{n}(x)\right| d x+$ $\left|\frac{a_{n+1}}{n+1}\right| \int_{0}^{\pi}\left|K_{n}^{*}(x)\right| d x+\left|\frac{a_{n+1}}{(n+1)^{2}}\right| \int_{0}^{\pi}\left|K_{n}^{w \prime}(x)\right| d x+\left|\frac{a_{n+1}}{(n+1)^{\frac{s}{s}}}\right| \int_{0}^{\pi}\left|K_{n}^{m}(x)\right| d x$
$=\int_{0}^{\pi}\left|\sum_{k=n+1}^{\infty} A_{k} \frac{\Delta a_{k}}{A_{k}} D_{k}(x)\right| d x+2\left|\mathrm{a}_{\mathrm{n}+1}\right| \int_{0}^{\pi}\left|D_{n}(x)\right| d x+\left|\mathrm{a}_{\mathrm{n}+1}\right| \int_{0}^{\pi}\left|K_{n}(x)\right| d x+\left|\frac{a_{n+1}}{n+1}\right| \int_{0}^{\pi}\left|K_{n}^{v}(x)\right| d x+$ $\left|\frac{a_{n+1}}{(n+1)^{2}}\right| \int_{0}^{\pi}\left|K_{n}^{\prime \prime \prime}(x)\right| d x+\left|\frac{a_{n+1}}{(n+1)^{3}}\right| \int_{0}^{\pi}\left|K_{n}^{\prime \prime \prime}(x)\right| d x$
$\leq \int_{0}^{\pi}\left|\sum_{k=n+1}^{\infty} \Delta A_{k} \sum_{j=0}^{k} \frac{\Delta a_{j}}{A_{j}} D_{j}(x)\right| d x \quad+\quad 2\left|\mathrm{a}_{\mathrm{n}+1}\right| \quad \int_{0}^{\pi}\left|D_{n}(x)\right| d x+\quad\left|\mathrm{a}_{\mathrm{n}+1}\right| \quad \int_{0}^{\pi}\left|K_{n}(x)\right| d x \quad+$
$\left|\frac{a_{n+1}}{n+1}\right| \int_{0}^{\pi}\left|K_{n}^{\prime}(x)\right| d x+\left|\frac{a_{n+1}}{(n+1)^{2}}\right| \int_{0}^{\pi}\left|K_{n}^{\prime \prime}(x)\right| d x+\left|\frac{a_{n+1}}{(n+1)^{s}}\right| \int_{0}^{\pi}\left|K_{n}^{\prime \prime \prime}(x)\right| d x$
$\leq \mathrm{C} \quad \sum_{k=n+1}^{\infty}(k+1) \Delta A_{k}+2\left|\mathrm{a}_{\mathrm{n}+1}\right| \int_{0}^{\pi}\left|D_{n}(x)\right| d x+\left|\mathrm{a}_{\mathrm{n}+1}\right| \int_{0}^{\pi}\left|K_{n}(x)\right| d x+\left|\frac{a_{n+1}}{n+1}\right| \int_{0}^{\pi}\left|K_{n}^{v}(x)\right| d x+$
$\left|\frac{a_{n+1}}{(n+1)^{2}}\right| \int_{0}^{\pi}\left|K_{n}^{\prime \prime}(x)\right| d x+\left|\frac{a_{n+1}}{(n+1)^{3}}\right| \int_{0}^{\pi \pi}\left|K_{n}^{m}(x)\right| d x$
The first term converges as per hypothesis, 2 nd term converges as per given condition, for 3rd term \| $K_{n}(x) \|=O(1)$, for rest of the terms $\left\|K_{n}{ }^{r}(x)\right\|=O\left(n^{r}\right), r=0,1,2,3, \ldots \ldots$.
So, the proof will be completed iff $\mathrm{O}\left(\mathrm{n}^{\mathrm{r}}\right)=1$.

We can also make generalization form of above modified sum as

$$
\mathrm{g}_{\mathrm{n}}(\mathrm{x})=\frac{a_{\mathrm{o}}}{2}+\sum_{k=1}^{n} \sum_{j=k}^{n} \Delta\left(\frac{a_{j}}{j^{r}}\right) k^{r} \cos k x, \mathrm{r}=1,2,3,4, \ldots \ldots .
$$

References:

[1] Bala R. and Ram B.,Trignometric series with semi-convex coefficients, Tamkang J. Math. Vol. 18, No. 1, (1987) pp. 75-84
[2]Bary N.K., A treatise on trigonometric series,Vol.I and Vol.II, Pergamon Press, London 1964.
[3]Braha N. L., Integrability and L1-convergence of certain cosine sums with third quasi hyper convex coefficients, Hacettepe J. of Mathematics and statistics, Vol. 42(6)(2013), 653-658.
[4]Fomin G.A., A class of trigonometric series, Math. Zametki 23 (1978), 213-222.
[5] Fomin G.A., On linear methods for summing Fourier series, Math. Sbornik, 66(1964), 144-152.
[6] Garrett J.W. and Stanojevi• c - C.V., On integrability and L1-convergence of certain cosine sums, Notices, Amer. Math. Soc., 22 (1975), A-166.
[7] Karanvir Singh, Kanak Modi, On L1 convergence of Modified Trignometric sums under some classes of coefficients (2017), 1965-1974.
[8] Kaur J. and Bhatia S. S., Convergence of new modi_ed trigonometric sums in the metric space L, The Journal of Non Linear Sciences and Applications, 1(3)(2008),179-188.
[9] Kaur K., Bhatia S. S. and Ram B., On L1-Convergence of certain Trigonometric Sums, Georgian journal of Mathematics, 1(11)(2004), 98-104.
[10] Kolmogorov A.N.,Sur I'ordere de grandeur des coe_cients de la series 7 de Fourier-Lebesque, Bull. Polon.Sci.Math.Astronom.Phys., (1923), 83-86.
[11] Krasniqi X.Z., On L1-convergence of sine and cosine modi_ed sums, Journal of Numerical Mathematics and Stochastics, 7(1) (2015), 94-102.
[12] Kumari S. and Ram B., L1-convergence of a modi_ed cosine sum, Indian Journal of Pure and Applied Math., 19 (1988), 1101-1104.
[13] Ram B., Convergence of certain cosine sums in the metric space L, Proc. Amer. Math. Soc., 66 (2) (1977), 258-260.
[14] Rees C.S. and Stanojevi• c - C.V., Necessary and Su_cient condition for the integrability of certain cosine sums, J. Math. Anal. Appl., 43 (1973), 579-586.
[15] Sandeep Kaur Chouhan, Jatinderdeep Kaur, S.S.Bhatia , L1 convergence of Modified Trignometric Sums ; 6 (2016), 326-329

L^{1}-Convergence of Modified Trignometric Sum
 Under Some Classes of Coefficients and Its Generalization

[16] Sheng S., The extension of theorems of • C.V. Stanojevi•c and V.B Stanojevi• c , Proc. Amer. Math. Soc., 110 (1990), 895-904.
[17] Sidon S., Hinreichende Bedingungen f'ur den Fourier-Charakter einer Trigonometrischen Reihe, J. London Math. Soc., 14 (1939), 158-160.
[18] Telyakovskii S.A., On a su_cient condition of Sidon for the integrability of trigonometric series, Math. Zametki ,14 (1973), 317-328.
[19] Young W.H., On the Fourier series of bounded functions, Proc. London Math. Soc., 12(2) (1913), 41-70.
[20] Zygmund A., Trigonometric series, Vol. I, Vol. II, Univ. Press of Cambridge (1959).

