Turkish Online Journal of Qualitative Inquiry (TOJQI) Volume 12, Issue 8, July, 2021:6566 - 6572

\vec{P}_{2k} –Factorization of Complete Bipartite Symmetric Multi-digraph

Bal Govind Shukla¹

¹Department of applied Sciences Bansal Institute of Engineering &Technology Lucknow (U.P.) India 226021 (Corresponding e-mail: <u>bgshukla12@gmail.com</u>)

Md. Izhar²

²Department of applied Sciences Bansal Institute of Engineering &Technology Lucknow (U.P.) India 226021 (e-mail: <u>iamizhar1@gmail.com</u>)

ABSTRACT

The graph P_k be the path graph on k vertices with k - 1 edges and \vec{P}_k be the directed path on k vertices with k - 1 arcs. The graph $K_{m,n}$ be the complete bipartite graph with two partite sets X and Y having m and n elements respectively and the graph $\lambda K_{m,n}^*$ be the complete bipartite symmetric multidigraph. In this paper we will discuss and established the conditions for the existence of the path decomposition of \vec{P}_{2k} –factorization of complete bipartite symmetric multi-digraph. The following necessary and sufficient conditions for the existence of the path factorization of graphs are as follows, if m = n and $m \equiv 0 \pmod{2k(2k-1)/d}$ then the graph $\lambda K_{m,n}^*$ has \vec{P}_{2k} – factorization, where $d = \gcd(\lambda, 2(2k-1))$ and m, n, k, d and λ are positive integers.

Key words: Path Factorization, Bipartite Graph, Multi-digraph, Spanning subgraph.

1. INTRODUCTION

The problem on path factorization of complete bipartite graph was studied by Kazuhiko Ushio in his paper G-designs and related designs [1] and he gave the necessary and sufficient conditions for existence of path factorization of graph. The P_{2p} –Factorization of a complete bipartite graph completely studied by Hong Wang [2] and he gave the necessary and sufficient conditions for the existence of path factorization of complete bipartite graph $K_{m,n}$, after that the path factorization problem on multigraph was studied by Beiliang Du in P_{2k} –Factorization of a complete bipartite multigraphs [3] and he gave the necessary and sufficient conditions for P_{2k} –Factorization on

complete bipartite multigraph. Expanding the work on path factorization the \vec{P}_{2k} – Factorization of Complete bipartite symmetric digraphs [4], Bal Govind Shukla gave the necessary and sufficient conditions for the existence of \vec{P}_{2k} – Factorization on $K_{m,n}^*$.

The complete bipartite graph $K_{m,n}$ have two partite sets of vertices X and Y such that order of each vertex i.e. |X| = m and |Y| = n, where m and n are positive integers. The graph $K_{m,n}^*$ is the complete bipartite symmetric digraph with two partite sets X and Y contains symmetric edges of the directed graphs such that order of |X| = m and |Y| = n, connected to m and n number of symmetric vertices. The graph $\lambda K_{m,n}$ be the complete bipartite multigraph which have λ times of graph $K_{m,n}$ such that each $K_{m,n}$ is isomorphic to each set of $\lambda K_{m,n}$. If $\lambda = 2$ then the complete bipartite multigraph $2K_{m,n}$ is isomorphic to complete bipartite symmetric digraph $K_{m,n}^*$. The graph $\lambda K_{m,n}^*$ is the complete bipartite symmetric digraph $K_{m,n}^*$. The graph $\lambda K_{m,n}^*$ is the complete bipartite symmetric digraph is a graph in which arcs are directed graph. Here in the present paper we established the necessary and sufficient conditions for existence of \vec{P}_{2k} – factorization of complete bipartite symmetric multi-digraphs $\lambda K_{m,n}^*$ such that, m = n and $m \equiv 0 \pmod{2k(2k-1)/d}$, where λ, m, n and k are positive integer and $d = \gcd(\lambda, 2(2k-1))$.

2. MATHEMATICAL ANALYSIS

Here in the study of the path factorization i.e. \vec{P}_{2k} – Factorization of Complete bipartite symmetric multi-digraphs, the \vec{P}_{2k} be the directed path on 2k vertices and the graph $\lambda K_{m,n}^*$ be the symmetric complete bipartite multi-digraph. In the complete bipartite symmetric multi-digraph $\lambda K_{m,n}^*$ the each edge or arc is taken as λ times to complete bipartite symmetric digraph $K_{m,n}^*$. Now we prove the following theorems i.e. theorem 2.1 and 2.2 which are used in later for the necessary and sufficient conditions for the existence of \vec{P}_{2k} – Factorization of Complete bipartite symmetric multidigraphs $\lambda K_{m,n}^*$.

Theorem 2.1: If $\lambda K_{m,m}^*$ has \vec{P}_{2k} – factorization then $\lambda K_{sm,sm}^*$ also have \vec{P}_{2k} – factorization for any positive integer *s*.

Proof: The proof of above theorem can given by the construction. Consider a complete bipartite graph $K_{s,s}$ is one factorable [5], and the one factorization of it are $\{G_1, G_2, ..., G_s\}$. Now for each *i* where $\{1 \le i \le s\}$, replace every arc of G_i with a $\lambda K^*_{m,m}$ to get a spanning subgraph H_i of $\lambda K^*_{sm,sm}$ such that the spanning subgraph H_i 's $\{1 \le i \le s\}$ are pair wise arc-disjoint and hence there sum is $\lambda K^*_{sn,sn}$. Since the complete bipartite symmetric multi- digraph $\lambda K^*_{m,m}$ has \vec{P}_{2k} – Factorable, therefore H_i is also \vec{P}_{2k} – factorable. Hence $\lambda K^*_{sm,sm}$ is also \vec{P}_{2k} – factorable.

Theorem 2.2: If $\lambda K_{m,m}^*$ has \vec{P}_{2k} – factorization then $s\lambda K_{m,m}^*$ also has \vec{P}_{2k} – factorization.

Proof: This theorem also proved by the construction. Construct a \vec{P}_{2k} – factorization of $\lambda K_{m,m}^*$ and repeated same process in *s* times then we find that $s\lambda K_{m,m}^*$ also has \vec{P}_{2k} – factorization.

The following theorem 2.3 gives necessary condition for the existence of \vec{P}_{2k} – factorization of complete bipartite symmetric multi-digraph $\lambda K_{m,n}^*$.

Theorem 2.3: If complete bipartite symmetric multi-digraph $\lambda K_{m,n}^*$ has \vec{P}_{2k} – factorization then m = n and $m \equiv 0 (mod_{2k}(2k-1)/d)$, where λ, k, m and n are positive integers.

Proof: Since $\lambda K_{m,n}^*$ be the complete bipartite symmetric multi-digraph with two partite sets *X* and *Y* such that total number of vertices in *X* i.e. |X| = m and the total number of vertices in *Y* i.e. |Y| = n. Let $\lambda K_{m,n}^*$ has \vec{P}_{2k} – factor *F* and the total number of components of *F* are equal to *t*.

Hence $m = \frac{kt}{2} = n$ and |F| = 2n(2k - 1)/k is an integer which is independent on individual \vec{P}_{2k} – factors. Hence for m = n,

$$m \equiv 0 \pmod{k}. \qquad \dots (1)$$

If the total number of components of \vec{P}_{2k} – factors in \vec{P}_{2k} – factorization of $\lambda K_{m,n}^*$ are *b* then $b = \frac{\lambda m^2}{2(2k-1)}$. If *r* be the total number of \vec{P}_{2k} factors in \vec{P}_{2k} – factorization of $\lambda K_{m,n}^*$ then,

$$r = \frac{b}{t}$$
$$= \frac{\frac{\lambda m^2}{2(2k-1)}}{\frac{m}{k}}$$
$$= \frac{\lambda km}{2(2k-1)}$$

Where $\frac{\lambda km}{2(2k-1)}$ is a positive integer. Since gcd(k, 2k - 1) = 1, hence $\frac{\lambda m}{2(2k-1)}$ also be an integer and therefore,

$$\lambda m \equiv 0 \pmod{2(2k-1)}.$$

Since $\lambda K_{m,n}^*$ isomorphic to $2\lambda K_{m,n}$ and $gcd(\lambda, 2(2k-1)) = d$ then,

 $m \equiv 0 \pmod{2(2k-1)/d} \qquad \dots (2)$

Now from equations (1) and (2), we have

$$m \equiv 0 \pmod{2k(2k-1)/d}.$$

Now we consider a particular case of \vec{P}_{2k} – factorization of $\lambda K_{m,n}^*$. The following fig. 2.1 and fig. 2.2 to 2.9 shown the \vec{P}_2 – factor of complete bipartite symmetric multi-digraph $2K_{2,2}^*$,

here k = 1, m = 2, n = 2 and $\lambda = 2$

Fig. 2.1 Complete bipartite symmetric multi-digraph $2K_{2,2}^*$.

Fig. 2.2 Directed Path, x_1y_1 ; x_2y_2 .

Fig. 2.3 Directed Path, x_1y_2 ; x_2y_1 .

Fig. 2.4 Directed Path, x_1y_1 ; x_2y_2 .

Fig. 2.5 Directed Path, x_1y_2 ; x_2y_2 .

Fig 2.6 Directed Path, y_1x_1 ; y_2x_2 .

Fig. 2.7 Directed Path, y_1x_1 ; y_2x_2 .

Fig. 2.8 Directed Path, $y_2 x_1$; $y_1 x_2$.

Fig. 2.9 Directed path y_2x_1 ; y_1x_2 .

The following theorem 2.4 shown the sufficient conditions for the existence of \vec{P}_{2k} – factorization of complete bipartite symmetric multi-digraph $\lambda K_{m,n}^*$.

Theorem 2.4: If m = n and $m \equiv 0 \pmod{2k(2k-1)/d}$ then the graph $\lambda K_{m,n}^*$ has \vec{P}_{2k} – factorization, where $d = \gcd(\lambda, 2(2k-1))$ and m, n, k, d and λ are positive integers.

Proof: It is given that m = n and $m \equiv 0 \pmod{k(2k-1)/d}$. Let m = k(2k-1)s for some positive integer s. Hence from theorem 2.1 to show $\lambda K_{m,n}^*$ has \vec{P}_{2k} – factorization it is only need to show that $\lambda K_{k(2k-1),k(2k-1)}^*$ has \vec{P}_{2k} – factorization. Let the graph $\lambda K_{k(2k-1),k(2k-1)}^*$ has two partite sets X and Y such that

$$X = \{x_{i,j} \colon 1 \le i \le k, 1 \le j \le (2k - 1)\},\$$
$$Y = \{y_{i,j} \colon 1 \le i \le k, 1 \le j \le (2k - 1)\}.$$

Now we are constructing \vec{P}_{2k} – factor with a remark that the addition in the first subscripts of $x_{i,j}$'s and $y_{i,j}$'s is taken modulo k in $\{1, 2, ..., k\}$ and the second subscript is taken modulo (2k - 1) in $\{1, 2, ..., (2k - 1)\}$.

Now for each i with $1 \le i \le k$,

$$E_{2i-1} = \{x_{i,j}, y_{i,(j+2i-2)}: 1 \le j \le (2k-1)\},\$$
$$E'_{2i-1} = \{y_{i,(j+2i-2)}, x_{i,j}: 1 \le j \le (2k-1)\}.$$

And for each *i* with $2 \le i \le k$,

$$E_{2i-2} = \{x_{i,j}, y_{(i-1),(j+2i-3)} : 1 \le j \le (2k-1)\},\$$
$$E'_{2i-2} = \{y_{(i-1),(j+2i-3)}, x_{i,j} : 1 \le j \le (2k-1)\}.$$

Let the directed graph $\vec{F} = \bigcup_{1 \le i \le 2k-1} \{E_i, E'_i\}$ then the directed graph \vec{F} is a \vec{P}_{2k} – factor of complete bipartite symmetric multi-digraph $\lambda K^*_{m,n}$. Define a bijection σ such that $\sigma: XUY \xrightarrow{onto} XUY$ and $\sigma(x_{i,j}) = x_{i+1,j}$ and $\sigma(y_{i,j}) = y_{i+1,j}$ where $1 \le i \le k$ and $1 \le j \le (2k-1)$.

For each $1 \le i, j \le k$, let

$$\overrightarrow{F_{i,j}} = \{\sigma^i(x)\sigma^j(y) \colon x \in X, y \in Y \text{ and } xy \in \vec{F}\}$$

It have shown that the digraph $\overrightarrow{F_{l,j}}$ is a \overrightarrow{P}_{2k} – factor of complete bipartite symmetric digraph $K^*_{k(2k-1),k(2k-1)}$, hence their union is complete bipartite symmetric multi-digraph $\lambda K^*_{k(2k-1),k(2k-1)}$.

Hence using theorem 2.1 and theorem 2.2 we have seen that the graph $\lambda K_{m,n}^*$ has \vec{P}_{2k} – factorization.

3. CONCLUSION

By applying theorem 2.3 and theorem 2.4 along with theorems 2.1-2.2, it can be seen that when m = n and $m \equiv 0 \pmod{2k(2k-1)/d}$ then the graph $\lambda K_{m,n}^*$ have \vec{P}_{2k} -factorization, where $d = gcd(\lambda, 2(2k-1))$.

4. REFRENCES

- 1. Ushio K: G-designs and related designs, Discrete Math., 116(1993), 299-311
- 2. Wang H: P_{2p} –factorization of a complete bipartite graph, discrete math.120(1993) 307-308.
- 3. Beiliang Du: P_{2k} –factorization of complete bipartite multigraph. Australasian Journal of Combinatorics 21(2000), 197 199.
- 4. Shukla B G: \vec{P}_{2k} –factorization of complete bipartite symmetric digraph. Elixir Discrete Mathematics 147(2020), 54924-54926.
- 5. Harary F: Graph theory. Addison Wesley. Massachusetts, 1972.