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ABSTRACT 

 In the present paper, an inventory model is generated for deteriorating items where Demand rate and 

Deterioration rate are taken as general and in the second part holding cost is also taken as general 

function of time.  

Keywords :- Inventory, Demand, Deterioration, Cost, Shortage.   

1 Introduction 
Inventory management has become the most valuable, important, and undetachable part of business 

organizations, and deterioration of the stock goods has affected inventory management crucially. How 

much of the amount is to be ordered? and when to order the stock of goods? is the most important 

question to prevent the loss to the business organization. Thus, we need inventory models by also 

looking at the effect of deterioration. Many researchers have worked in this field, by creating models 

with different values of demand, deterioration, and holding cost. Power demand pattern for items that 

deteriorates with time is considered by Datta & Pal (1988) [3], Lee & Wu (2002) [7], Sharma, Sharma 

& Ramani (2012) [16] and Sharma & Preeti (2013) [15] using time varying deterioration in their 

respective models. Weibull distributed deterioration is considered by Wu (1999) [20], Wu (2002) [19], 

Lee & Wu (2002) [7], Skouri et. al. (2009) [18], Sharma et. al. (2012) [16] considered in their 

respective models. Time varying holding cost is used by Sharma et. al. (2012) [16], Karmakar et.al. 

(2014) [6], Ibe et. al. (2016) [5], Shah (2018) [14] in their respective models. Exponential distributed 

deterioration is used by Lee (2004) [8] in creating model and Wu (2002) [19] & Ghosh (2004) [4] 

created model with time varying quadratic demand. Wu (1999) [20] and Skouri (2009) [18] developed 

models with ramp type demand rate. Ouyang (2005) [12], Shah (2010) [13] and Aliyu (2020) [1] 

developed models with exponentially declining demand. Mukherjee (2010) [11] developed a model in 

which the time of duration of shortages varies directly with deterioration. Bhowmick (2011) [2] et. al., 

developed a model with continuous production model for deteriorating items with shortages. 

Maragatham (2017) [10] et. al., presented Model for Items in a single warehouse and assumed constant 

lead time. Sharma (2018) [17] developed a model for items that deteriorates with time, such as fruits, 

vegetables, and foodstuffs by considering demand as time-dependent. Long (2019) [9] demonstrated 
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that structural deterioration affects the value of damage detection information. In the present paper, 

working is done based on the above papers specially on Wu K.S. (2002) [19] by considering general 

demand, general deterioration and general holding cost. 

2 Assumptions and Notations 

Notations 

The Notations used here are given below :- 

1. Ch = Cost per unit of inventory holding per unit time i.e., Holding cost 

2. Cs = Shortage cost per unit per unit time. 

3. Cd = Deterioration cost. 

4. T = Each cycle length. 

5. Q(t) = Inventory at any time t. 

6. C(t) = Average total cost. 

7. DR(t) = Demand Rate. 

8. θ(t) = Deterioration Rate Function. 

Assumptions 

The Assumptions used here are given below :- 

1. Demand Rate DR(t) is taken as general. 

2. The deterioration rate function, θ(t) is taken as general. 

3. There is constant Replenishment size and infinite replenishment rate. 

4. There is zero Lead time. 

5. Inventory system ends without Shortages. 

6. Both the inventories, initial and final are taken as zero. 

3 Analysis of Model 

Let the level of Inventory at any time t be Q(t). Inventory level in the beginning is zero and shortages 

are permitted to fulfilled till t0. Then refilling of stock is done at t0. Stock of goods obtained at t0 is first 

used to fulfil previous shortages and then for the demand and deteriorated stocks in [t0, T]. Then at last 

inventory falls to zero at T. Differential equations which governs this inventory system during [0, T] 

are 

                                                           
𝑑𝑄(𝑡)

𝑑𝑡
=  −𝐷𝑅(𝑡);      [0, 𝑡0]                                                              (1) 

&  



inventory model with general demand and deterioration 

 

5972 
 

                                              
𝑑𝑄(𝑡)

𝑑𝑡
+ 𝜃(𝑡)𝑄(𝑡) =  −𝐷𝑅(𝑡);        [𝑡0, 𝑇]                                                 (2) 

Solutions of equations (1) and (2) are  

                                               𝑄(𝑡) =  − ∫ 𝐷𝑅(𝑣)𝑑𝑣;               [0, 𝑡0]
𝑡

0
                                                    (3) 

 & 

                                               𝑄(𝑡) = 𝑒−𝑘(𝑡)  ∫ 𝐷𝑅(𝑣)𝑒𝑘(𝑣)𝑑𝑣 ;        [𝑡0, 𝑇]
𝑇

𝑡
                                        (4) 

 Where       𝑘(𝑡) = ∫ 𝜃(𝑡)𝑑𝑡 

and the boundary conditions are Q(0) = 0 and Q(T) = 0. 

The entire amount of deteriorated units in [t0, T] is 

                                                                            = 𝑄(𝑡0) −  ∫ 𝐷𝑅(𝑡)𝑑𝑡
𝑇

𝑡0
 

                                                                            = 𝑒−𝑘(𝑡0)  ∫ 𝐷𝑅(𝑡)𝑒𝑘(𝑡)𝑑𝑡 −  ∫ 𝐷𝑅(𝑡)𝑑𝑡
𝑇

𝑡0

𝑇

𝑡0
                  (5) 

Inventory held over the period [t0, T] is  

                                                                             =  ∫ 𝑒−𝑘(𝑡) 
𝑇

𝑡0
 [∫ 𝐷𝑅(𝑣)𝑒𝑘(𝑣)𝑑𝑣

𝑇

𝑡
 ] 𝑑𝑡                           (6) 

Shortage units Quantity,  

                                                  =  ∫ ∫ 𝐷𝑅(𝑢)𝑑𝑢 𝑑𝑡
𝑡

0

𝑡0

0
 

                                                  =  ∫ (𝑡0 − 𝑢)𝐷𝑅(𝑢)𝑑𝑢
𝑡0

0
                                                                             (7) 

Inventory Holding Cost = Ch * total inventory held  

                                              = 𝐶ℎ ∫ 𝑒−𝑘(𝑡) [ ∫ 𝐷𝑅(𝑣)𝑒𝑘(𝑣)𝑑𝑣
𝑇

𝑡
] 𝑑𝑡

𝑇

𝑡0
                                                         (8) 

Deteriorating units cost = Cd * The entire amount of deteriorated units  

                                          = 𝐶𝑑[ 𝑒−𝑘(𝑡0) ∫ 𝐷𝑅(𝑡)𝑒𝑘(𝑡)𝑑𝑡 −  ∫ 𝐷𝑅(𝑡)𝑑𝑡
𝑇

𝑡0

𝑇

𝑡0
]                                              (9) 

Shortage Cost = Cs * shortage units quantity 

                        = 𝐶𝑠 ∫ (𝑡0 − 𝑢)𝐷𝑅(𝑢)𝑑𝑢
𝑡0

0
                                                                                                     (10) 

Average Total cost per unit time, 

C(t) = 
1

𝑇
 [𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 𝐶𝑜𝑠𝑡 + 𝐷𝑒𝑡𝑒𝑟𝑖𝑜𝑟𝑎𝑡𝑖𝑛𝑔 𝑢𝑛𝑖𝑡𝑠 𝑐𝑜𝑠𝑡 + 𝑆ℎ𝑜𝑟𝑡𝑎𝑔𝑒 𝑐𝑜𝑠𝑡] 

       =  
𝐶ℎ

𝑇
 ∫ 𝑒−𝑘(𝑡) [∫ 𝐷𝑅(𝑣)𝑒𝑘(𝑣)𝑑𝑣

𝑇

𝑡
 ] 𝑑𝑡 +  

𝐶𝑑

𝑇
 [𝑒−𝑘(𝑡0) ∫ 𝐷𝑅(𝑡)𝑒𝑘(𝑡)𝑑𝑡 −  ∫ 𝐷𝑅 (𝑡)𝑑𝑡

𝑇

𝑡0

𝑇

𝑡0
]

𝑇

𝑡0
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              + 
𝐶𝑠

𝑇
 ∫ (𝑡0 − 𝑢)𝐷𝑅(𝑢)𝑑𝑢 

𝑡0

0
                                                                                                             (11) 

For minimum cost the necessary and sufficient conditions are 
𝑑𝐶(𝑡0)

𝑑𝑡0
= 0 𝑎𝑛𝑑 

𝑑2𝐶(𝑡0)

𝑑𝑡0
2 > 0.  

Now 

         
𝑑𝐶(𝑡0)

𝑑𝑡0
=  

1

𝑇
 [𝐶𝑠 ∫ 𝐷𝑅(𝑡)𝑑𝑡 − (𝐶ℎ + 𝐶𝑑 𝜃(𝑡0))𝑒−𝐾(𝑡0) ∫ 𝐷𝑅(𝑡)𝑒𝑘(𝑡)𝑑𝑡

𝑇

𝑡0

𝑡0

0
]                                    (12) 

and  

       
𝑑2𝐶(𝑡0)

𝑑𝑡0
2 =  

𝐷𝑅(𝑡0)

𝑇
(𝐶ℎ + 𝐶𝑠 + 𝐶𝑑𝜃(𝑡0))                  

                        + 
1

𝑇
[(𝐶ℎ𝜃(𝑡0) + 𝐶𝑑(𝜃2(𝑡0) − 𝜃′(𝑡0))) 𝑒−𝑘(𝑡0) ∫ 𝐷𝑅(𝑡)𝑒𝑘(𝑡)𝑑𝑡

𝑇

𝑡0
]                                (13)  

Now 
𝑑𝐶(𝑡0)

𝑑𝑡0
= 0 𝑔𝑖𝑣𝑒𝑠 

                𝐶𝑠 ∫ 𝐷𝑅(𝑡)𝑑𝑡 − (𝐶ℎ + 𝐶𝑑𝜃(𝑡0))𝑒−𝑘(𝑡0) ∫ 𝐷𝑅(𝑡)𝑒𝑘(𝑡)𝑑𝑡 = 0
𝑇

𝑡0

𝑡0

0
                                              (14) 

Now Let 

        f(t0) =  𝐶𝑠 ∫ 𝐷𝑅(𝑡)𝑑𝑡 − (𝐶ℎ + 𝐶𝑑𝜃(𝑡0))𝑒−𝑘(𝑡0) ∫ 𝐷𝑅(𝑡)𝑒𝑘(𝑡)𝑑𝑡
𝑇

𝑡0

𝑡0

0
        

∃ a unique solution t0
* ∈ (0, T) satisfying equation (14), by the use of Intermediate Value Theorem, as 

here f (0) < 0 & f(T) > 0 and as 
𝑑2𝐶(𝑡0)

𝑑𝑡0
2 > 0 for 0 ≤ θ ≤ 1, therefore, the optimized value of t0 is t0

*. 

Substituting t0 = t0
*, minimum value of C(t0) is  

 

𝐶(𝑡0
∗) =   

𝐶ℎ

𝑇
 ∫ 𝑒−𝑘(𝑡) [∫ 𝐷𝑅(𝑣)𝑒𝑘(𝑣)𝑑𝑣

𝑇

𝑡
 ] 𝑑𝑡 +  

𝐶𝑑

𝑇
 [𝑒−𝑘(𝑡0

∗) ∫ 𝐷𝑅(𝑡)𝑒𝑘(𝑡)𝑑𝑡 −  ∫ 𝐷𝑅 (𝑡)𝑑𝑡
𝑇

𝑡0
∗

𝑇

𝑡0
∗ ]

𝑇

𝑡0
∗  

              + 
𝐶𝑠

𝑇
 ∫ (𝑡0

∗ − 𝑢)𝐷𝑅(𝑢)𝑑𝑢 
𝑡0

∗

0
             

                                                                                                                                                                             

(15)        

Now equation (15) gives the optimal value of cost. This equation can be further used for other values 

of Demand and Deterioration Rate.                                                                                          

   Inventory Model with Holding Cost as time 

                               Dependent    

Holding Cost is taken constant in above part. Now, taking time dependent holding cost i.e., h(t). Thus, 

equation for average total cost becomes    
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𝐶(𝑡0) =  
1

𝑇
 ∫ ℎ(𝑡)𝑒−𝑘(𝑡) [∫ 𝐷𝑅(𝑣)𝑒𝑘(𝑣)𝑑𝑣

𝑇

𝑡
 ] 𝑑𝑡 +  

𝐶𝑑

𝑇
 [𝑒−𝑘(𝑡0) ∫ 𝐷𝑅(𝑡)𝑒𝑘(𝑡)𝑑𝑡 −  ∫ 𝐷𝑅 (𝑡)𝑑𝑡

𝑇

𝑡0

𝑇

𝑡0
]

𝑇

𝑡0
 

              + 
𝐶𝑠

𝑇
 ∫ (𝑡0 − 𝑢)𝐷𝑅(𝑢)𝑑𝑢 

𝑡0

0
                                                                                                               (16)    

Now, for minimum cost C(t0) the necessary condition and sufficient conditions are 
𝑑𝐶(𝑡0)

𝑑𝑡0
=

0 𝑎𝑛𝑑 
𝑑2𝐶(𝑡0)

𝑑𝑡0
2 > 0 . 

Now 
𝑑𝐶(𝑡0)

𝑑𝑡0
= 0 𝑔𝑖𝑣𝑒𝑠 

                       𝐶𝑠 ∫ 𝐷𝑅(𝑡)𝑑𝑡 − (ℎ(𝑡0) + 𝐶𝑑𝜃(𝑡0))𝑒−𝑘(𝑡0) ∫ 𝐷𝑅(𝑡)𝑒𝑘(𝑡)𝑑𝑡 = 0
𝑇

𝑡0

𝑡0

0
                                  (17) 

and 
𝑑2𝐶(𝑡0)

𝑑𝑡0
2 > 0 𝑔𝑖𝑣𝑒𝑠 

               
𝑑2𝐶(𝑡0)

𝑑𝑡0
2 =  

𝐷𝑅(𝑡0)

𝑇
(ℎ(𝑡0) + 𝐶𝑠 + 𝐶𝑑𝜃(𝑡0))                  

                        + 
1

𝑇
[(ℎ′(𝑡0) +  ℎ(𝑡0)𝜃(𝑡0) + 𝐶𝑑(𝜃2(𝑡0) −  𝜃′(𝑡0))) 𝑒−𝑘(𝑡0) ∫ 𝐷𝑅(𝑡)𝑒𝑘(𝑡)𝑑𝑡

𝑇

𝑡0
] > 0                

                                     For  0 < 𝜃 < 1                                                                                                                                          

Similarly, like done previously ∃ a unique solution t0
* ∈ [0, T] satisfying equation (17), therefore the 

optimized value of t0 is t0
*. Minimum value of cost C (t0

*) can be find out by putting t0
* in place of t0 

in (16). 

4 Conclusion 

In this paper, an inventory model is generated for items that deteriorates with time by considering 

demand and deterioration as general function of time whereas in second part holding cost is also taken 

as general function of time. This paper is useful for different values of Demand, Deterioration and 

Holding Cost.      
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