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Abstract 

We live in a world where information has a great value and the amount of information available in the text 

document has risen so that identifying those that are important to us becomes an issue. Because of this data, 

divided into categories, the user is able to navigate to the information he wants to obtain. Texts are most of the 

data and here text classification comes to the scene.The aim of this paper is to classify the documents 

automatically into their classes by comparing different feature extraction and Vectorization techniques. 

Classification of document requires machine learning (ML) techniques. The ML techniques that we have 

employed to classify the documents are Support Vector Machine (SVM), Naïve Bayes (NB). The various 

feature extraction techniques that we have implemented are Stemming and Lemmatization and we note how the 

algorithms differ in performance when implemented each of the feature extraction technique and vectorization 

approaches. We used two vectorization techniques, such as vectorization of count vector and vectorization of 

term frequency inverse document frequency (TF-IDF). The results prove that according to the type of content 

and metric, the performance of the feature extraction and vectorization methods are contrasting; in some cases 

are better than the others, and in other cases is the inverse.. 

Keywords: Machine Learning, Support Vector Machine, Naive Bayes, Stemming, Lemmatization, 

Vectorization, Text Classification 

 

1. Introduction 

Computer-based technologies have transformed the way we live, work, socialize, play, and learn.  Recent 

advancement in various fields has led to the collection of large amount of data. As the amount of data is huge 

that makes managing / analyzing data complex and challenging.  

In a customized knowledge management mission, automated text categorization may play an important role, 

such as: real-time assignment of files into folder hierarchies; subject recognition to help topic-specific 

processing operations. Automatic Text Classification helps the text document to be retrieved. Classification of 

document requires machine learning technique. It is a supervised machine learning task. 

The Support Vector Machine, proposed by Vapnik, provides a hyper plane that separates the classes with 

maximum distance, between two classes of data and has non-linear extensions [1]. It is a supervised 

classification algorithm which recently used successfully for many tasks of NLP as text classification [2][3]. 

SVM algorithm represents the text document as a vector where the dimension is the number of distinct 

keywords. If the document size is large then the dimensions are enormous of the hyperspace in text 
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classification which causes high computational cost. The feature extraction and reduction can be used to reduce 

the dimensionality [4]. 

NB classifiers are statistical classifiers. They can predict class membership probabilities such as the 

probability that a given tuple belongs to a particular class. Bayesian classification is based on Bayes’ theorem. 

Advantage of using Naïve Bayes algorithm is that it does not require any feature extraction i.e. word to vector 

conversion which is required for SVM and it calculates the most probable class of each document which 

guarantees that each is labelled or most probably labelled class. 

Assumptions: 

1) It assumes that the influence of an attribute value on a given class is unconstrained of the values of the 

other attributes in the dataset [5]. This assumption has been noted as class conditional independence. It 

simplifies computations involved and thus considered “naive” [6]. 

2) It assumes that each every attribute contributes to the final outcome in equal. 

Naïve Bayes Classifier has various models: 

1) Gaussian Naïve Bayes (continuous data) 

2)  Multinomial Naïve Bayes (data with discrete features) 

3) Bernoulli Naïve Bayes (binary data) 

Since, the BBC corpus has distinct features we opted the multinomial naïve bayes algorithm. 

2   Literature Survey 

Machine Learning gives better understanding of documents classification. Machine learning is concerned 

with development of algorithms that allows computers to “learn” so as to improve the expected performance. 

Document classification is a well-established data mining problem and the issue of scientific papers 

classification is a specialization of this problem posing its own challenges [7]. 

Thorsten Joachim’s et al in [8]  conclude that with the massive information in the enterprise, organization of 

data is needed and using text categorization this problem can be overcome by using SVM avoids catastrophic 

failures and yields better results. SVM acknowledges particular properties of text like a, high dimensional space   

b, few irrelevant features c, and sparse instance vector. SVM’s ability to generalize well in high dimensional 

space makes it easier for application in text categorization and increases its robustness.  

Vandana Korde et al in [9] emphasizes that text classification process starts from collecting text document 

and then performing pre-processing which is tokenization , stemming, stop word removal and in indexing we 

perform term weighing using TF-IDF scheme. Feature selection constructs a vector space which improves 

accuracy of text classifier.  

In [10] the authors looked for patent to patent similarity in which TF-IDF proved to be more powerful in 

decision making applications. A simple TF-IDF technique is compared with more complicated methods or 

extensions to TF-IDF. 

In[11] the authors  implement KNN classification with Stemmed and unstemmed features with train and test 

ratio as 60/40. After getting results it’s clear that KNN works best for less number of features. 

3   Proposed System 

3.1 Methodology 

In the proposed system we use BBC corpus contains 2225 documents over five classes. The different classes 

are business, entertainment, politics, sports and technology. This dataset contains Business class - 511 

documents, Entertainment - 381 documents, Politics - 418 documents, Sports - 512 documents, Technology - 

403 documents. The classification algorithms that are being implemented are: Support Vector Machine (SVM) 

and Naive Bayes Classifier (NBC).  
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3.2   Architecture of the Proposed System 

 

Data Collection 

Data is collected from BBC corpus. This data contains 2225 documents over five categories. This dataset 

contains Business class - 511 documents, Entertainment - 381 document, Politics - 418 document, Sports - 512 

document, Technology - 403 document.  

Pre-processing 

Collected data is pre-processed by tokenization, stop word removal and stemming. Document is tokenized 

first at paragraph level then by sentence level then to token (word). These tokenized data goes for stop word 

removal. Stemming is performed on output of stop word removal and this pre-processed data goes for Naïve 

Bayes algorithm and for SVM word to vector conversion. 

As SVM algorithm accepts numerical data, so word to vector conversion is required. This is done by 

technique One-Hot Encoding technique. Word is converted into vector that is in to number by the presence of 

word in a document is indicated by ‘1’ and absence of word is indicated by ‘0’. Thus word to vector conversion 

list is created.  

We applied label encoding for class label.  We assigned business as 0 , entertainment as 1, politics as 2, sport 

as 3 and tech as 4. 

Tokenization 

It is process of separating/ dividing text or sentences into smaller units called tokens. Tokens can take form 

of words, subwords or characters. The procedure followed for tokenization is as follows:  

Input: c, corpus 

Output: t, tokens 

For f in c do 

tk           split f using space as a delimeter 

t              tk   // assign the value of token to t 

end for 

return t 

Stop word removal 

Unimportant or unwanted text/data is referred to as stop words in natural language processing. The purpose 

is simply removing the words from the corpus that occur most commonly or frequently throughout the corpus. 

The procedure followed for stop word removal is as follows: 

Input:  t, a list of tokens 

        e, set of english language stop words 

Output: p, pre-processed text  

For ti in t do 

 For tk in ti do 
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       if tk not found in e then 

  p         tk 

      end if 

        end for 

end for 

return p 

Validation 

We use five common different measures for the evaluation of the classification quality: Accuracy, Precision, 

Recall, F-Measure and Support. Accuracy is the proportion of the total number of predictions where correctly 

calculated. Precision is the ratio of the correctly classified cases to the total number of misclassified cases and 

correctly classified cases. Recall is the ratio of correctly classified cases to the total number of unclassified cases 

and correctly classified cases. Also, we used the F-measure to combine the recall and precision which is 

considered a good indicator of the relationship between them [5]. 

 

Fig. 2: Flowchart for tokenization and stop word removal 

4   Implementation and Result Analysis: 

The project is implemented on google colab cloud for python by installing nltk package for stop word 

removal, stemming etc, With the help of [12] and [13] programs were written in python programming language.  

The different combinations in which we have implemented the algorithms are as follows: 

1) Naive Bayes Classifier with Lemmatization and Count Vector. 

2) Naive Bayes Classifier with Lemmatization and TF-IDF vectorization technique. 

3) Naive Bayes Classifier with Lemmatization, Count vector and TF-IDF vectorization technique. 

4) Support Vector Machine with Lemmatization and Count Vector. 

5) Support Vector Machine with Lemmatization and TF-IDF vectorization technique 

6) Support Vector Machine with Lemmatization, Count vector and TF-IDF vectorization technique. 

5. Results and Visualization 

The Naive bayes model when implemented Lemmatization and Count Vector. 

Train/Test Ratio: 80/20              Accuracy: 96.4 

Confusion Matrix: 
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Table 1. Confusion matrix for Naive 

bayes using lemm and count vector 

 

Table 2. Performance metrics for 

Naive bayes using lemm and count 

vector 

 0 1 2 3 4 

0 96 0 3 0 1 

1 1 70 5 0 1 

2 2 0 91 0 0 

3 0 0 0 94 0 

4 3 0 0 0 78 
 

Class Precisi

on 

Recall F1 

score 

Suppo

rt 

0 94 96 95 100 

1 100 91 95 77 

2 92 98 95 93 

3 100 100 100 94 

4 97 96 97 81 

Avg  96.6 96.2 96.4  
 

The Naive Bayes model when implemented with lemmatization and TF-IDF vectorization technique.  

Train/Test ratio: 80/20       Accuracy: 95.7 

Table 3. Confusion matrix for Naive 

bayes using lemm and TF-IDF vector 

Table 4. performance metrics for 

Naive bayes using lemm and TF-

IDFvector 

 0 1 2 3 4 

0 105 0 0 0 1 

1 2 74 1 0 0 

2 2 0 79 0 1 

3 0 0 0 97 0 

4 2 0 1 1 79 
 

Class Precisi

on 

Recall F1 

score 

Suppo

rt 

0 95 99 97 106 

1 100 96 98 77 

2 98 96 97 82 

3 99 100 99 97 

4 98 100 99 83 

Avg  98 97.2 97.4  
 

The Naive Bayes model when implemented with lemmatization and TF-IDF vectorization and count vector.  

Train/Test ratio: 80/20      Accuracy: 96.85 

 

 

Table 5. Confusion matrix for Naive 

bayes using lemm, count vector and TF-

IDF vector 

Table 6. Performance metrics for 

Naive bayes using lemm, count vector 

and TF-IDF vector 

 0 1 2 3 4 

0 93 0 3 0 3 

1 1 82 1 0 3 

2 1 0 83 0 1 

3 0 0 0 94 0 

4 1 0 0 0 79 
 

Class Precisi

on 

Recall F1 

score 

Suppo

rt 

0 97 94 95 99 

1 100 94 97 87 

2 95 98 97 85 

3 100 100 100 94 

4 92 99 95 80 

Avg  96.8 97 96.8  
 

The SVM model when implemented Lemmatization and Count Vector. 
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Train/Test Ratio: 80/20      Accuracy: 97.9 

Table 7. Confusion matrix for SVM 

using lemm and count vector 

 

Table  8. Performance metrics for 

SVM using lemm and count vector 

 0 1 2 3 4 

0 97 0 3 0 1 

1 1 74 1 0 1 

2 2 0 91 0 0 

3 0 0 0 94 0 

4 3 0 0 0 80 
 

Class Precisi

on 

Recall F1 

score 

Suppo

rt 

0 96 97 97 100 

1 100 96 98 77 

2 92 98 97 93 

3 100 100 100 94 

4 99 98 99 81 

Avg  98.2 98 98.2  
 

Support Vector Machine with Lemmatization and TF-IDF vectorization technique. 

Train/Test ratio:80/20     Accuracy: 98.20 

 

Table 9. Confusion matrix for SVM 

using lemm and TF-IDF vector 

Table 10. performance metrics for  

SVM using lemm and TF-IDF vector 

 

 0 1 2 3 4 

0 105 0 0 0 1 

1 1 75 1 0 0 

2 0 0 81 0 1 

3 0 0 0 97 0 

4 1 2 0 1 79 
 

Class Precisi

on 

Recall F1 

score 

Suppo

rt 

0 98 99 99 106 

1 96 97 97 77 

2 98 99 98 82 

3 99 100 99 97 

4 97 95 97 83 

Avg  97.6 98 98  
 

Support Vector Machine with Lemmatization, Count vector and TF-IDF vectorization technique. 

Train/Test ratio: 80/20     Accuracy: 97.52 

Table 11. Confusion matrix for SVM 

using lemm, count vector and TF-IDF 

vector 

Table 12. performance metrics for 

SVM  using lemm, count vector and TF-

IDF vector 

 

 0 1 2 3 4 

0 93 1 2 0 3 

1 0 87 0 0 0 

2 2 0 82 0 1 

3 0 0 0 94 0 

4 0 2 0 0 78 
 

Class Precisi

on 

Recall F1 

score 

Suppo

rt 

0 98 94 96 99 

1 97 100 98 87 

2 98 96 97 85 

3 100 100 100 94 

4 95 97 96 80 

Avg  97.6 97.4 97.4  
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Performance visualization of Naive Bayes and SVM respectively. 

 

Fig 3-  Comparison of Naïve Bayes Accuracy 

 

Fig 4- Comparison of SVM Accuracy 
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Fig 5- Comparison of Naïve Bayes Precision 
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 Fig 6- Comparison of SVM Precision 
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Fig 7– Comparison of Naïve Bayes Recall 
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 Fig 8- Comparison of SVM Recall 
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Fig 9- Comparison of Naïve Bayes F1- Score 
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Fig 10- Comparison of SVM F1-Score 

 

The final comparison between the different combinations of algorithms that we have implemented can be 

tabulated as the following: 

Table 13- Performance comparison of algorithms 

Algorithm Accuracy Precision Recall F1-

Score 

NBC Lemmatization Count Vector 96.4 96.6 96.2 96.4 

NBC Lemmatization TF-IDF 97.5 98 97.2 97.4 

NBC Lemmatization Count Vector 

TF-IDF 

96.85 96.8 97 96.8 

SVM Lemmatization Count Vector 97.9 98.2 98 98.2 
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SVM Lemmatization TF-IDF 98.2 97.6 98 98 

SVM Lemmatization Count Vector 

TF-IDF 

97.52 97.6 97.4 97.4 

6. Conclusion and Future Works 

In this paper, we implemented Naive Bayes and SVM with different feature extraction technique in 

combination with count vectorization and TF-IDF technique on the BBC corpus. As we are partitioning 

documents into training and testing sets with different ratios as 60/40, 70/30, 80/20 the accuracy varies, in 

general it gave better accuracy for 80 training documents and 20 testing documents division. SVM with 

Lemmatization and TF-IDF proved to be the most efficient since the highest accuracy achieved is 98.2 when the 

train and test ratio is 80/20. The other combination of SVM also proved to be accurate than Naive Bayes. In the 

future, other algorithms like logistic regression or convolution neural networks can be implemented and the 

impact of different feature extraction techniques and vectorization techniques can be observed. Also in future, 

comparisons can be made by using different versatile datasets. 
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