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ABSTRACT: Gene expression data can reflect gene activities and physiological status in a biological 

system at the transcriptome level. Gene expression data typically includes small samples but with high 

dimensions and noise. Hybrid Ensemble Feature Selection (HEFS) system is introduced recently for 

solving feature selection issue. In the recent work, K-Nearest Neighbors (KNN), Support Vector Machine 

(SVM), and Recursive Neural Networks (RNN) classifiers have been introduced for classification. These 

Machine Learning (ML) techniques are results in low accuracy and performance metrics because of single 

classifier. Thus Deep Learning (DL) architecture, achieved better results than using ML algorithms in 

terms of testing accuracy and performance metrics. In this paper, Ensemble Mutation Weight 

Convolutional Neural Network (EMWCNN) classifier is introduced for classification of gene expression 

data. To address the performance degradation of single ML classifiers, the construction of an EMWCNN 

classifier for multi‐platform fusion is proposed for gene expression data. In the training stage, multiple 

CNNs are trained as weak learners and fine‐tuned to minimize the weighted error. Meanwhile, optimum 

weights are selected via adaptive mutation operator. Subsequently, combine the predictions of multiple 

CNNs to achieve a boosting‐based prediction in the reference stage. EMWCNN method proves to be very 

efficient in classification of gene expression from microarray data, as it involves the process of 

considering opinion from multiple base classifiers, as opposed to the single classifier method.  

Experimentation is carryout on four Gene Expression Microarray (GEM) datasets (Prostate cancer, Small 

Round Blue Cell Tumors (SRBCT), Leukemia, and Lymphoma). Experimental results verify that the 

proposed EMWCNN method shows improved results with respect to precision, recall, accuracy and Area 

UnderCurve (AUC) when compared to conventional classifiers. 

INDEX TERMS: gene expression, microarray data, Feature selection, classification, Deep Learning 

(DL), GEM data, and Ensemble Mutation Weight Convolutional Neural Network (EMWCNN). 

1. INTRODUCTION   

Microarrays are a well established technology to analyze the expression of many genes in a single 

reaction whose applications range from cancer diagnosis to drug response. They are matrices, where 
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known samples of DNA, cDNA, or oligonucleotides, called probes, combine with mRNA sequences. The 

expression level of genes is given by the amount of mRNA bounding to each entry. The aim is to find 

either sets of genes that characterize particular disease states or experimental condition or highly 

correlated genes that share common biological features. Microarray numerical data coming out from 

experiments are normalized and analyzed [1].  

In microarray data, the ratio of number of genes (features) to the number of patients (samples) is much 

skewed which results in the well-known curse-of-dimensionality problem [1]. This further imposes two 

self-inflicting limitations on any proposed model: (i) processing all the data is not always feasible; and (ii) 

processing only a subset of data may result in loss of information, overfitting, and local maxima. These 

two limitations directly impact the accuracy and reliability of any machine learning model. To address the 

curse-of-dimensionality, a lot of research has been done in the past to identify the most impactful feature 

subset [2–4]. Both evolutionary as well as statistical methods have been proposed in the literature for this 

purpose.  

Feature Subset Selection (FSS) techniques like Minimum Redundancy Maximum Relevance (mRMR), 

Joint Mutual Information (JMI), and Joint Mutual Information Maximization (JMIM) are amongst the 

most prominent statistical methods [5] while advanced approaches like Particle Swarm Optimization 

(PSO), Genetic Algorithm (GA), Deep Neural Networks (DNN), Transfer Learning, mining techniques, 

etc. have also been shown in the literature to produce highly accurate results [6–8]. The microarray data 

classification process is typically carried out in two major phases: (i) Feature Selection: this phase focuses 

on selecting the most relevant features from otherwise a huge dataset to reduce noise, computational 

overheads, and overfitting. (ii) Classifier Training: this phase builds a model from the selected features to 

classify a given microarray sample accurately and reliably. 

Classifiers are the core component of microarray data analysis. In  the  literature, statistical  approaches  

like  weighted  voting  scheme,  nearest  neighbor  classification,  discrimination  methods and  least  

square  and  logistic  regression  were  used  to  develop  the  classifier  model  for  gene  expression  data.  

These  statistical  approaches  usually  result  in  an  inflexible  classification  system  that  is  unable  to  

classify  a  sample,  if  the  expressions of genes are slightly different from the predefined profile. There is 

also a variety of machine learning-based classification methods that can be used with genes feature 

selection for improving classification accuracy results.  However, there is still room for improving the 

accuracy of cancer classification from microarray data.  

There are some other works that have been employed the microarray data for cancer detection and 

diagnosis. The recent work introduced a Deep Learning (DL) method such as Deep Neural Network 

(DNN), Convolutional Neural Network (CNN) that aims to increase accuracy by using microarray data 

for cancer detection. Microarray datasets with different DL methods for diagnosing cancer, however 

ensemble DL consistently performs well in classifying biological data than the single DL methods. The 

motivation for this study is to utilize robust ensemble methods that are less sensitive to the selection of 

genes and are capable of removing the uncertainties of gene expression data. 

Ensemble methodology is an efficient technique that has increasingly been adopted to combine multiple 

learning algorithms to improve overall prediction accuracy [9]. These ensemble techniques have the 

advantage to alleviate the small sample size problem by averaging and incorporating over multiple 

classification models to reduce the potential for overfitting the training data. In this way the training data 

set may be used in a more efficient way, which is critical to many bioinformatics applications with small 
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sample size. Much research has shown the promise of ensemble learning for improving the accuracy in 

classifying data under uncertainties. However, a necessary and sufficient condition for an ensemble to 

outperform its individual members is that the base classifiers should be accurate and diverse.  

In this paper, Ensemble Mutation Weight Convolutional Neural Network (EMWCNN) classifier is 

introduced for classification of gene expression data. Ensemble of classifiers is a set of base CNN 

classifiers that classify a new gene expression based on the weights.  Homogenous CNN classifiers are 

combined for accurate prediction of the presence or absence of disease. The major intent of this 

EMWCNN classifier is to perform ensemble classifier which are well associated with the label and 

separate from every other. It gives improved results for cancer dataset when compared to traditional 

classifiers. Experimental results verify that the EMWCNN classifier shows improved results regarding 

precision, recall, accuracy and Area Under Curve (AUC) when compared to conventional classifiers.  The 

remaining part of article is emphasized as follows: Section 2 surveys the previous classification and deep 

learning methods for gene expression data. Section 3 describes the EMWCNN methodology for choosing 

and classifying the gene samples. Section 4 illustrates the efficiency of traditional classifiers and proposed 

EMWCNN classifier with benchmark datasets. Finally, Section 5 concludes the entire discussion and 

suggests an extension of this work. 

2. LITERATURE REVIEW  

Vanitha et al [10] presented an effective method for gene classification using Support Vector Machine 

(SVM). SVM is a supervised learning algorithm capable of solving complex classification problems. 

Mutual information (MI) between the genes and the class label is used for identifying the informative 

genes. The selected genes are utilized for training the SVM classifier and the testing ability is evaluated 

using Leave-one-Out Cross Validation (LOOCV) method. The performance of the proposed approach is 

evaluated using two cancer microarray datasets. From the simulation study it is observed that the 

proposed approach reduces the dimension of the input features by identifying the most informative gene 

subset and improve classification accuracy when compared to other approaches. 

Sreepada et al [11] proposed a microarray classification is done in two phases. In the first phase, a hybrid 

approach of Genetic Algorithm (GA) and Principal Component Analysis (PCA) is used for extracting 

relevant features. In the second phase, Probabilistic Neural Network (PNN) is used as the classifier and 

GA is implemented to optimize the topology of the PNN. The datasets used in the experiment are Colon 

Tumor, Diffuse Large B-Cell Lymphoma (DLBCL) and Leukaemia (ALL and AML). The proposed 

technique gave efficient results for the datasets used. 

Li et al [12] introduced a more efficient implementation of Linear Support Vector Machines(LSVMs) and 

improve the Recursive Feature Elimination(RFE) strategy and then combine them together to select 

informative genes. Besides, a simple resampling method is introduced to preprocess the datasets, which 

makes the information distribution of different kinds of samples balanced and the classification results 

more credible. Extensive experiments are conducted on six most frequently used microarray datasets in 

this field, and the results show that the proposed methods have not only reduced the time consumption 

greatly but also obtained comparable classification performance. 

Potharaju and Sreedevi [13] proposed a Distributed Feature Selection (DFS) strategy using Symmetrical 

Uncertainty(SU) and Multi Layer Perceptron(MLP) by distributing across the multiple clusters. Each 
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cluster is equipped with finite number of features in it. MLP is employed over each cluster and based on 

the highest accuracy and lowest Root Mean Square Error Rate (RMS) dominant cluster is nominated. 

Zahoor and Zafar [14] presented a warzone inspired “Infiltration Tactics” based Optimization algorithm 

(ITO)—not to be confused with the ITO algorithm based on the Itõ Process in the field of Stochastic 

calculus. The proposed ITO algorithm combines parameter-free and parameter-based classifiers to 

produce a High-Accuracy-High-Reliability (HAHR) binary classifier. The algorithm produces results in 

two phases: (i) Lightweight Infantry Group (LIG) converges quickly to find non-local maxima and 

produces comparable results (i.e., 70 to 88% accuracy) (ii) Followup Team (FT) uses advanced tuning to 

enhance the baseline performance (i.e., 75 to 99%). Every soldier of the ITO army is a base model with 

its own independently chosen Subset selection method, pre-processing, and validation methods and 

classifier. The successful soldiers are combined through heterogeneous ensembles for optimal results.  

Mallick et al [15] presented method of classification to understand the convergence of training Deep 

Neural Network (DNN). The assumptions are taken as the inputs do not degenerate and the network is 

over-parameterized. Also the number of hidden neurons is sufficiently large. Authors in this piece of 

work have used DNN for classifying the gene expressions data. The dataset used in the work contains the 

bone marrow expressions of 72 leukemia patients. A five-layer DNN classifier is designed for classifying 

Acute Lymphocyte (ALL) and Acute Myelocytic (AML) samples. The network is trained with 80% data 

and rest 20% data is considered for validation purpose. The different types of computer-aided analyses of 

genes can be helpful to genetic and virology researchers as well in future generation. 

Liao et al [16] proposed a novel Multi-Task Deep Learning (MTDL) method to solve the data 

insufficiency problem. Since MTDL leverages the knowledge among the expression data of multiple 

cancers to learn a more stable representation for rare cancers, it can boost cancer diagnosis performance 

even if their expression data are inadequate. The experimental results show that MTDL significantly 

improves the performance of diagnosing every type of cancer when it learns from the aggregation of the 

expression data of twelve types of cancers. 

Kong and Yu [17] proposed a Forest Deep Neural Network (fDNN) classifier to integrate the deep neural 

network architecture with a supervised forest feature detector. Using this built-in feature detector, the 

method is able to learn sparse feature representations and feed the representations into a neural network to 

mitigate the overfitting problem. Simulation experiments and real data analyses using two RNA-seq 

expression datasets are conducted to evaluate fDNN’s capability. The method is demonstrated a useful 

addition to current predictive models with better classification performance and more meaningful selected 

features compared to ordinary Random Forests(RFs) and DNN. 

Elbashir et al [18] proposed a lightweight Convolutional Neural Networks (CNN) architecture for breast 

cancer classification using gene expression data downloaded from Pan-Cancer Atlas using “Illumina 

HiSeq” platform. The downloaded gene expression data is preprocessed and then transformed into 2D-

images. Started the preprocessing by removing the outlier samples, which are determined based on the 

Array-Array Intensity Correlation (AAIC), which defines a symmetric square matrix of Spearman 

correlation. Then a normalization process is applied on the gene expression data to ensure that we can 

infer the expression level from it correctly and avoid biases in the expression measures. Finally, filtering 

is applied on the data. Model selection or a parameters search strategy is conducted to choose the values 

of the CNN hyper-parameters that give optimal performance. Experiments show that proposed method 

achieves an accuracy of 98.76%, which is the highest compared to other competing methods. 
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Sevakul et al [19] presented a transfer learning procedure for cancer classification, which uses feature 

selection and normalization techniques in conjunction with s sparse autoencoders on gene expression 

data. While classifying any two tumor types, data of other tumor types were used in unsupervised manner 

to improve the feature representation. The performance of algorithm was tested on 36 two-class 

benchmark datasets from the Gene Expression Machine Learning Repository (GEMLeR) repository. On 

performing statistical tests, it is clearly ascertained that algorithm statistically outperforms several 

generally used cancer classification approaches. The deep learning based molecular disease classification 

can be used to guide decisions made on the diagnosis and treatment of diseases, and therefore may have 

important applications in precision medicine. 

Xia et al [20] introduced a Convolutional Neural Network(CNN) based multi-model ensemble method for 

cancer prediction using DNA methylation data. Five basic machine learning methods are choose as the 

first stage classifiers and conduct prediction individually. Then, a CNN is used to find the high-level 

features among the classifiers and gives a credible prediction result. Experimental results on three DNA 

methylation datasets of Lung Adenocarcinoma, Liver Hepatocellular Carcinoma and Kidney Clear Cell 

Carcinoma show the proposed ensemble method can uncover the intricate relationship among the 

classifiers automatically and achieve better performances. 

3. PROPOSED METHODOLOGY 

In cancer classification, single Machine Learning (ML) techniques seems to be not capable of ensuring 

optimal results in terms of both predictive performance and stability, thus ensemble approaches has been 

focused by researchers by the combination of different multiple CNNs. Firstly, Feature subset produced 

by Hybrid Ensemble Feature Selection (HEFS) algorithm is used for classification.  HEFS algorithm 

combines the three feature selection algorithms such as filter, embedded method and wrapper.  Then, the 

classification is performed based on selected features from HEFS algorithm. The classification is 

performed based on the Ensemble Mutation Weight Convolutional Neural Network (EMWCNN) 

classifier for gene expression data. Validate its superiority with four Gene Expression Microarray (GEM) 

datasets. Experimental results verify that the proposed classifier shows improved results with respect to 

precision, recall, accuracy and Area Under Curve (AUC). The overall framework of the proposed HEFS 

feature selection algorithm is shown in the figure 1. 

3.1.      HYBRID ENSEMBLE FEATURE SELECTION (HEFS) ALGORITHM  

Hybrid Ensemble Feature Selection (HEFS) algorithm  [24] is introduced which combines the three 

feature selection algorithms such as filter by Score-Based Criteria Fusion (SCF) and embedded method by 

Fuzzy Elephant Herding Optimization (FEHO), and Support Vector Machine- t (SVM-t). The results of 

these methods are aggregated via the Weighted Majority Voting (WMV) [24]. 

3.1.1. FILTER FEATURE SELECTION  

Filter feature selection methods use statistical techniques to evaluate the relationship between each input 

variable and the target variable, and these scores are used as the basis to choose (filter) those input 

variables that will be used in the model. In Score-Based Criteria Fusion (SCF), the relevance estimation 

measure consists of two parts, i.e., Symmetrical Uncertainty (SU) and ReliefF, combined by using a 

specific fusion method. According to the combined objects, the fusion methods are divided into two 

categories: score-based multicriterion fusion and ranking-based multicriterion fusion [21-22]. Finally 

features are sorted according to their values in the final score vector. Concretely, combination algorithm 
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fuses two score vectors from two basis criteria by multiplying the weight parameter.  In addition, the 

search strategy of SCF algorithm follows the incremental forward selection. 

3.1.2. WRAPPER FEATURE SELECTION 

Wrapper feature selection by evaluating a subset of features using a machine learning algorithm that 

employs a search strategy to look through the space of possible feature subsets, evaluating each subset 

based on the quality of the performance of a given algorithm. It follows a Fuzzy Elephant Herding 

Optimization (FEHO) by evaluating all the possible combinations of features against the evaluation. 

FEHO method is inspired by the herding behavior of elephant group [23].  As this work is focused on 

improving the FEHO updating process, in the following subsection, provide further details of the FEHO 

updating operator as it was originally presented. For details regarding the FEHO separating operator for 

optimal selection of features, see the literature [23].  

3.1.3. EMBEDDED FEATURE SELECTION 

Embedded methods complete the feature selection process within the construction of the machine 

learning algorithm itself. It is performed based on the Support Vector Machine- t (SVM-t) statistics to 

choose analytical features from the dataset. SVM make use of only the information of support vectors in 

the direction of creating the maximal partition hyper plane and find the classes for every dataset. The 

general two-sample t-statistic is utilized in the direction of evaluates the important variation among two 

classes. It is perceptive to choose features by way of the improved accuracy as the feature set [24]. 
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FIGURE 1. OVERALL RESEARCH FRAMEWORK OF THE PROPOSED OSCF BASED FEATURE 

SELECTION  

3.1.4. Weighted Majority Voting (WMV) 

Prediction accuracy can reinforce the decision of those qualified features, which makes it possible to give 

more importance to their decision in the vote and consequently may further improve the overall 

performance than that can be obtained by SMV (where all feature selection methods have identical 

weights). In WMV, each vote is weighted by the prediction accuracy value of the features via classifier 

[24].  

3.2. FINTESS COMPUTATION  

Fitness is computed by combining the classification accuracy and SCF. If both are higher than the 

features are selected from the GEM dataset. Fitness is calculated from the Classifiers such as K-Nearest 

Neighbors (KNN), Support Vector Machine (SVM), Recursive Neural Networks (RNN) and EMWCNN. 

Selected features are given to classifier, and then accuracy will also be considered with fitness along with 
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SCF criteria. Classification accuracy is defined as a ratio between the numbers of correctly assigned class 

labels and the total number of objects to be classified.  

3.3. Ensemble Mutation Weight Convolutional Neural Network (EMWCNN) classifier  

Ensemble Mutation Weight Convolutional Neural Network (EMWCNN) module is pre‐trained and 

fine‐tuned with training samples to learn network parameters. The ensemble weights are determined by 

multiple EMWCNN having different properties, which are used to collaboratively infer the labels of 

testing gene expression data in the fusion layer. As illustrated in Figure 1, the proposed architecture 

comprises three parts, namely input datasets, multi‐branch EMWCNN modules, and decision‐level fusion 

classification.  All the processed gene expression are stacked into a training set , where Q is 

the gene expression data sample number,   denotes the rows and columns of the sample. The 

features selected data are fed into each EMWCNN to train the hierarchical structure in an unsupervised 

manner. Then, weights are generated according to the properties of the EMWCNNs with ensemble. For 

the proposed ensemble EMWCNNs, they are operated in a supervised manner as the training labels are 

indispensable. 
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FIGURE 2. ARCHITECTURE OF EMWCNN FOR CLASSIFICATION  

As shown in Figure 2, T EMWCNNs are of the same structure, but with different network parameters. 

Generally, EMWCNNs comprises a convolutional layer, an activation function, a pooling layer, and a 

fully‐connected layer. To elaborate, the preprocessed input , is convoluted with randomly 

initialized kernels  and a bias term b is added to the resultant feature maps. Instead of a sigmoid function 

in general, the ReLU activation function  is a more advisable alternative to boost the 

nonlinear pointwise network. It has been proven to speed up the convergence significantly and increase 

the descriptive ability of the network [25]. Finally, the max‐pooling layer is utilized to reduce the 

sensitivity to small input shifts. Then, given T CNNs, the kth layer output state of the tth branch can be 

formulated as follows by equation (1) [26],  
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where ⊗ is the 2D convolutional operation, and pool(⋅) denotes the pooling operation. The network 

parameters, that is,  are iteratively optimized by minimizing the 

classification error over the training gene expression data. Commonly, the Stochastic Gradient Descent 

(SGD) algorithm is adopted to achieve this. In SGD, the network parameters are learned by the 

derivatives of F and b [26]. The learning performance is related to the slight learning rate ω during 

optimization. Once the single EMWCNNs parameters are well trained and the multiple EMWCNNs are 

weighted with ensemble, the decision‐level fusion recognition can be executed for given multiple input 

gene vectors , which yields [26], 

 (2) 

   (3) 

where { } are produced via ensemble,  is the network parameter set of the 

decision‐ making logistic regression layer,  and  are the mutation weights and biases, and C is the 

total number.  is generated via the Diversity based Mutation operator [27].  

In this Diversity based Mutation scheme, more probability is used for mutation to a weight that has less 

population-wise diversity. To implement, first the variance of weight values of each weight across the 

population members is computed and weights are sorted in ascending order of variance. Thereafter, an 

exponential probability distribution for  is used. To make the above a 

probability distribution,  is used by finding the root of the following equations  (4-5) for a fixed n 

(weight values) [27],  

 (4) 

 (5) 

The label information can be therefore deduced by the mutation weighted probability of each class.  The 

processing branches are composed of T CNNs, but the intercepted input samples and EMWCNNs 

structures are not identical. The difference between them is measured by mutation weights with boosting 

in this subsection. AdaBoost is introduced to control the selection of multiple weak classifiers to form a 

strong to produce a more convincing recognition. As the resource data are obtained from the same 

category of samples, boosting is performed to train multiple EMWCNNs and assign weights in the 

reference stage. However, the key to the algorithm scheme is to minimize the training error with a 

pre‐assigned number of iterations.  In the proposed EMWCNNs Boosting, training stage multiple 

EMWCNNs are trained as weak learners and fine‐tuned to minimize the weighted error. Meanwhile, 

optimum weights are selected. Subsequently, combine the predictions of multiple EMWCNNs to achieve 

a boosting‐based prediction in the reference stage. The proposed EMWCNN Boosting is described in 

detail in Algorithm 1. Notably, the final predictive inference is determined via a majority voting strategy. 

Algorithm 1: EMWCNN Boosting Algorithm 

Input: Labelled Training Samples  Where Q Is The Gene Expression Data Sample 

Number, & Denotes The Rows And Columns Of The Sample, Labels , Iteration Number T, 
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MWCNN Optimization Parameters , Label Number C 

Training: Initialize the distribution uniformly :  

Loop: For  

Step 1: Train CNN t with S and while randomly selecting  

Step 2: Predict the labels of validation set by the maximum probability of output perceptrons 

 

Step 3: Calculate the error on ,  and c is 

the actual label 

Step 4: Choose  as ,  

Step 5: Update distribution ,  is the normalization factor to make 

 

End  

Output:  ,Then the classification is subsequently executed with mutation weighted probability 

and majority voting  

4. RESULTS AND DISCUSSION 

In order to validate the algorithms of Sort Aggregation -EFS, and proposed HEFS algorithm, experiments 

are conducted on the following four gene expression microarray datasets. 

4.1.      DATASET DESCRIPTIONS 

Experiments are conducted on the following four gene expression microarray datasets: 

Prostate cancer 

Prostate data consisted of 102 samples where 50 samples are prostate tumors and 52 sample is normal. 

Each sample contains 10509 genes. This dataset can be downloaded at http://www.gems-system.org/. 

SRBCT data 

Small Round Blue-Cell Tumor (SRBCT) dataset consists of 83 samples, each containing 2,308 genes. 

The tumors are Burkett’s Lymphoma (BL), the Ewing Family of tumors, NeuroBlastoma (NB) and 

RhabdoMyo Sarcoma (RMS). There are 63 samples for training and 20 samples for testing. The training 

set consists of 8, 23, 12 and 20 samples of BL, EWS, NB and RMS respectively. The test set consists of 

3, 6, 6 and 5 samples of BL, EWS, NB and RMS respectively. This dataset can be downloaded at http:// 

www.biolab. si/ supp /bi-cancer/projections/info/ SRBCT.html 
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Leukemia 

Leukemia dataset holds expression levels of 7129 genes in use over 72 models. This dataset is of the 

similar type as the colon cancer dataset and can 56 consequently be used for the similar kind of 

experiments. It consists of 72 sample, 25 samples of Acute Myeloid Leukemia (AML) and 47 samples of 

Acute Lymphoblastic Leukemia (ALL). The source of the gene expression measurements is taken from 

63 bone marrow samples and 9 peripheral blood samples. This dataset can be downloaded at 

http://cilab.ujn.edu.cn/datasets.html. 

 

 

Lymphoma  

Lymphoma has two distinct tumor subtypes of B-DLCL are germinal center B cell-like DLCL and 

activated B cell-like DLCL. Lymphoma dataset consists of 24 samples of germinal center B-like and 23 

samples of activated B-like. Lymphoma dataset holds 42 samples resultant from diffuse large B-cell 

lymphoma (DLBCL) and 9 samples from Follicular Lymphoma (FL) later than 11 samples from Chronic 

Lymphocytic Leukemia (CLL) downloaded from http://csse.szu.edu.cn/staff/zhuzx/Datasets.html. The 

whole dataset hold 4026 genes. This dataset contains some missing values which are imputed using K-

Nearest Neighbor method. Table 1 briefly summarizes these datasets. 

TABLE 1. GENE DATASETS CHARACTERISTICS 

DATASETS #GENE #INSTANCE #CLASS 

LEUKEMIA 7129 72 2 

LYMPHOMA 4026 62 3 

PROSTATE CANCER 10509 102 2 

SMALL ROUND BLUE CELL TUMORS (SRBCT) 2308 83 4 

 

4.2.     PERFORMANCE METRICS  

To evaluate the performance of proposed feature selection algorithm we use four well known classifiers, 

namely, Support Vector Machines (SVM) , Recursive Neural Networks (RNN), CNN,  and proposed 

Ensemble Mutation Weight Convolutional Neural Network (EMWCNN). The performance of proposed 

Hybrid Ensemble Feature Selection (HEFS) algorithm is compared with standard EFS with respect to 

four benchmark datasets such as Prostate cancer, Small Round Blue Cell Tumors (SRBCT), Leukemia, 

and Lymphoma via MATLAB environment. These methods are assessed using the classification metrics 

like precision, recall, accuracy and Area Under Curve (AUC). Four effective measures calculated from 

confusion matrix output from the Table 2, which are True Positive (TP), False Positive (FP), True 

Negative (TN) and False Negative (FN).  

Precision is also referred to as positive predictive value as shown in equation (6) 

http://cilab.ujn.edu.cn/datasets.html
http://csse.szu.edu.cn/staff/zhuzx/Lymphoma.zip
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Precision=TP/(TP+FP) (6) 

Recall also known as sensitivity is a true positive rate that is the ratio of True Positive (TP) to the sum of 

True Positives (TP) and False Negatives (FN) as shown in equation (7) 

Recall=TP/(TP+FN)(7) 

Accuracy works by considering the number of correctly classified samples to the ratio of the total number 

of test samples as shown in equation (8) 

Accuracy=(TP+TN)/(TP+TN+FP+FN)(8) 

Another measure is the Area Under Curve (AUC) wherein the curve is the receiver operating 

characteristic (ROC-curve) curve. The ROC-curve is the graphical plot of the True Positive Rate (TPR) 

versus the False Positive Rate (FPR) for a binary classifier as its discrimination threshold is varied. 

TABLE 2.CONFUSION MATRIX 

Total population Predicted class  

Prediction Positive Prediction Negative 

Actual class  Condition Positive True Positive (TP) False Negative (FN) 

Condition Negative False Positive (FP) True Negative  (TN) 

4.3.     COMPARISON OF PERFORMANCE METRICSVS.METHODS 

To evaluate the performance of proposed feature selection algorithm we use four well known classifiers, 

namely, Support Vector Machines (SVM) , Recursive Neural Networks (RNN), CNN,  and proposed 

Ensemble Mutation Weight Convolutional Neural Network (EMWCNN). The following figures show the 

results of various metrics with four benchmark datasets.  
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FIGURE.3 PRECISION RESULTS COMPARISON VS. GEM DATASETS 

Figure 3 shows the comparison of proposed HEFS feature selection and existing SA-EFS feature 

selection in terms of precision. These feature selection methods have been experimented using three 

classifiers such as KNN, SVM, CNN and EMWCNN. In x-axis, four benchmark datasets have been 

considered and the precision results are shown in the y-axis. From this analysis, it is analyzed that the 

proposed HEFS feature selection technique can achieve better precision than other existing EFS. From 

classifiers (SVM, RNN, CNN and EMWCNN), proposed HEFS–EMWCNN gives highest precision of 

98.7500% for prostate cancer dataset which is 7.72% higher than SA-EFS-EMWCNN (See Table 3). 

Similarly, the precision value of HEFS–CNN for prostate cancer dataset is 7.73% higher than SA-EFS-

CNN, HEFS-RNN is 7.74% higher than SA-EFS– RNN, and HEFS-SVM is 4.40% higher than SA-EFS–

SVM(See Table 3).  
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FIGURE.4 RECALL RESULTS COMPARISON VS. GEM DATASETS 

Figure 4 shows the comparison of proposed HEFS feature selection and existing SA-EFS feature 

selection in terms of recall. These feature selection methods have been experimented using three 

classifiers such as KNN, SVM, CNN and EMWCNN. In x-axis, four benchmark datasets have been 

considered and the recall results are shown in the y-axis. From this analysis, it is analyzed that the 

proposed HEFS feature selection technique can achieve better recall than other existing EFS. From 

classifiers (SVM, RNN, CNN and EMWCNN), proposed HEFS–EMWCNN gives highest recall of 

97.5310% for prostate cancer dataset which is 7.658% higher than SA-EFS-EMWCNN (See Table 3). 

Similarly, the recall value of HEFS–CNN for prostate cancer dataset is 7.642% higher than SA-EFS-

CNN, HEFS-RNN is 6.538% higher than SA-EFS–RNN, and HEFS-SVM is 6.329% higher than SA-

EFS–SVM (See Table 3).  
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FIGURE.5  ACCURACY RESULTS COMPARISON VS. GEM DATASETS 

Figure 5 shows the comparison of proposed HEFS feature selection and existing SA-EFS feature 

selection in terms of accuracy. These feature selection methods have been experimented using three 

classifiers such as KNN, SVM, CNN and EMWCNN. In x-axis, four benchmark datasets have been 

considered and the accuracy results are shown in the y-axis.  From classifiers (SVM, RNN, CNN and 

EMWCNN), proposed HEFS–EMWCNN gives highest accuracy of 97.0873 % for prostate cancer dataset 

which is 11.7932% higher than SA-EFS-EMWCNN (See Table 3). Similarly, the accuracy value of 

HEFS–CNN for prostate cancer dataset is 11.7647% higher than SA-EFS-CNN, HEFS-RNN is 10.7843% 

higher than SA-EFS– RNN, and HEFS-SVM is 7.8431% higher than SA-EFS–SVM (See Table 3).  

TABLE 3.RESULTS COMPARISON OF GEM DATASETS VS. CLASSIFIERS 

Methods/Metrics Leukemia Dataset Prostate Cancer Dataset 

Precision(

%) 

Recall(%

) 

Accuracy(%

) 

Precision(%

) 

Recall(%

) 

Accuracy(%

) 

SA-EFS-SVM 88.8888 85.1063 83.3333 88.4600 87.3420 81.3725 

SA-EFS-RNN 89.3617 87.5000 84.7222 88.4600 88.4620 82.3529 

SA-EFS-CNN 91.4894 89.5833 87.5000 89.7400 88.6080 83.3333 
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SA-EFS-EMWCNN 93.4782 91.4894 90.2778 
91.0300 89.8730 85.2941 

HEFS-SVM 93.6170 93.6170 91.6666 92.5000 93.6710 89.2156 

HEFS-RNN 95.7446 95.7446 94.4444 96.2000 95.0000 93.1372 

HEFS-CNN 97.8261 95.7446 
95.8333 97.4700 96.2500 95.0980 

HEFS-EMWCNN 97.8723 97.8723 
97.2222 98.7500 97.5310 97.0873 

Methods/Metrics Lymphoma Dataset SRBCT Dataset 

Precision(

%) 

Recall(%

) 

Accuracy(%

) 

Precision(%

) 

Recall(%

) 

Accuracy(%

) 

SA-EFS-SVM 85.4494 87.1240 88.7100 82.6540 81.7085 84.3370 

SA-EFS-RNN 87.5144 86.3746 90.3230 85.3472 84.4407 86.7470 

SA-EFS-CNN 90.2923 90.2923 91.9350 90.3755 88.3243 90.3610 

SA-EFS-EMWCNN 92.8567 92.8567 93.5480 93.3240 91.0183 92.7710 

HEFS-SVM 93.9707 93.3334 95.1610 90.6170 89.6230 91.5660 

HEFS-RNN 96.3214 95.5557 96.7740 92.6297 92.6345 93.9760 

HEFS-CNN 94.8717 96.7180 96.7740 95.7500 93.3928 95.1810 

HEFS-EMWCNN 99.0990 97.6190 98.3870 98.0000 96.7263 95.7900 
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FIGURE.6 (a) ROC CURVE VS. CLASSIFIERS (PROSTATE CANCER DATASET) 

 

FIGURE.6 (b) ROC CURVE VS. CLASSIFIERS (SRBCT DATASET) 
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FIGURE.6 (c) COMPARISON OF ROC CURVE VS. CLASSIFIERS (LEUKEMIA DATASET) 

 

FIGURE.6 (d) COMPARISON OF ROC CURVE VS. CLASSIFIERS (LYMPHOMA DATASET) 

In Figure 6(a-d), see that the area under the ROC curves (AUC) obtained by the HEFS–EMWCNN 

algorithm is the largest when compared to other methods. AUC obtained by the HEFS–EMWCNN 

algorithm is much higher for prostate cancer dataset when compared to other datasets. In Figure 6(a-d), 
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see that the effect of HEFS with four classifiers is higher when compared to the effect of SA-EFS with 

classifiers. 

 

5. CONCLUSION AND FUTURE WORK  

Classification approaches have been developed, adopted, and applied to distinguish disease classes at the 

molecular level using microarray data. Firstly, Feature subset produced by Hybrid Ensemble Feature 

Selection (HEFS) algorithm is used for classification. Secondly HEFS algorithm combines the three 

feature selection algorithms such as filter, embedded method and wrapper. Then Ensemble Mutation 

Weight Convolutional Neural Network (EMWCNN) is introduced for binary class classification and 

multiclass classification using microarray gene expression data. The most unique advantage of the 

EMWCNN approach is its ability to explore both the binary and the multiclass underlying relationships 

between the target features of a given disease classification problem and the involved explanatory gene 

expression data. EMWCNN classifier is pre-trained and fine‐tuned with training samples to learn network 

parameters. The ensemble weights are determined via adaptive mutation operator in multiple EMWCNN 

which are used to collaboratively infer the labels of testing gene expression data in the fusion layer. 

Multiple CNNs are trained as weak learners and fine-tuned to minimize the weighted error.  Then, 

weights are generated according to the properties of the EMWCNNs with ensemble. Subsequently, 

combine the predictions of multiple EMWCNNs to achieve a boosting‐based prediction in the reference 

stage. This classifier is subsequently executed with mutation weighted probability and majority voting. 

The experimental results carried out by using gene expression data which are available on the UCI 

repository. It has been tested with two class and multi-class datasets and compared with the classical 

classification algorithms such as RNN, SVM, and CNN. The performance of four classifiers are examined 

using gene expression data and evaluated using Receiver Operating Characteristic (ROC) curve from 

Prostate cancer, Small Round Blue-Cell Tumor (SRBCT) data, Leukemia and Lymphoma. The result of 

this work is used to the drug designer for the pathway analysis and disease treatment decisions. 
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