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ABSTRACT:  

 In this paper we have carried out the “Shear Stress and Heat Transfer Studies of Visco-Elastic Fluid 

Flowing between Two Parallel Plates”. In the proposed problem, upper plate moves with a constant 

velocity and lower one is at rest. Perturbation technique is used to find out the solution up to first order 

approximation. Effect of visco-elasticity and frequency of fluctuation on flow pattern is discussed. 

Velocity profiles and shear stresses at lower and upper plates are calculated. Variations of amplitude 

and phase angle with respect to frequency parameter are shown graphically. Heat transfer through 

lower and upper plates is discussed, also. 
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Introduction:  

The problem of heat transfer study of Newtonian and non-Newtonian liquids is of urgent interest owing 

to its many applications in various disciplines. Degan et al. [6] studied the problem of heat transfer of 

elastic-viscous liquid through parallel plates when both the plates are at uniform temperature. For a 

visco-elastic fluid in motion, a certain amount of energy is stored up in the material as strain energy and 

some energy is lost due to viscous dissipation. Singh [11] has studied the unsteady flow of visco-elastic 

fluid through parallel channel. Further, Acharya et al. [2], Beavers et al. [3], Bujurke et al. [4], Khan 

and Shaowei [9] and Nandeppanavar et al. [10] have investigated the magnetic field effect on the free 

convection, Rayleigh – Taylor instability, laminar flow in a uniform porous pipe, non-linear analysis 

and heat transfer in a Walters    liquid-B fluid over an impermeable stretching with non-uniform heat 

and elastic deformation. Abd – el Naby et al. [1], Chen [5], Gokhale and Al Samman [7] and Israel – 

Cookey [8] have studied finite difference solution of radiation effect on free convection flow over a 

vertical plate, heat and mass transfer in MHD flow by natural convection, effect of mass transfer on the 

transient free convection flow and influence of viscous dissipation on unsteady MHD free convection 

flow past an infinite heated vertical plate. 

 

Mathematical Analysis : 

Velocity distribution – 

  Consider the motion of visco-elastic fluid characterized by the constitutive model 

  
kikiki gpS +−=        (1) 

where Sik is the stress tensor, p the isotropic pressure, gik the metric tensor and ik the deviatoric stress 

tensor given by 
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where vi is the velocity vector and eik the rate of strain tensor given by 
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Pulsatile flow of non Newtonian liquid given by equation (2) is considered. Flow is caused due to the 

sudden motion of upper wall of the channel with velocity 

  ( )ti
0 e1U)t(U +=  

where U0,  are constant and  is frequency, t is time, flow is independent of walls direction. 

The continuity and momentum equations for unsteady incompressible flow for liquid of density  are 

given by 

  ( ) 0v
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under Couette flow condition. Only x-component of velocity is considered and in a fully developed 

state at sufficiently large distance from the entrance region it can be taken to be a function of y and t 

only. 

From equation (3), we have 

  u  =  u(y, t)         (5) 

Equation (2.4) gives 
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For upper plate motion u = U(t), we have 

  
t

U
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So equation (6) becomes 
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To solve the equation (7), we put 

  ( ) ( ) += 
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where 
h

y
=  is a non-dimensional variable and 
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 is the kinematic viscosity. 
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Comparing the coefficient of  and  on both sides of above equation, we get 

  0u
0
=          (9) 
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= , are frequency and visco-elastic parameters. 

The boundary conditions are 

  0uu
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==      at  = 1                         (11) 

In view of conditions (11), the solutions of (9) and (10) are 
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put   =  0,     u0  =  0     and     C2  =  0 

   =  1,     u0  =  1     and     C1  =  1. 

From equation (12), we have 

  u0  =         (13) 
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Put   =  0,     u1  =  0 

  C1  +  C2  +  1  =  0 

   =  1,     u1  =  1 
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Solving these two equations, we get 

 +−= msinhmcothmcosh1u
1

   (14) 

where 
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Shear Stresses at Lower and Upper Plates – 
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Temperature Distribution – 

  We consider the energy equation in the form 
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where  e = Cv T is the internal energy 

and 
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−= , is the heat flux for thermally isotropic fluid. 

We treat the thermal conductivity K as constant for incompressible medium. Specific heat at constant 

volume and constant pressure to be equal Cv  =  Cp  = C, only. 

Using equation (2), the equation (18) reduces to 
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We look for the solution in the form 
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and equating steady and unsteady part, we get 

  
2

0

2

h0
uU

K
T 


−=      (21) 

  ( )
10r

2

h1r1
uu2KiPUTPiT −=−   (22) 

K

C
Pwhere 0

r


=    is  Prandtl  number. 

Solution of equation (21) with boundary conditions 
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Solution of equation (22) with boundary condition 
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Put   =  0,     T1  =  Tw ,       =  1 ,     T1  =  Th 

       
( )

( )
( )1mcoshe

msinhsinhm

m2kiPU

sinh2

eTT
C

22

r

2

hwh

1
−

−

−
−

−
= −

−






 

        
( ) ( )

( )
( )1mcoshe

msinhsinhm

m2kiPU

sinh2

TeT
C

22

r

2

hhw

2
−

−

−
+

−
= 




 . 

Then 

( )
( )22

r

hw

1

m

2kiEPm

sinh

sinh

TT

T





−

−
−


−=

−
 









−+
−−

msinhmcoshmcoth
sinh

)1(sinhmcoshsinh




       (24) 

where primes denote differentiation w. r. t.  
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Heat transfer rates for lower and upper walls are given by 
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Table – 1 

Variation of Steady and Unsteady Velocity for K = 1,  = 3 

 u0 u1 

0.0 0.0 0.0 

0.1 0.1 0.1253 

0.2 0.2 0.2312 

0.3 0.3 0.3729 

0.4 0.4 0.4315 
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0.5 0.5 0.5541 

0.6 0.6 0.6139 

0.7 0.7 0.7833 

0.8 0.8 0.8346 

0.9 0.9 0.9015 

1.0 1.0 1.0000 

 

 

Table – 2 

Amplitude and Phase Lag at Lower Wall 

 

0

1
u

=



 1 

1 1.3129 0.3927 

2 1.3174 14.3522 

3 1.3198 10.2377 

4 2.0694 56.5699 

5 2.3891 40.3192 

 

 

 

 

Table – 3 

Amplitude and Phase Lag of Shear Stress  

at Upper Plate for Fixed Value of  K = 1 

 

1

1
u

=



 2 

1 0.8509 1.3890 

2 1.8878 14.7699 

3 2.3493 10.2340 

4 2.9433 45.7934 

5 3.0159 34.3214 

 

Table – 4 

Heat Transfer Variation at Lower Walls with respect to Frequency Parameter  and Fixed Values 

of K = 0,  = 10 and E = 2 
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
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5 − 5.0826 – 14.0132 6.57001 8.1010 

10 − 0.0478 – 14.0484 4.0486 84.6060 
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Table – 5 

Heat Transfer Variation at Upper Walls with respect to Frequency Parameter  and Fixed Values 

of K = 0,  = 10 and E = 2 

 

 

 

 

 

 

 

Table – 6 

Heat Transfer Variation at Lower Walls with respect to Frequency Parameter  and Fixed Values 

of K = 0.1,  = 10 and E = 2 

 

 

 

Table – 7 

Heat Transfer Variation at Upper Plate Wall with respect to Frequency Parameter  and Fixed 

Values of K = 0.1,  = 10 and E = 2 
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
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5 − 0.0001 + i 0.0096 0.0009 – 1.5532 

10 − 4.9829 + i 6.2145 7.9655 – 0.0283 
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
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5 1.1398 – i 10.8598 1.4277 – 0075 

10 4.9845 – 15.8225 7.6722 – 0.0863 

 
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
   tan  

5 − 0.0810 – i 0.0678 0.0105 0.0835 

10 − 0.0029 – i 0.0132 0.0013 4.5514 
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Figure – 1 : Variations of Steady and Unsteady Velocity  

  

 

 
Figure – 2  : Variation of Amplitude at Lower Wall with Frequency Parameter 
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Figure – 3 : Variation of Phase Lag at Lower Wall with Frequency Parameter. 

  

 
Figure – 4 :  Variation of Amplitude at Upper Wall with  

 

 

0

10

20

30

40

50

60

0 1 2 3 4 5

a

b

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

0 1 2 3 4 5

a

b

 

1 

 

 

1

1
u

=






Dr. Sanjay Govind Rao1, Dr. Arun Kumar Pandey2 

6594 

 
Figure – 5 : Variation of Phase Lag at Upper Wall with  

Results and Discussion : 

  We have discussed the effect of visco-elastic parameter and frequency parameter on 

velocity field, shear stress and heat transfer variation at lower and upper plates. Results are illustrated 

with the help of tables – I. We see that steady velocity increases when  increases. And for fixed value 

of the K and , the unsteady velocity increases rapidly. From tables – 2 and 3, it is observed that at 

lower plate amplitude of the shear stress increases with frequency parameter, at upper plate the same 

effect is observed also. 

  From equations (25), (26) we have discussed the effect of oscillation on elastico-

viscous energy dissipation. From table – 4, 5, 6 and 7, for the liquid of small elasticity (K = 0.1) heat 

transfer amplitude at lower wall decreases and phase increases with frequency parameter but at upper 

wall the same is not true. At lower wall the amplitude of non-Newtonian visco-elastic fluid is always 

less than that of Newtonian fluid (K = 0), where as at upper wall it is larger at high frequency and 

smaller at lower frequency. 
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