$\overrightarrow{\mathbf{P}}_{2 \mathrm{k}}$-Factorization of Complete Bipartite Symmetric Multi-digraph

Bal Govind Shukla ${ }^{1}$
${ }^{1}$ Department of applied Sciences Bansal Institute of Engineering \&Technology
Lucknow (U.P.) India 226021
(Corresponding e-mail: bgshukla12@ gmail.com)
Md. Izhar ${ }^{2}$
${ }^{2}$ Department of applied Sciences Bansal Institute of Engineering \&Technology
Lucknow (U.P.) India 226021
(e-mail: iamizhar1@gmail.com)

Abstract

The graph P_{k} be the path graph on k vertices with $k-1$ edges and \vec{P}_{k} be the directed path on k vertices with $k-1$ arcs. The graph $K_{m, n}$ be the complete bipartite graph with two partite sets X and Y having m and n elements respectively and the graph $\lambda K_{m, n}^{*}$ be the complete bipartite symmetric multidigraph. In this paper we will discuss and established the conditions for the existence of the path decomposition of $\vec{P}_{2 k}$-factorization of complete bipartite symmetric multi-digraph. The following necessary and sufficient conditions for the existence of the path factorization of graphs are as follows, if $m=n$ and $m \equiv 0(\bmod 2 k(2 k-1) / d)$ then the graph $\lambda K_{m, n}^{*}$ has $\vec{P}_{2 k}-$ factorization, where $d=$ $\operatorname{gcd}(\lambda, 2(2 k-1))$ and m, n, k, d and λ are positive integers.

Key words: Path Factorization, Bipartite Graph, Multi-digraph, Spanning subgraph.

1. INTRODUCTION

The problem on path factorization of complete bipartite graph was studied by Kazuhiko Ushio in his paper G-designs and related designs [1] and he gave the necessary and sufficient conditions for existence of path factorization of graph. The $P_{2 p}$-Factorization of a complete bipartite graph completely studied by Hong Wang [2] and he gave the necessary and sufficient conditions for the existence of path factorization of complete bipartite graph $K_{m, n}$, after that the path factorization problem on multigraph was studied by Beiliang Du in $P_{2 k}$-Factorization of a complete bipartite multigraphs [3] and he gave the necessary and sufficient conditions for $P_{2 k}$-Factorization on
complete bipartite multigraph. Expanding the work on path factorization the $\vec{P}_{2 k}-$ Factorization of Complete bipartite symmetric digraphs [4], Bal Govind Shukla gave the necessary and sufficient conditions for the existence of $\vec{P}_{2 k}$ - Factorization on $K_{m, n}^{*}$.

The complete bipartite graph $K_{m, n}$ have two partite sets of vertices X and Y such that order of each vertex i.e. $|X|=m$ and $|Y|=n$, where m and n are positive integers. The graph $K_{m, n}^{*}$ is the complete bipartite symmetric digraph with two partite sets X and Y contains symmetric edges of the directed graphs such that order of $|X|=m$ and $|Y|=n$, connected to m and n number of symmetric vertices. The graph $\lambda K_{m, n}$ be the complete bipartite multigraph which have λ times of graph $K_{m, n}$ such that each $K_{m, n}$ is isomorphic to each set of $\lambda K_{m, n}$. If $\lambda=2$ then the complete bipartite multigraph $2 K_{m, n}$ is isomorphic to complete bipartite symmetric digraph $K_{m, n}^{*}$. The graph $\lambda K_{m, n}^{*}$ is the complete bipartite symmetric multi-digraph is a graph in which arcs are directed graph. Here in the present paper we established the necessary and sufficient conditions for existence of $\vec{P}_{2 k}$ - factorization of complete bipartite symmetric multi-digraphs $\lambda K_{m, n}^{*}$ such that, $m=n$ and $m \equiv 0(\bmod 2 k(2 k-$ $1) / d)$, where λ, m, n and k are positive integer and $d=\operatorname{gcd}(\lambda, 2(2 k-1))$.

2. MATHEMATICAL ANALYSIS

Here in the study of the path factorization i.e. $\vec{P}_{2 k}$ - Factorization of Complete bipartite symmetric multi-digraphs, the $\vec{P}_{2 k}$ be the directed path on $2 k$ vertices and the graph $\lambda K_{m, n}^{*}$ be the symmetric complete bipartite multi-digraph. In the complete bipartite symmetric multi-digraph $\lambda K_{m, n}^{*}$ the each edge or arc is taken as λ times to complete bipartite symmetric digraph $K_{m, n}^{*}$. Now we prove the following theorems i.e. theorem 2.1 and 2.2 which are used in later for the necessary and sufficient conditions for the existence of $\vec{P}_{2 k}-$ Factorization of Complete bipartite symmetric multidigraphs $\lambda K_{m, n}^{*}$.

Theorem 2.1: If $\lambda K_{m, m}^{*}$ has $\vec{P}_{2 k}$ - factorization then $\lambda K_{S m, S m}^{*}$ also have $\vec{P}_{2 k}$ - factorization for any positive integer s.

Proof: The proof of above theorem can given by the construction. Consider a complete bipartite graph $K_{S, S}$ is one factorable [5], and the one factorization of it are $\left\{G_{1}, G_{2}, \ldots, G_{s}\right\}$. Now for each i where $\{1 \leq i \leq s\}$, replace every arc of G_{i} with a $\lambda K_{m, m}^{*}$ to get a spanning subgraph H_{i} of $\lambda K_{s m, s m}^{*}$ such that the spanning subgraph H_{i} 's $\{1 \leq i \leq s\}$ are pair wise arc-disjoint and hence there sum is $\lambda K_{S n, S n}^{*}$. Since the complete bipartite symmetric multi- digraph $\lambda K_{m, m}^{*}$ has $\vec{P}_{2 k}$ - Factorable, therefore H_{i} is also $\vec{P}_{2 k}-$ factorable. Hence $\lambda K_{s m, s m}^{*}$ is also $\vec{P}_{2 k}-$ factorable.

Theorem 2.2: If $\lambda K_{m, m}^{*}$ has $\vec{P}_{2 k}-$ factorization then $s \lambda K_{m, m}^{*}$ also has $\vec{P}_{2 k}-$ factorization.
Proof: This theorem also proved by the construction. Construct a $\vec{P}_{2 k}-$ factorization of $\lambda K_{m, m}^{*}$ and repeated same process in s times then we find that $s \lambda K_{m, m}^{*}$ also has $\vec{P}_{2 k}-$ factorization.

The following theorem 2.3 gives necessary condition for the existence of $\vec{P}_{2 k}$ - factorization of complete bipartite symmetric multi-digraph $\lambda K_{m, n}^{*}$.

Theorem 2.3: If complete bipartite symmetric multi-digraph $\lambda K_{m, n}^{*}$ has $\vec{P}_{2 k}$ - factorization then $m=$ n and $m \equiv 0(\bmod 2 k(2 k-1) / d)$, where λ, k, m and n are positive integers.

Proof: Since $\lambda K_{m, n}^{*}$ be the complete bipartite symmetric multi-digraph with two partite sets X and Y such that total number of vertices in X i.e. $|X|=m$ and the total number of vertices in Y i.e. $|Y|=n$. Let $\lambda K_{m, n}^{*}$ has $\vec{P}_{2 k}$ - factor F and the total number of components of F are equal to t.

Hence $m=\frac{k t}{2}=n$ and $|F|=2 n(2 k-1) / k$ is an integer which is independent on individual $\vec{P}_{2 k}-$ factors. Hence for $m=n$,

$$
\begin{equation*}
m \equiv 0(\bmod k) \tag{1}
\end{equation*}
$$

If the total number of components of $\vec{P}_{2 k}-$ factors in $\vec{P}_{2 k}-$ factorization of $\lambda K_{m, n}^{*}$ are b then $b=$ $\frac{\lambda m^{2}}{2(2 k-1)}$. If r be the total number of $\vec{P}_{2 k}$ factors in $\vec{P}_{2 k}-$ factorization of $\lambda K_{m, n}^{*}$ then,

$$
\begin{gathered}
r=\frac{b}{t} \\
=\frac{\frac{\lambda m^{2}}{2(2 k-1)}}{\frac{m}{k}} \\
=\frac{\lambda k m}{2(2 k-1)}
\end{gathered}
$$

Where $\frac{\lambda k m}{2(2 k-1)}$ is a positive integer. Since $\operatorname{gcd}(k, 2 k-1)=1$, hence $\frac{\lambda m}{2(2 k-1)}$ also be an integer and therefore,

$$
\lambda m \equiv 0(\bmod 2(2 k-1))
$$

Since $\lambda K_{m, n}^{*}$ isomorphic to $2 \lambda K_{m, n}$ and $\operatorname{gcd}(\lambda, 2(2 k-1))=d$ then,

$$
\begin{equation*}
m \equiv 0(\bmod 2(2 k-1) / d) \tag{2}
\end{equation*}
$$

Now from equations (1) and (2), we have

$$
m \equiv 0(\bmod 2 k(2 k-1) / d)
$$

Now we consider a particular case of $\vec{P}_{2 k}-$ factorization of $\lambda K_{m, n}^{*}$. The following fig. 2.1 and fig. 2.2 to 2.9 shown the \vec{P}_{2} - factor of complete bipartite symmetric multi-digraph $2 K_{2,2}^{*}$,
here $k=1, m=2, n=2$ and $\lambda=2$

Fig. 2.1 Complete bipartite symmetric multi-digraph $2 K_{2,2}^{*}$.

Fig. 2.2 Directed Path, $x_{1} y_{1} ; x_{2} y_{2}$.

Fig. 2.3 Directed Path, $x_{1} y_{2} ; x_{2} y_{1}$.

Fig. 2.4 Directed Path, $x_{1} y_{1} ; x_{2} y_{2}$.

Fig. 2.5 Directed Path, $x_{1} y_{2} ; x_{2} y_{2}$.

Fig 2.6 Directed Path, $y_{1} x_{1} ; y_{2} x_{2}$.

Fig. 2.7 Directed Path, $y_{1} x_{1} ; y_{2} x_{2}$.

Fig. 2.8 Directed Path, $y_{2} x_{1} ; y_{1} x_{2}$.

Fig. 2.9 Directed path $y_{2} x_{1} ; y_{1} x_{2}$.
The following theorem 2.4 shown the sufficient conditions for the existence of $\vec{P}_{2 k}$ - factorization of complete bipartite symmetric multi-digraph $\lambda K_{m, n}^{*}$.

Theorem 2.4: If $m=n$ and $m \equiv 0(\bmod 2 k(2 k-1) / d)$ then the graph $\lambda K_{m, n}^{*}$ has $\vec{P}_{2 k}-$ factorization, where $d=\operatorname{gcd}(\lambda, 2(2 k-1))$ and m, n, k, d and λ are positive integers.

Proof: It is given that $m=n$ and $m \equiv 0(\bmod k(2 k-1) / d)$. Let $m=k(2 k-1) s$ for some positive integer s. Hence from theorem 2.1 to show $\lambda K_{m, n}^{*}$ has $\vec{P}_{2 k}$ - factorization it is only need to show that $\lambda K_{k(2 k-1), k(2 k-1)}^{*}$ has $\vec{P}_{2 k}$ - factorization. Let the graph $\lambda K_{k(2 k-1), k(2 k-1)}^{*}$ has two partite sets X and Y such that

$$
\begin{aligned}
& X=\left\{x_{i, j}: 1 \leq i \leq k, 1 \leq j \leq(2 k-1)\right\}, \\
& Y=\left\{y_{i, j}: 1 \leq i \leq k, 1 \leq j \leq(2 k-1)\right\} .
\end{aligned}
$$

Now we are constructing $\vec{P}_{2 k}-$ factor with a remark that the addition in the first subscripts of $x_{i, j}$'s and $y_{i, j}$ ' s is taken modulo k in $\{1,2, \ldots, k\}$ and the second subscript is taken modulo $(2 k-1)$ in $\{1,2, \ldots,(2 k-1)\}$.

Now for each i with $1 \leq i \leq k$,

$$
\begin{aligned}
& E_{2 i-1}=\left\{x_{i, j}, y_{i,(j+2 i-2)}: 1 \leq j \leq(2 k-1)\right\}, \\
& E_{2 i-1}^{\prime}=\left\{y_{i,(j+2 i-2)}, x_{i, j}: 1 \leq j \leq(2 k-1)\right\} .
\end{aligned}
$$

And for each i with $2 \leq i \leq k$,

$$
\begin{aligned}
& E_{2 i-2}=\left\{x_{i, j}, y_{(i-1),(j+2 i-3)}: 1 \leq j \leq(2 k-1)\right\}, \\
& E_{2 i-2}^{\prime}=\left\{y_{(i-1),(j+2 i-3)}, x_{i, j}: 1 \leq j \leq(2 k-1)\right\} .
\end{aligned}
$$

Let the directed graph $\vec{F}=\bigcup_{1 \leq i \leq 2 k-1}\left\{E_{i}, E_{i}^{\prime}\right\}$ then the directed graph \vec{F} is a $\vec{P}_{2 k}-$ factor of complete bipartite symmetric multi-digraph $\lambda K_{m, n}^{*}$. Define a bijection σ such that $\sigma: X U Y \xrightarrow{\text { onto }} X U Y$ and $\sigma\left(x_{i, j}\right)=x_{i+1, j}$ and $\sigma\left(y_{i, j}\right)=y_{i+1, j}$ where $1 \leq i \leq k$ and $1 \leq j \leq(2 k-1)$.

For each $1 \leq i, j \leq k$, let

$$
\overrightarrow{F_{l, j}}=\left\{\sigma^{i}(x) \sigma^{j}(y): x \in X, y \in Y \text { and } x y \in \vec{F}\right\}
$$

It have shown that the digraph $\overrightarrow{F_{l, j}}$ is a $\vec{P}_{2 k}$ - factor of complete bipartite symmetric digraph $K_{k(2 k-1), k(2 k-1)}^{*}$, hence their union is complete bipartite symmetric multi-digraph $\lambda K_{k(2 k-1), k(2 k-1)}^{*}$. Hence using theorem 2.1 and theorem 2.2 we have seen that the graph $\lambda K_{m, n}^{*}$ has $\vec{P}_{2 k}-$ factorization.

3. CONCLUSION

By applying theorem 2.3 and theorem 2.4 along with theorems 2.1-2.2, it can be seen that when $m=$ n and $m \equiv 0(\bmod 2 k(2 k-1) / d)$ then the graph $\lambda K_{m, n}^{*}$ have $\vec{P}_{2 k}$-factorization, where $d=$ $\operatorname{gcd}(\lambda, 2(2 k-1))$.

4. REFRENCES

1. Ushio K: G-designs and related designs, Discrete Math., 116(1993), 299-311
2. Wang H: $P_{2 p}$-factorization of a complete bipartite graph, discrete math.120(1993) 307-308.
3. Beiliang Du: $P_{2 k}$-factorization of complete bipartite multigraph. Australasian Journal of Combinatorics 21(2000), 197-199.
4. Shukla B G: $\vec{P}_{2 k}$-factorization of complete bipartite symmetric digraph. Elixir Discrete Mathematics 147(2020), 54924-54926.
5. Harary F: Graph theory. Addison Wesley. Massachusetts, 1972.
