Turkish Online Journal of Qualitative Inquiry (TOJQI) Volume 12, Issue 7, July 2021: 11219 – 11226

Research Article

I-Open(Closec) set and I-Continuous, I-Open(Closed) map in Hesitant Fuzzy Ideal Topological Space

Ramla Mahdi Thgeel, Hadeel Ali Hassen and Mayada Gassab Mohammed

Department of Mathematics, College of Education for Pure Sciences, University

of Thi-Qar

Abstract

In this paper, we introduce the definition of I- open (closed) set

in hesitant fuzzy ideal topological space and we prove some results about it. Also, we define the concept I-continuous and I-open (closed) map with prove results on them.

1.Introduction

The notion of fuzzy set was present by L.A. Zadeh [9] in 1965. Torra and Narukawa [8] in 2009. Torra [7] in 2010 was introduced the notion of hesitant fuzzy set, that is a function form a set to a power set of the unit interval, the notion of hesitant fuzzy set was the other generalization of the notion fuzzy sets.

In 1966 K. Kuratowski [3] was the first introduced the basic concept "ideal topological space, local function and closure operators. M.E. Abd EL- Monsef, E.F. Lashien and A. A. Nase[1] in 1992 were introduced more new properties of I-openness. Also, were introduced new topological notions via ideals, I-closed sets, I- continuous function, I- open (closed) function.

J. Dontchev [2] In 1997 was studied the idea Hausdorff spaces via topological ideals and I- irresolute functions. D. Sarker [6] was introduced to fuzzy ideal in fuzzy theory and the concept of fuzzy local function. A.A. Salama and S.A. Alblowi [5] in 2012 were studied intuitionistic fuzzy ideals and intuitionisyic fuzzy local function.

J.G. Lee and K. Hur[] in 2020 defined hesitant fuzzy topological space and base, obtain some of their properties, respectively. Also, we introduce the concepts of a hesitant fuzzy neighborhood, closure, and interior and obtain some of their properties

Furthermore, we define a hesitant fuzzy continuous mapping and investigate some of its properties. Furthermore, we define a hesitant fuzzy subspace and obtain some of its properties.

Keywords: I-open (closed) set and I- continuous, I-open (closed) map, hesitant fuzzy ideal topological space.

2.Preliminaries

Definition(2.1)[3]

An ideal I on a set X is a non-empty collection of subsets of X which satisfies the following:

1) $A \in I$ and $B \subseteq A$ then $B \in I$.

2) $A \in I$ and $B \in L$ then $A \cup B \in I$.

If (X, τ) be a topological space and I an ideal on X, the triple (X, τ, I) is said to be ideal topological space.

Definition(2.2)[3]

An ideal topological space is a topological space (X, τ) with an ideal *I* on *X* and is denoted by (X, τ, I) . For a subset $A \subseteq X$, $A^*(I, \tau) = \{x \in X : A \cap \mu \notin I, \forall \mu \in N(x)\}$ is called the local function of *A* with respect to *I* and τ . We will write $A^*(I)$ or simply A^* for $A^*(I, \tau)$.

Definition(2.3)

Let X is a non- empty set and L anon- empty family of hesitant fuzzy sets. We will call L is a hesitant fuzzy ideal on X (HFI, for short) if:

- 1) If $h \in L$ and $k \subseteq h \Rightarrow k \in L$,
- 2) If $h \in L$ and $k \in L \Rightarrow h \cup k \in L$.

Example (2.4)

Let $X = \{a, b\}$ and $h = \{\langle a, \{0.1, 0.3\} \rangle, \langle b, \{0.2, 0.3\} \rangle\}.$

Then, $L = \{h^0, h, k : k \in HFL(X) \text{ and } k \subseteq h\}$ is hesitant fuzzy ideal on *X*. *Definition* (2.5)

Let *X* be a reference set. Then:

1) If $L_1 = \{h^0\}$, then L_1 is said to be the smallest hesitant fuzzy ideal on X,

2) If L_2 is all hesitant fuzzy set, then L_1 is said to be the largest hesitant

fuzzy ideal on X.

Definition (2.6)

Let (X, τ) be a hesitant fuzzy topological space and *L* be a hesitant fuzzy ideal on *X*, then (X, τ, L) is said to be a hesitant fuzzy ideal topological space (in short, *HFLTS*).

3.1- Open (Closed) in Hesitant Fuzzy Ideal Topological Space

Definition (3.1)

Let (X, τ, L) be a hesitant fuzzy ideal topological space and $h \in HFS(X)$, h is said to be I –open if $h \subseteq int_H(h^*)$ we denoted by $IO(X, \tau) = \{h \in HFS(X): h \subseteq int_H(h^*)\}$ or simply write IO for $IO(X, \tau)$. And h is said to be I –closed if its complement is $IO(X, \tau)$, [i.e. $h^c \in IO(X, \tau)$], it denoted by $IC(X, \tau)$.

Example (3.2)

Let $X = \{x\}, \tau = \{h^0, h^1, k\}$ and $= \{h^0\}$, where k(x) = [0.2, 0.5], h(x) = [0.4, 0.6] and $\alpha = \{0.2\}$ Since $h^*(L, \tau) = \cup \{x_\alpha \in H_P(X): h \cap U \notin L, U \in \tau\}$. Then, $x_\alpha \in H_P(X)$ implies $h^1 \cap h \notin L$ and $k \cap h \notin L$. Then, $h^*(L, \tau) = cl_H(h)$ Since $cl_H(h) = \cap \{F \text{ is hesitant fuzzy closed set in } : h \subseteq F\}$. Then, $HFCS(X) = \{h^1, h^0, k^c\}$, where $k^c(x) = [0, 0.2) \cup (0.5, 1]$ So, $h \subseteq h^1$ implies $cl_H(h) = h^1$, then $int_H(cl_H(h)) = int_H(h^1)$ Since $int_H(h^1) = \cup \{U \text{ is hesitant fuzzy open set in } \tau : U \subseteq h\}$. Then, $h^0 \subseteq h^1, h^1 \subseteq h^1, k \subseteq h^1$ implies $int_H(h) = h^0 \cup h^1 \cup k = h^1$. Hence $int_H(cl_H(h)) = h^1$, then $h \subseteq int_H(h^*)$. Then, h is I – open set. **Proposition (3.3)** Let (X, τ, L) be a hesitant fuzzy ideal topological space and $h, k \in HFS(X)$. if $h \in IO(X, \tau)$ and $k \in \tau$, then $h \cap k \in IO(X, \tau)$.

Proof

Since $h \in IO(X, \tau)$, then $h \subseteq int_H(h^*)$. Then $h \cap k \subseteq int_H(h^*) \cap k$. Since $k \in \tau$. Implies $int_H(k) = k$ Hence $h \cap k \subseteq int_H(h^*) \cap int_H(k) = int_H(h^* \cap k)$. So, $h \cap k \subseteq int_H(h^* \cap k)$, by Theorem $[A^* \cap B \subseteq (A \cap B)^*]$, then $h^* \cap k \subseteq (h \cap k)^*$ Hence $int_H(h^* \cap k) \subseteq int_H(h \cap k)^*$ So, $h \cap k \subseteq int_H(h^* \cap k) \subseteq int_H(h \cap k)^*$. Thus $h \cap k \subseteq int_H(h \cap k)^*$. Hence $h \cap k \in IO(X, \tau)$.

Remark (3.4)

The intersection of two I –open sets need not be I –open set as the following example. *Example* (3.5) Let $X = \{x\}, \tau = \{h^0, h^1, h_1, h_2\}$ and $= \{h^0\}$, where $h_1(x) = \{0.1, 0.2\}, h_2(x) = \{0.1, 0.2, 0.3\}, h(x) = \{0.1, 0.3\}, h($ $k(x) = \{0.2, 0.3, 0.4\}, \alpha = \{0.1\}.$ Then, $h^*(L, \tau) = cl_H(h)$. Since $cl_H(h) = \cap \{F \text{ is } HFCS(X): h \subseteq F\}$. $HFCS(X) = \{h^1, h^0, h^c_1, h^c_2\}$, such that $h^c_1 = [0, 0.1) \cup (0.1, 0.2), \cup (0.2, 1]$, $h_2^c = [0, 0.1) \cup (0.1, 0.2) \cup (0.2, 0.3) \cup (0.3, 1].$ Then $h \subseteq h^1$ implies $cl_H(h) = h^1$ Since $int(h^1) = \bigcup \{ U \in \tau : U \subseteq h^1 \}$. Then $h^0 \subseteq h^1, h^1 \subseteq h^1, h_1 \subseteq h^1, h_2 \subseteq h^1$ Thus, $int(h^1) = h^0 \cup h^1 \cup h_1 \cup h_2 = h^1$. Hence $h \subseteq int_H(h^*)$. Then h is I – open. To prove, k is I – open. Since $L = \{h^0\}$, then $k^*(L, \tau) = cl_H(k)$. Since $cl_H(k) = \cap \{G \text{ is } S(X): k \subseteq G\}$. $HFCS(X) = \{h^1, h^0, h_1^c, h_2^c\}$. Where, $h_1^c = [0, 0.1) \cup (0.1, 0.2), \cup (0.2, 1],$ $h_2^c = [0, 0.1) \cup (0.1, 0.2) \cup (0.2, 0.3) \cup (0.3, 1].$ Then $k \subseteq h^1$ implies $cl_H(k) = h^1$ Since $int(h^1) = \bigcup \{A \in \tau : A \subseteq h^1\}$. Then $h^0 \subseteq h^1, h^1 \subseteq h^1, h_1 \subseteq h^1, h_2 \subseteq h^1$ Thus, $int(h^1) = h^0 \cup h^1 \cup h_1 \cup h_2 = h^1$. Hence $k \subseteq int_H(h^*)$. Then k is I – open. So that $h(x) \cap k(x) = A(x) = \{0.3\}$, then $A^*(L, \tau) = cl_H(A)$ Hence $A \subseteq h_1^c$, $A \subseteq h^1$ implies $cl_H(A) = h_1^c \cap h^1 = h_1^c$. Then $int_H(h_1^c) = h^0$ implies $A \not\subseteq int_H(A^*)$. Thus A is not I – open **Remark** (3.6) The concept I –open sets and open sets are independent 4. I-Continuous and I-Open (Closed) mapping in Hesitant Fuzzy Ideal Topological Space **Definition** (4.1)

A map $f: (X, \tau, I) \to (Y, \psi)$ is said to be I - continuous mapping if every open set $h \in \psi, f^{-1}(h) \in IO(X, \tau)$.

Definition (4.2)

A map $f:(X,\tau,I) \to (Y,\psi,J)$ is said to be *I*-irresolute continuous mapping if every $h \in IO(Y,\psi), f^{-1}(h) \in IO(X,\tau)$ and denoted by Irr - continuous mapping.

Definition (4.3)

A map $f: (X, \tau) \rightarrow (Y, \psi, I)$ is said to be I – open if every $h \in \tau$,

 $f(h) \in IO(Y, \psi).$

Definition (4.4)

A map $f: (X, \tau, I) \to (Y, \psi, J)$ is said to be *I* –irresolute open if every $h \in IO(X, \tau), f(h) \in IO(Y, \psi)$ and denoted by *Irr* – open.

Definition (4.5)

A map $f(X, \tau) \rightarrow (Y, \psi, I)$ is said to be I – closed if every $h \in \tau$,

 $f(h) \in IC(Y, \psi).$

Definition(4.6)

A map $f: (X, \tau, I) \to (Y, \psi, J)$ is said to be *I*-irresolute closed if every $h \in IC(X, \tau), f(h) \in IC(Y, \psi)$ and denoted by Irr - closed.

Proposition (4.7)

Let $f: (X, \tau_1, L_1) \rightarrow (Y, \tau_2, L_2)$ is Irr – continuous and $g: (Y, \tau_2, L_2) \rightarrow (Z, \tau_3)$ is I – continuous, then $g \circ f: (X, \tau_1, L_1) \rightarrow (Z, \tau_3)$ is I – continuous function.

Proof

Let $h \in \tau_3$ since g is I – continuous, then $g^{-1}(h) \in IO(Y, \tau_2)$. Since f is Irr- continuous and $g^{-1}(h) \in IO(Y, \tau_2)$. Then $f^{-1}(g^{-1}(h)) \in IO(X, \tau_1)$.Since $f^{-1}(g^{-1}(h)) = (g \circ f)^{-1}(h)$ Hence $(g \circ f)^{-1}(h) \in IO(X, \tau_1)$.Thus $g \circ f$ is I – continuous.

Example (4.8)

The identity mapping $I: (X, \tau, L) \to (X, \tau, L)$ is Irr - I – continuous. Let $h \in IO(X, \tau)$, then $f^{-1}(h) = h \in IO(X, \tau)$.

Theorem (4.9)

Let $f: (X, \tau_1, L_1) \rightarrow (Y, \tau_2)$ be a mapping, then the following are equivalent:

- 1) f is I continuous.
- 2) For each $x_{\alpha} \in H_P(X)$ and $h \in \tau_2$ containing $f(x_{\alpha})$, there exist $k \in IO(X, \tau_1)$ containing x_{α} such that $f(k) \subseteq h$.
- 3) For each $x_{\alpha} \in H_P(X)$ and each $h \in \tau_2$ containing $f(x_{\alpha}), (f^{-1}(h))^*$ is a neighbor hood of x_{α} .

Proof (1) \Rightarrow (2) Let $x_{\alpha} \in H_P(X)$ and $h \in \tau_2$ containing $f(x_{\alpha})$, By (1) f is I – continuous, then $f^{-1}(h) \in IO(X, \tau_1)$, put $f^{-1}(h) = k$ Then $k \in IO(X, \tau_1)$. Since $f(x_{\alpha}) \in h$ implies $x_{\alpha} \in f^{-1}(h)$, so $x_{\alpha} \in k$. Then $f(k) = f(f^{-1}(h))$ and $f(f^{-1}(h)) \subseteq h$. Hence $f(k) \subseteq h$. **Proof** (2) \Rightarrow (3) Let $x_{\alpha} \in H_P(X)$ and $h \in \tau_2$ containing $f(x_{\alpha})$.

From (2) $x_{\alpha} \in f^{-1}(h)$, since f is I – continuous, then $f^{-1}(h)$ is I – open

Then $f^{-1}(h) \subseteq int_H(f^{-1}(h))^* \subseteq (f^{-1}(h))^*$

 $x_{\alpha} \in f^{-1}(h) \subseteq (f^{-1}(h))^*$ implies $(f^{-1}(h))^*$ is neighborhood of x_{α} .

Proof (3) \Rightarrow (1)

Let $x_{\alpha} \in H_P(X)$, $h \in \tau_2$ containing $f(x_{\alpha})$ and $(f^{-1}(h))^*$ is neighborhood of x_{α} . Since $(f^{-1}(h))^*$ is neighborhood of x_{α} , there exists I – open set k such that $x_{\alpha} \in k \subseteq (f^{-1}(h))^*$, then $f(k) \subseteq f(f^{-1}(h))^* \subseteq h$.

Theorem(4.10)

A function $f: (X, \tau_1, L_1) \rightarrow (Y, \tau_2)$ is I – continuous if and only if the inverse image of each hesitant fuzzy closed set in τ_2 is I –closed.

Proof

Suppose that f is I – continuous and h hesitant fuzzy closed set in τ_2 Then h^c is hesitant fuzzy open set in τ_2 , since f is I – continuous

So, $f^{-1}(h^c) \in IO(X, \tau_1)$, then $(f^{-1}(h))^c \in IO(X, \tau_1)$, Thus $f^{-1}(h) \in I$ -closed in τ_1

Suppose that the inverse image of each hesitant fuzzy closed set in τ_2 is

I –closed, let $h \in \tau_2$

Implies h^c is hesitant fuzzy closed set in τ_2 , then $f^{-1}(h^c) \in I$ -closed in τ_1

Then $f^{-1}(h^c) \in I$ -closed in τ_1 implies $f^{-1}(h))^c \in I$ -closed in τ_1

Hence $f^{-1}(h) \in IO(X, \tau_1)$.

Theorem(4.11)

Let $f: (X, \tau_1, L_1) \rightarrow (Y, \tau_2, L_2)$ is I – continuous and $f^{-1}(h^*) \subseteq (f^{-1}(h))^*$. Then f is Irr – continuous.

Proof

Let $h \in IO(Y, \tau_2)$ implies $h \subseteq int_H(h^*)$. Then $f^{-1}(h) \subseteq f^{-1}(int_H(h^*))$, so $f^{-1}(h) \subseteq int_H(f^{-1}(h^*))$.

Since $f^{-1}(h^*) \subseteq (f^{-1}(h))^*$, then $int_H(f^{-1}(h^*)) \subseteq int_H(f^{-1}(h))^*$

Then $f^{-1}(h) \subseteq int_H(f^{-1}(h^*)) \subseteq int_H(f^{-1}(h))^*$.

Hence $f^{-1}(h) \subseteq int_{H}(f^{-1}(h))^{*}$. Then $f^{-1}(h) \in IO(X, \tau_{1})$.

Theorem (4.12)

Let $f: (X, \tau_1, L_1) \to (Y, \tau_2, L_2)$ and $g: (Y, \tau_2, L_2) \to (Z, \tau_3)$, if f is surjection, $(g \circ f)^{-1}(h^*) \subseteq ((g \circ f)^{-1}(h))^*$ and both f and g are l – continuous then $g \circ f$ is l – continuous. **Proof**

Let *h* is hesitant fuzzy open set in τ_3 , since *g* is *I* – continuous, then $g^{-1}(h) \in IO(Y, \tau_2)$ implies $g^{-1}(h) \subseteq int_H(g^{-1}(h))^*$. Then $f^{-1}(g^{-1}(h)) \subseteq f^{-1}(int_H(g^{-1}(h))^*)$. Implies $f^{-1} \circ g^{-1}(h) \subseteq int_H(f^{-1}(g^{-1}(h^*)))$. Then $f^{-1} \circ g^{-1}(h) \subseteq int_H(f^{-1} \circ g^{-1}(h^*))$. So, $(g \circ f)^{-1}(h) \subseteq int_H(g \circ f)^{-1}(h)) \subseteq int_H((g \circ f)^{-1}(h))^*$ Then $(g \circ f)^{-1}(h) \subseteq int_H((g \circ f)^{-1}(h))^*$ Hence $(g \circ f)^{-1}(h) \in IO(X, \tau_1)$. *Theorem* (4.13) Let $f:(X,\tau_1,L_1) \to (Y,\tau_2,L_2)$ and $g:(Y,\tau_2,L_2) \to (Z,\tau_3,L_3)$ are two I-open function, then $g \circ f:(X,\tau_1,L_1) \to (Z,\tau_3,L_3)$ is I-open.

Proof

Let *h* is hesitant fuzzy open set in τ_1 .

Since *f* is *I* –open function, then $f(h) \in IO(Y, \tau_2)$.

Since g is I –open function and $f(h) \in IO(Y, \tau_2)$, then $g(f(h)) \in IO(Z, \tau_3)$,

Then $g \circ f(h) \in IO(Z, \tau_3)$. Hence $g \circ f I$ –open function.

Theorem (4.14)

Let $f: (X, \tau_1) \to (Y, \tau_2, L)$ is I -open if for each $x_\alpha \in H_P(X)$ and each neighborhood of x_α there exist I -open set $k \in HFS(X)$ containing $f(x_\alpha)$ such that $k \subseteq f(h)$

Proof

Let $x_{\alpha} \in H_P(X)$ and $\in \tau_1$. Since f is I –open, then $f(k) \in IO(Y, \tau_2)$.

So that, $f(k) \subseteq int_H(f^{-1}(k))^*$.

Since there exists neighborhood of x_{α} then $x_{\alpha} \in k \subseteq h$.

Since $x_{\alpha} \in k$, then $f(x_{\alpha}) \in f(k)$. So that, $f(k) \subseteq f(h)$. Implies $A = f(k) \subseteq f(h)$.

Theorem(4.15)

For any bijective function $f: (X, \tau_1) \rightarrow (Y, \tau_2, L)$ the following are equivalent:

(1) $f^{-1}: (Y, \tau_2, L) \longrightarrow (X, \tau_1)$ is I – continuous

(2) f is I – open.

(3) f is I – closed.

Proof $(1) \Rightarrow (2)$

Suppose that f^{-1} is I – continuous and h is hesitant fuzzy open set in τ_1

Then $(f^{-1})^{-1}(h) \in IO(Y, \tau_2)$, so $f(h) \in IO(Y, \tau_2)$. Hence f is I – open. **Proof** (2) \Rightarrow (3)

Suppose that f is I – open and h is hesitant fuzzy closed set in τ_1

Then h^c is hesitant fuzzy open set in τ_1 since f is I – open.

So, $f(h^c) \in IO(Y, \tau_2)$ implies $(f(h))^c \in IO(Y, \tau_2)$

Hence $f(h) \in I$ – closed in τ_2 . Thus f is I – closed.

Proof $(3) \Rightarrow (1)$

Suppose that f is I – closed and h is hesitant fuzzy open set in τ_1 .

Then h^c is hesitant fuzzy closed set in τ_1 , since f is I – closed.

So $f(h^c) \in I$ – closed in τ_2 implies $(f(h))^c \in I$ – closed in τ_2

Hence $f(h) \in IO(Y, \tau_2)$, since $(f^{-1})^{-1}(h) = f(h)$.

Then $(f^{-1})^{-1}(h) \in IO(Y, \tau_2)$. Thus f^{-1} is I – continuous.

Theorem (4.16)

If $f: (X, \tau_1, L_1) \to (Y, \tau_2, L_2)$ is Irr – open and for each $h \in HFS(S)$, $f(h^*) \subset [f(h)]^*$, then the image of each I – open set is I – open. **Proof** Suppose that $h \in IO(X, \tau_1)$, then $h \subseteq int_H(h^*)$ Implies $f(h) \subseteq f(int_H(h^*))$. Then $f(h) \subseteq int_H(f(h^*))$.

Since $int_H(f(h^*)) \subseteq int_H(f(h))^*$.

Then
$$f(h) \subseteq int_H (f(h))^*$$
. Hence $f(h) \in IO(Y, \tau_2)$.

Theorem (4.17)

Let $f: (X, \tau_1, L_1) \rightarrow (Y, \tau_2, L_2)$ and $g: (Y, \tau_2, L_2) \rightarrow (Z, \tau_3, L_3)$ are two functions where L_1, L_2, L_3 are ideals on *X*, *Y* and *Z* respectively. Then:

- 1) $g \circ f$ is I -open, if f is open function and g is I -open.
- 2) f is I –open if $g \circ f$ is open and g is I continuous.
- 3) If f and g are two I -open, f is surjective and $g(h^*) \subset [g(h)]^*$ for each $h \in HFS(X)$, then $g \circ f$ is I -open.

Proof (1)

Suppose that $g \circ f: (X, \tau_1, L_1) \to (Z, \tau_3, L_3)$ and *h* is hesitant fuzzy open set in τ_1 , since *f* is open, then f(h) is hesitant fuzzy open set in τ_2 . Since *g* is *I* –open and $f(h) \in \tau_2$, then $g(f(h) \in IO(Z, \tau_3)$. Hence $g \circ f(h) \in IO(Z, \tau_3)$. Thus, $g \circ f$ is *I* –open.

Proof (2)

Let *h* is hesitant fuzzy open set in τ_1 , since $g \circ f$ is open function.

Then $g \circ f(h)$ is hesitant fuzzy open set in τ_3 , since g is I – continuous.

Implies g^{-1} $(g \circ f)(h) \in IO(Y, \tau_2)$, then $f(h) \in IO(Y, \tau_2)$. Thus f is I -open.

Proof (3)

Let $h \in \tau_1$. Since f is I -open, then $(h) \in IO(Y, \tau_2)$. Implies $f(h) \subseteq int_H(f(h))^*$. Then $g(f(h)) \subseteq g(int_H(f(h))^*)$. So, $(g \circ f)(h) \subseteq int_H(g(f(h))^*)$ $(g \circ f)(h) \subseteq int_H(g(f(h^*)))$, so $(g \circ f)(h) \subseteq int_H(g \circ f)(h^*)$ $(g \circ f)(h) \in IO(Z, \tau_3)$. Then $g \circ f$ is I -open.

Theorem (4.18)

Let $f: (X, \tau_1, L_1) \to (Y, \tau_2, L_2)$ and $g: (Y, \tau_2, L_2) \to (Z, \tau_3, L_3)$ are two functions where L_1, L_2, L_3 are ideals on *X*, *Y* and *Z* respectively. Then:

1) $g \circ f$ is *I* –continuous, if *f* is continuous function and *g* is *I* – continuous.

2) f is I – continuous if $g \circ f$ is continuous and g is I – open.

Proof (1)

Let $g \circ f: (X, \tau_1, L_1) \to (Z, \tau_3, L_3)$ and $h \in \tau_3$. Since g is I – continuous, $g^{-1}(h) \in IO(Y, \tau_2)$. Then f is continuous, then $f^{-1}(g^{-1}(h)) \in IO(X, \tau_1)$. Thus, $(g \circ f)^{-1}(h) \in IO(X, \tau_1)$. Hence $g \circ f$ is I – open. **Proof** (2) Let $h \in \tau_2$, since g is I – open, then $g(h) \in IO(Z, \tau_3)$.

Let $h \in \tau_2$, since g is I –open, then $g(h) \in IO(2, \tau_3)$. Since $g \circ f(h)$ is continuous, then $(g \circ f)^{-1}(g(h)) \in IO(X, \tau_1)$. Then, $f^{-1}(g^{-1}(g(h)) \in IO(X, \tau_1)$. Implies $f^{-1}(h) \in IO(X, \tau_1)$. Thus, f is I –open.

Reference

- M.E. Abd EL- Monsef, E. F. Lashien and A. A. Nasef; "ON I- Open Sets and I- Continuous Function "Kyungpook mathematical Journal volume 32, Number 1 June, 1992.
- [2] J. Dontchev; "On Hausdorff spaces via topological ideals and

I- irresolute functions", In papers on General Topology and Applications, Annals of New York Academy of Sciences, Vol. 767 (1995), 28-38.

- [3] K. Kuratowski ; "Topology", Vol. 1, Academic Press, New York-London (1966).
- [4] J.G. Lee and K. Hur; "Hesitant Fuzzy Topological Spaces", mathematics, 2020, 8, 188; doi:10.3390/math8020188.
- [5] A.A. Salama and S.A. Albalwi;"Intuitionistic fuzzy ideal topological space ", Journal advances in fuzzy Mathematics (AFM) . ISSN 0973-533X Vol. 7, No.1 (2012), pp. 51- 60.
- [6] D. Sarkar, "Fuzzy ideal theory and local function and generated fuzzy topology", Fuzzy Set and System, Vol. 87, (1997), pp. 117-123.
- [7] V. Torra; " hesitant fussy set", International Journal of Intelligent Systems, Vol. 25, No. 6, pp. 529-539, (2010).
- [8] V. Torra and Y. Narukawa ; "On hesitant fussy set and decision", in Proc. IEEE 18 th Int. Fuzzy Syst (2009) 1378-1382.
- [9] L.A. Zadeh, "Fuzzy Sets", information and control, Vol. 8, pp.338-353. (1965).