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Abstract: 

 The generalised recurrent spaces have been discussed in this paper. As holomorphic sectional 

curvature of a Kaehlerian space plays an important role in its geometry, the notion of generalised 

recurrent spaces has not been considered identically the same as in Riemannian geometry but has been 

modified in a sense to involve the above mention holomorphic sectional curvature. In different articles 

of this paper we have studied Ricci-recurrent, generalised Ricci-recurrent and generalised Ricci-2-

recurrent Kaehlerian spaces. 

Keywords: Kaehler space, Generalised Ricci-recurrent and generalised Ricci-2-recurrent Kaehlerian 

space. 

1.  Introduction:  

  The idea of recurrent Kaehler space has been introduced by Mathai[7] in an analogy 

with the concept of recurrent Riemannian space([10],[16]) in 1969. With the help of well-known 

holomorphically projective curvature tensor[15], Bochner curvature tensor[14], and H-conharmonic 

curvature tensor[12] the idea of recurrency has been defined and studied by many investigators like 

Singh and Lal[13], Prasad[9] etc. 

 Recently in 1991, U. C. De and others introduced the idea of a Generalised recurrent 

Riemannian space[1]. In this paper we have extended this concept to a Kahlerian space. The nature 

and existence of K-torse-forming vector fields[20] in such spaces have also been discussed. 

 Let Kn(n=2m>2) be an n-dimensional Kaehlerian space with Fi
h=0 and gji as the components 

of the structure tensor and Hermitian metric tensor respectively, then the Riemannian curvature 

tensor, Ricci tensor and its transformation by the structure tensor satisfies 

(1.1) Fi
i=0 

(1.2) ∇𝑙Rkji
 𝑙= ∇kRji − ∇jRki 

(1.3) ∇𝑙  Rk
𝑙 = 

1

2
∇kR 

(1.4) Rkji
hFh

i = 0 

Further holomorphically projective curvature tensor or briefly HP-curvature tensor Pkji
h 

 which is an invariant under any holomorphically correspondence([6],[13]) and is given byPkji
h = Rkji

h 

+ 
1

𝑛+2
 [δj

hRki– δk
hRji + Fj

hSki- Fk
hSji + 2Fi

hSkj] 

and satisfies the following identities 
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(1.5)  (a) Pkji
rFr

h = Pkjr
hFi

r 

(b) Prji
hFk

r = Prki
hFj

r 

 (1.6)  (a) PkjirFh
r = −PkjrhFi

r 

  (b) PrjihFk
r = PrkihFj

r 

 (1.7) (a) Pkjihgih = 0, 

  (b) Pkjihgki = -Ajh 

  (c) Pkjihgji = Akh, 

  (d) PkjihFki = Fh
mAmj 

(e) PkjihFji = Fk
mAmh, 

(f) PkjihFih = 0 

 where 

  Akh =
1

(n+2)
[nRkh − Rgkh] 

 Further, Bochner curvature tensor given by 

Bkji
h = Rkji

h + δk
hLji – δj

hLki + gjiLk
h – gkiLj

h+ MjiFk
h – MkiFj

h + FjiMk
h – FkiMj

h - 2 (MkjFi
h+ FkjMi

h) 

             where  Lji = - 
1

𝑛+4
 Rji + 

1

2(𝑛+2)(𝑛+4)
 Rgji 

  and    Mji = -LjtFi
t 

 andH-conhormonic curvature tensor given by 

Ckjih = Rkjih + 
1

n+4
 [gjhRki - gkhRji + Rjhgki - Rkhgji + FjhSki – FkhSji + SjhFki - SkhFji + 2(SkjFih + FkjSih)] 

along with the tensor Skji of type (0,3) and given by 

Skji = (∇kRji - ∇jRki) + 
1

𝑛
 (gki∇tRj

t – gji∇tRk
t+ Fki∇tSj

t– Fji ∇tSk
t + 2Fkj∇tSi

t) 

are known to us in Kaehlerian spaces. 

2. Generalised Recurrent Kaehlerian space: 

 A Riemannian manifold Vn whose curvature tensor satisfies the relation  

  ∇𝑙Rkji
h = a𝑙Rkji

h + b𝑙(δk
hgji − δj

hgki) 

 has been called generalized recurrent Riemannian space by U. C. de and N. Guha [1]. 

Following the above we will introduce 

Definition:A Kaehler space whose curvature tensor satisfies the relation 
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 (2.1) ∇𝑙Rkji
h = a𝑙Rkji

h + b𝑙(δk
hgji − δj

hgki + Fk
hFji − Fj

hFki − 2FkjFi
h) 

 Will be called generalized recuurentKaehler space or briefly GRKn. 

 It is clear from (2.1) that when𝑏𝑙 = 0, a GRKn reduces to a recurrent Kaehler space. Further 

we know if a Kaehler space is of constant holomorphic sectional curvature K, then its curvature tensor 

Rkji
h takes the form  

 (2.2) Rkji
h = 

K

4
(δk

hgji − δj
hgki + Fk

hFji − Fj
hFki − 2FkjFi

h) 

 [See Fukami([4],[5]) and Yano and Mogi([18],[19])]. 

 and so, for a Kaehler space of constant holomorphic sectional curvature K, from (2.1) and 

(2.2) we have 

  ∇𝑙𝑅𝑘𝑗𝑖
h = (𝑎𝑙 +

4

𝑘
𝑏𝑙)Rkji

h 

 Showing that the space is always recurrent and thus, we have  

Theorom 2.1 A generalised recurrent kaehler space of constant holomorphic sectional curvature is 

identical with a recurrent Kaehler space. 

 Keeping the above into mind, now onward, we shall assume that our Kaehlerian space is not a 

space of constant holomorphic sectional curvature. 

 As an immediate consequence of (2.1) with the help of 

∇𝑘gij  = 0  , ∇kgij   = 0,  ∇𝑘𝛿𝑖
𝑗 = 0    and  

𝑅𝑖𝑗𝑘
𝑙 =

𝜕

𝜕𝑥𝑗 { 𝑙
𝑖𝑘

} −
𝜕

𝜕𝑥𝑘 { 𝑙
𝑖𝑗

} + {𝑚
𝑖𝑘

} { 𝑙
𝑚𝑗

} − {𝑚
𝑖𝑗

} { 𝑙
𝑚𝑘

}and𝐹𝑗𝑖 = −𝐹𝑗𝑖 

together with Fi
i=0, 𝛿i

i=n, we get              (2.3)∇𝑙Rkjih = a𝑙Rkjih + b𝑙(gkhgji − gjhgki + FkhFji −

FjhFki − 2Fk jFih) 

 (2.4) ∇𝑙Rji = a𝑙Rji + (n + 2)b𝑙gji 

and 

 (2.5) ∇𝑙R = a𝑙R + n(n + 2)b𝑙 

 Now, if R=0,the equation (2.5) yields 

  bl =0 

and hence from (2.1) we have 

  ∇𝑙Rkji
h=alRkji

h 

 

which shows that space again reduces to a recurrent Kaehler space and thus we have 

Theorem 2.2 A generalised recurrent Kaehler space if vanishing Riemannian curvature is a recurrent 

Kaehlerspace.  

 The above theorem suggests us that a generalisedrecurrentKaehler space must not have zero 

Riemannian curvature. 
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 Again, if R is a covariant constant 

 i.e.∇𝑙𝑅 = 0 

 then from (2.5) we have 

 (2.6) 𝑎𝑙 + 𝑛(𝑛 + 2)𝑏𝑙 = 0 

 Which shows that vectors 𝑎𝑙and 𝑏𝑙are not linearly independent and so we can state 

Theorem2.3IfRiemannian curvature of a generalised recurrent Kaehler space is covariant constant 

then the vectors 𝑎𝑙 and 𝑏𝑙 are linearly dependent. 

 In a Kaehler space with vanishing Bochner curvature tensor, Matsumoto [8] has found the 

identity 

 (2.7) 4(𝑛 + 1)∇𝑘𝑅𝑗𝑖 = 𝑔𝑘𝑖∇𝑗 𝑅 + 𝑔𝑘𝑗∇𝑙𝑅 + 2𝑔𝑗𝑖∇𝑘𝑅 − 𝐹𝑘𝑗𝐹𝑖
𝑟∇𝑟𝑅 − 𝐹𝑘𝑖𝐹𝑗

𝑟∇𝑟𝑅 

 Which on multiplication with gji and using the identities  

𝑔𝑖𝑗𝑔𝑖𝑘 = 𝛿𝑗
𝑘   and   ∇𝑘gij  = 0  , ∇kgij   = 0      ,  ∇𝑘𝛿𝑖

𝑗 = 0and  𝐹𝑗
𝑖𝐹𝑖

ℎ = −𝛿𝑗
ℎ& 𝐹𝑗𝑖 = −𝐹𝑗𝑖 

yields (2.8)        ∇𝑘𝑅 = 0 

 On using this in (2.5), we have 

Theorem 2.4 In a generalised recurrent Kaehler space with vanishing Bochner curvature tensor, the 

vectors 𝑎𝑙 and 𝑏𝑙 appearing in (2.1) are not linearly independent. 

 On contracting (2.1) with respect to h and l and using (1.2) and  𝐹𝑘
𝑡∇𝑡𝑆𝑗𝑖 = ∇𝑖𝑅𝑗𝑘 − ∇𝑗𝑅𝑖𝑘 ,  

we find  

∇kRji − ∇jRki = 𝑎𝑙𝑅𝑘𝑗𝑖
𝑙 + bkgji − bjgki − b̃kFji + b̃jFki + 2𝐹𝑘𝑗�̃�𝑖 

Where �̃�𝑘 = −𝐹𝑘
𝑟𝑏𝑟 and a similar relation holds for�̃�𝑖 also. 

 Further, from (2.4) and ∇𝑗𝐹𝑖
ℎ = 0&𝑆𝑗𝑖= 𝑅𝑟𝑗𝐹𝑖

𝑟 ,   we get 

 (2.9) 𝐹𝑖
𝑙∇𝑙𝑆𝑗𝑘 = �̃�𝑖𝑆𝑘𝑗 + (𝑛 + 2)�̃�𝑖𝐹𝑘𝑗 

 From, these two equations by a direct calculation we have 

 (2.10) 2𝑎𝑡𝑅𝑖
𝑡 − 𝑎𝑖𝑅 = (𝑛 + 2)(𝑛 − 2)𝑏𝑖 

 Thus, we have 

Theorem 2.5 In a generalised recurrent Kaehlerian spaces the identity (2.10) holds good. 

 A direct calculation based on HP-curvature tensor, (2.1) and the other identities obtained in 

this section yields the following 

𝛻𝑙𝑃𝑘𝑗𝑖ℎ = 𝑎𝑙𝑅𝑘𝑗𝑖ℎ + 𝑏𝑙(𝑔𝑘ℎ𝑔𝑗𝑖 − 𝑔𝑗ℎ𝑔𝑘𝑖 + 𝐹𝑘ℎ𝐹𝑗𝑖 − 𝐹𝑗ℎ𝐹𝑘𝑖 − 2𝐹𝑘𝑗𝐹𝑖ℎ)

+
1

(𝑛 + 2)
[𝑔𝑗ℎ(𝑎𝑙𝑅𝑘𝑖 + (𝑛 + 2)𝑏𝑙𝑔𝑘𝑖) + 𝑔𝑘ℎ(𝑎𝑙𝑅𝑗𝑖 + (𝑛 + 2)𝑏𝑙𝑔𝑗𝑖)

+ 𝐹𝑗ℎ(𝑎𝑙𝑅𝑚𝑖 + (𝑛 + 2)𝑏𝑙𝑔𝑚𝑖)𝐹𝑘
𝑚 − 𝐹𝑘ℎ(𝑎𝑙𝑅𝑚𝑖 + (𝑛 + 2)𝑏𝑙𝑔𝑚𝑖)𝐹𝑗

𝑚

+ 2𝐹𝑖ℎ(𝑎𝑙𝑅𝑚𝑗 + (𝑛 + 2)𝑏𝑙𝑔𝑚𝑗)𝐹𝑘
𝑚] 

Which on multiplication by Fih in view of∇𝑗𝐹𝑖
ℎ = 0  and (1.7(f)) gives 
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 (2.11) (∇𝑙𝑃𝑘𝑗𝑖ℎ)𝐹𝑖ℎ = 𝑎𝑙
(𝑛+3)

(𝑛+2)
𝑆𝑗𝑘 + 𝑏𝑙𝐹𝑘𝑗  

 Now we suppose that the Kaehlerian space is holomorphically symmetric [6]. Then from 

(2.11) we immediately have 

  𝑎𝑙
(𝑛+3)

(𝑛+2)
𝑆𝑗𝑘 + 𝑏𝑙𝐹𝑘𝑗 = 0 

Or, 

  0 = 𝑎𝑙
(𝑛+3)

(𝑛+2)
𝑅𝑟𝑘 − 𝑏𝑙𝑔𝑟𝑘   

 Showing that 

 (2.12) 𝑅𝑟𝑘 =
(𝑛+2)𝑏𝑙𝑎𝑙

(𝑛+3)|𝑎|2 𝑔𝑗𝑘  

 And so, if vectors a and b are not orthogonal, we find that 

  Rik  ∝  gik 

Theorem 2.6 If a generalised recurrent Kaehlerian spaces is holomorphically symmetric also and the 

associated vectors a1 and b1 are not orthogonal, then it reduces to a KaehlerEinstein space. 

 Further if a1 and b1 are orthogonal, from (2.11) we find that 

  Rik=0 

 And consequently, R=0. Thus 

Theorem 2.7 The generalised recurrent Kaehlerianspaces with mutually orthogonal vectors is if 

associated holomorphically projective symmetric also then its scalar curvature vanishes identically. 

With the help of𝐹𝑘∇𝑡𝑅 = 2∇𝑡𝑆𝑘
𝑡,𝐹𝑘

𝑡∇𝑡𝑆𝑗𝑖 = ∇𝑖𝑅𝑗𝑘 − ∇𝑗𝑅𝑖𝑘 and (1.3) we find that the tensor 

field Skji reduces into the form 

(2.13) Skji = 𝐹𝑖
𝑡𝛻𝑡𝑆𝑗𝑘 +

1

2
{(𝑔𝑘𝑖𝛻𝑗𝑅 − 𝑔𝑗𝑖𝛻𝑘𝑅) + (𝐹𝑘𝑖𝐹𝑗

𝑡 − 𝐹𝑗𝑘𝐹𝑘
𝑡 + 2𝐹𝑘𝑗𝐹𝑖

𝑡)𝛻𝑡𝑅} 

And so the value of this tensor is generalized recurrent Kaehlerian spaces in view of (2.5) and 

(2.9) will be  

 Skji= �̃�𝑖𝑆𝑘𝑗 + (𝑛 + 2)�̃�𝑖𝐹𝑘𝑗 +
1

2𝑛
{(𝑔𝑘𝑖𝑎𝑗 − 𝑔𝑗𝑖𝑎𝑘) − (𝐹𝑘𝑖�̃�𝑗 + 𝐹𝑗𝑖�̃�𝑘 − 2𝐹𝑗𝑘�̃�𝑖)}𝑅 +

(
𝑛+2

2
) {𝑔𝑘𝑖𝑏𝑗 − 𝑔𝑗𝑖𝑏𝑘 − 𝐹𝑘𝑖�̃�𝑗 + 𝐹𝑗𝑖�̃�𝑘 − 2𝐹𝑗𝑘�̃�𝑖}𝑅 

Since, 

 Skji+Sjik+Sikj = 0 

We have from the above equation 

(𝑆𝑘𝑗 +
2𝑅

𝑛
𝐹𝑘𝑗) �̃�𝑖 + (𝑆𝑗𝑖 +

2𝑅

𝑛
𝐹𝑗𝑖) �̃�𝑘+ (𝑆𝑖𝑘 +

2𝑅

𝑛
𝐹𝑖𝑘) �̃�𝑗+(𝑛 + 2)𝑅{�̃�𝑖𝐹𝑘𝑗 + �̃�𝑘𝐹𝑗𝑖 + �̃�𝑗𝐹𝑖𝑘} =

0  

Which after multiplying by aiajak and using �̃�𝑖�̃�𝑖 = 0     gives                                                                                                    

(2.14) R(n+2)�̃�𝑖𝑎𝑖 = 0 

and consequently, we have  
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Either(i) R=0   or(ii) �̃�𝑖𝑎𝑖 = 0 

 Therefore, we find 

 Theorem 2.8 A generalised recurrent Kaehler space satisfies one of the following 

(i) It is a space of zero Reimann curvature. 

(ii) The associated vector a and b satisfy 

𝑎𝑖�̃�𝑖 = 0 

3. Generalised Ricci-recurrent Kaehlerian Manifolds: 

 Generalised Ricci-recurrent Riemannian spaces have been introduced and studied by De, U. 

C., Guha, N. and Kamilya, D. [2]. Following them we shall call a Kaehlerian space to be generalised 

Ricci recurrent provided the Ricci tensor satisfies 

 (3.1) ∇ℎ𝑅𝑗𝑖 = 𝑎ℎ𝑅𝑗𝑖 + 𝑏ℎ𝑔𝑗𝑖 

 When bh vanishes identically, it is clear that 

  ∇ℎ𝑅𝑗𝑖 = 𝑎ℎ𝑅𝑗𝑖 

 and so, the space is Ricci recurrent and when ah and bh both vanish simultaneously, then it is 

Ricci symmetric. Thus, for the existence of a generalised Ricci recurrent space, it is essential that 

these vector field are always non vanishing. 

 As an immediate consequence of (3.1) after multiplication by gji is 

 (3.2) ∇ℎ𝑅 = 𝑎ℎ𝑅 + 𝑛𝑏ℎ 

 Thus, if R=0, we find that 

  bh=0 

and consequently  �̃�ℎ = 0  and so the genralised Ricci recurrent Kaehlerian space reduces into a Ricci 

recurrent space. Thus, we have 

Theorem 3.1 The Riemannian curvature of a generalised Ricci recurrent space cannot be zero. 

 Or 

 Generalised Ricci recurrent Kaehler space of zero Riemann curvature does not exist. 

 Again, if R is covariant constant then from (3.2) we find that  

  ahR+nbh= 0 

 which shows that ah and bh are linearly dependent. Conversely if ahR+nbh = 0, then (3.2)it is 

evident that 

  ∇𝑙𝑅 = 0  and therefore, we have 

Theorem 3.2 The Riemann curvature of a generalised Ricci recurrent Kaehler space is constant if and 

only if vectors ah and bh are related by (3.3) 

 Again from (3.1) we find  

(3.4) ∇ℎ𝑅𝑗
𝑘 = 𝑎ℎ𝑅𝑗

𝑘 + 𝑏ℎ𝛿𝑗
𝑘
 

 Which on contraction with respect to h and k and on using the identity  
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  ∇𝑘𝑅𝑗
𝑘 =

1

2
∇𝑗𝑅 

 and (3.2) gives 

 (3.5) 2𝑎ℎ𝑅𝑗
ℎ = 𝑎𝑗𝑅 + (𝑛 − 2)𝑏𝑗 

 On differentiating𝑆𝑗𝑖 = 𝑅𝑟𝑗𝐹𝑖
𝑟covariantly with respect to xh and using∇𝑗𝐹𝑖

ℎ = 0and (3.1), we 

get 

 (3.6) ∇ℎ𝑆𝑗𝑖 = 𝑎ℎ𝑆𝑗𝑖 + 𝑏ℎ𝐹𝑗𝑖 

 On substituting from (3.6) and (3.2) in𝐹𝑘
𝑡∇𝑡𝑆𝑗𝑖 = ∇𝑖𝑅𝑗𝑘 − ∇𝑗𝑅𝑖𝑘   and on simplifying with the 

help of  

 𝐹𝑗
𝑖𝐹𝑖

ℎ = −𝛿𝑗
ℎ, we find                                                                               

 (�̃�𝑘𝑆𝑗𝑖 + �̃�𝑘𝐹𝑗𝑖)+(𝑎𝑖𝑅𝑗𝑘 − 𝑎𝑗𝑅𝑖𝑘) + (𝑏𝑖𝑔𝑗𝑘 − 𝑏𝑗𝑔𝑖𝑘) = 0 

 Which on multiplication by gik yields 

  �̃�𝑘𝑆𝑗
𝑘 − 𝑛𝑏𝑗 + 𝑎𝑖𝑅𝑗

𝑖 − 𝑎𝑗𝑅 = 0 

 On using (3.5) in it, we find 

  2�̃�𝑘𝑆𝑗
𝑘 − 2𝑛𝑏𝑗 + 𝑎𝑗𝑅 + (𝑛 − 2)𝑏𝑗 − 2𝑎𝑗𝑅 = 0 

 (3.7) 2�̃�𝑘𝑆𝑗
𝑘 = 𝑎𝑗𝑅 + (𝑛 + 2)𝑏𝑗 

 And consequently from (3.7) and (3.5), we find 

 (3.8) 𝑏𝑗 =
1

2
[�̃�𝑘𝑆𝑗

𝑘 − 𝑎ℎ𝑅𝑗
ℎ] 

 Thus, we have got a form of bj and therefore, we may state 

Theorem 3.3 The vector bh associated with a generalised Ricci recurrent Kaehlerian space has the 

form (3.8) 

 On substituting from (3.1) and (3.2) in (2.13), we find  

 Skji = {akRji + bkgji − ajRki − bjgki} +
1

2n
{gki(ajR + nbj) − gji(akR + nbk)} +

1

2n
{FkiFj

t − FjiFk
t +                             2FkjFi

t}(atR + nbt) 

 Which on multiplying by gji and using (3.5) yields 

 (3.9) ak = −
Skjigji

R
 

 Thus, we have determined the form of ak in terms of tensor field Skji and so we state 

Theorem 3.4 The vector field ak of generalised Ricci recurrent Kaehlerian space is given by (3.9). 

 In a Kaehlerian space with vanishing Bochner curvature tensor, Mastumoto has proved that  

                       equation (2.7) holds good 

 On substituting from (3.1) and (3.2) in (2.7), we find 
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 4(n + 1){akRji + bkgji} − gki(ajR + nbj) − gkj(aiR + nbi) − 2gji(akR + nbk)    +

                     FkjFi
r(arR + nbr) + FkiFj

r(arR + nbr) = 0 

 Which after transvection with gji gives 

  𝑎𝑘𝑅 + 𝑏𝑘𝑛 = 0 

 Which in view of (3.2) gives 

  ∇ℎ𝑅 = 0 

 i.e. space is of constant Riemannian curvature and thus, we have  

Theorem 3.5 The generalised Ricci recurrent Kaehlerian space with vanishing Bochner curvature is 

of constant curvature. 

4.Generalised Ricci 2-recurrent Kaehlerian Space: 

 An n-dimensional Kaehlerian manifold is said to be generalized Ricci 2-recurrent Kaehlerian 

manifold if the Ricci tensor of the space satisfies 

 (4.1) ∇𝑙∇𝑘𝑅𝑗𝑖 = 𝑎𝑙∇𝑘𝑅𝑗𝑖 + 𝑏𝑙𝑘𝑅𝑗𝑖 

 Where 𝑎𝑙 is a covariant vector and 𝑏𝑙𝑘is covariant tensor of order 2 From the definition it is 

clear that when 𝑎𝑙 vanishes identically, then the space reduces to a Ricci-2 recurrent space. From (4.1) 

by simple calculation, we find  

 (4.2) ∇𝑙∇𝑘𝑅 = 𝑎𝑙∇𝑘𝑅 + 𝑏𝑙𝑘𝑅 

 (4.3) ∇𝑙∇𝑘𝑅 = 𝑎𝑙∇𝑘𝑅 + 2𝑏𝑙𝑟𝑅𝑘
𝑟 

 Where the identity ∇𝑘𝑅𝑗
𝑘 =

1

2
∇𝑗𝑅 has been used. 

The above two equations show that  

 (4.4) 𝑏𝑙𝑘 =
2

𝑅
𝑏𝑙𝑟𝑅𝑘

𝑟 

 Thus, the tensor of recurrences has got a specified form. 

 From (4.2) it is clear that when R is constant then  

  𝑏𝑙𝑘𝑅=0 

 And thus, eitherR=0 or𝑏𝑙𝑘=0. 

 Now when 𝑏𝑙𝑘 vanishes the space loses its nature of being generalised Ricci 2 recurrent and 

therefore the only option is that R=0 and thus we have  

Theorem 4.1 If the scalar curvature of a generalised Ricci 2-recurrent Kaehlerian space is a constant 

then it must be zero. Again since 

 ∇𝑙∇𝑘𝑅 = ∇𝑘∇𝑙𝑅 

 From (4.2) we immediately have  

  𝑎𝑙∇𝑘𝑅 − 𝑎𝑘∇𝑙𝑅 + 𝑅(𝑏𝑙𝑘 − 𝑏𝑘𝑙) = 0  

 And so that if the tensor 𝑏𝑙𝑘 of recurrence is a symmetric tensor, we find that 

  𝑎𝑙∇𝑘𝑅 = 𝑎𝑘∇𝑙𝑅 
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 Which shows that ∇𝑘𝑅 must be a quantity proportional to ak and hence we have 

Theorem 4.2 If the tensor of recurrence of a generalised Ricci 2-recurrent Kaehlerian space is 

symmetric, then ∇𝑘𝑅 is a vector along the associated vector ak. 

 As an immediate consequence the equation (4.1), we have 

 (4.5) ∇𝑙∇𝑘𝑆𝑗𝑖 = 𝑎𝑙∇𝑘𝑆𝑗𝑖 + 𝑏𝑙𝑘𝑆𝑗𝑖 

 Where∇𝑗𝐹𝑖
ℎ = 0 and𝑆𝑗𝑖 = 𝑅𝑟𝑗𝐹𝑖

𝑟 has been used. 

 On differentiating covariantly the HP-curvature tensor, first with respect to xm and then with 

respect to 𝑥𝑙and using∇𝑘gij  = 0  ,∇kgij   = 0  ,  ∇𝑘𝛿𝑖
𝑗 = 0&𝑔𝑖𝑗𝑔𝑖𝑘 = 𝛿𝑗

𝑘, (4.1), (4.5) and the equation 

of HP-curvature tensor  itself. We find 

 (4.6) ∇𝑙∇𝑚𝑃𝑘𝑗𝑖
ℎ − 𝑎𝑙∇𝑚𝑃𝑘𝑗𝑖

ℎ − 𝑏𝑙𝑚𝑃𝑘𝑗𝑖
ℎ = ∇𝑙∇𝑚𝑅𝑘𝑗𝑖

ℎ − 𝑎𝑙∇𝑚𝑅𝑘𝑗𝑖
ℎ − 𝑏𝑙𝑚𝑅𝑘𝑗𝑖

ℎ 

 Thus, we find that when the Kaehlerian space is generalised Ricci 2-recurrent then equation 

(4.6) holds good. Conversly if we assume that (4.6) holds good then on contracting (4.6) with respect 

to h andk, we find that  

  ∇𝑙∇𝑚𝑅𝑗𝑖 = 𝑎𝑙∇𝑚𝑅𝑗𝑖 + 𝑏𝑙𝑚𝑅𝑗𝑖 

 Where we have used 𝑃𝑘𝑗𝑖
ℎ = 0 and𝑅𝑖𝑗 = 𝑅ijk

𝑘  . The above equation is nothing but equation 

(4.1) and so our space is generalised Ricci 2-recurrent and thus we have 

Theorem 4.3 A Kaehlerian space is genralised Ricci 2-recurrent if and only if the equation (4.6) 

holds. 

 By the same method adopted as above, we can get two more equations similar to (4.6), one 

for the Bochner curvature tensor and the other for the Conharmonic curvature tensor, and proceeding 

exactly as above one can get  

Theorem 4.4 A Kaehlerian space is generalised Ricci 2-recurrent if and only if 

  ∇𝑙∇𝑚𝐵𝑘𝑗𝑖
ℎ − 𝑎𝑙∇𝑚𝐵𝑘𝑗𝑖

ℎ − 𝑏𝑙𝑚𝐵𝑘𝑗𝑖
ℎ = ∇𝑙∇𝑚𝑅𝑘𝑗𝑖

ℎ − 𝑎𝑙∇𝑚𝑅𝑘𝑗𝑖
ℎ − 𝑏𝑙𝑚𝑅𝑘𝑗𝑖

ℎ 

 holds. 

Theorem 4.5 A Kaehlerian space is generalised Ricci 2-recurrent if and only if 

  ∇𝑙∇𝑚𝐶𝑘𝑗𝑖
ℎ − 𝑎𝑙∇𝑚𝐶𝑘𝑗𝑖

ℎ − 𝑏𝑙𝑚𝐶𝑘𝑗𝑖
ℎ = ∇𝑙∇𝑚𝑅𝑘𝑗𝑖

ℎ − 𝑎𝑙∇𝑚𝑅𝑘𝑗𝑖
ℎ − 𝑏𝑙𝑚𝑅𝑘𝑗𝑖

ℎ 

 holds. 

5. Vector fields in generalised recurrent Kaehlerian spaces: 

 In Kaehler space a parallel vector field is the vector field whose covariant derivative vanishes 

identically, i.e., 

 (5.1) ∇𝑗𝑣𝑖 = 0  

 If we put�̅�𝑖 = 𝐹𝑗
𝑖𝑣𝑗 then in view of∇𝑗𝐹𝑖

ℎ= 0from (5.1) we have 

 On making the use of Ricci identity 

 (5.2) ∇𝑘∇𝑗𝑣ℎ − ∇𝑗∇𝑘𝑣ℎ = 𝑅𝑘𝑗𝑖
ℎ𝑣𝑖  



Dr Anjani Kumar Singh 

 

6605 

 And the Bianchi identities, we have following results 

 (5.3) (a) 𝑣𝑎𝑅𝑎𝑗𝑘 = 0, 𝑣𝑎𝑅𝑎𝑗 = 0 

         (b) �̅�𝑎𝑅ℎ𝑎𝑗𝑘 = 0, �̅�𝑎𝑅𝑎𝑗 = 0 

 (5.4) (a) 𝑣𝑎∇𝑙𝑅ℎ𝑎𝑗𝑘 = 0, 𝑣𝑎∇𝑙𝑅𝑎𝑗 = 0 

          (b) �̅�𝑎∇𝑙𝑅ℎ𝑎𝑗𝑘 = 0, �̅�𝑎∇𝑙𝑅𝑎𝑗 = 0 

 (5.5) (a) 𝑣𝑎∇𝑎𝑅ℎ𝑗𝑘 = 0, 𝑣𝑎∇𝑎𝑅𝑖𝑗 = 0, 𝑣𝑎∇𝑎𝑅 = 0 

         (b) �̅�𝑎∇𝑎𝑅ℎ𝑖𝑗𝑘 = 0, �̅�𝑎∇𝑎𝑅𝑖𝑗 = 0, �̅�𝑎∇𝑎𝑅 = 0 

 Now on differentiating (5.3) covariantly with respect to 𝑥𝑙and using (2.1) (i.e. on supporting 

Kn to be generalised recurrent space) and (5.1), we find 

  𝑎𝑙𝑅𝑘𝑗𝑖
ℎ𝑣𝑖 + 𝑏𝑙(𝑣𝑗𝛿𝑘

ℎ − 𝛿𝑗
ℎ𝑣𝑘 − 𝐹𝑘

ℎ�̃�𝑗 + 𝐹𝑗
ℎ𝑣𝑘) − 2𝐹𝑘𝑗�̃�ℎ𝑏𝑙=0 

 On contracting the above equation with respect to h andk, we get 

 (5.6) 𝑎𝑙𝑅𝑗𝑖𝑣𝑖 + (𝑛 + 2)𝑏𝑙𝑣𝑗 = 0   

 Which after multiplication with �̃�𝑙 and use of 𝑎𝑙�̃�𝑙=0 gives 

  𝑏𝑙�̃�𝑙 = 0 

 and thus, we get 

Theorem 5.1 If generalised recurrent Kaehlerian space admits a parallel vector field then its 

associated vectors a 𝑎𝑙 𝑎nd 𝑏𝑙 satisfy 𝑎𝑙�̃�𝑙 = 0. 

 On the other hand, on multiplying (5.6) by 𝑎𝑙, we find 

 (5.7) (Rji-C𝑔𝑗𝑖)v
i=0 

 Where 𝐶 =
−(𝑛+2)𝑏𝑙𝑎𝑙

|𝑎|2  

 Clearly C is a non-zero scalar, when vectors 𝑎𝑙  and 𝑏𝑙 are not orthogonal and becomes zero 

when they are orthogonal. Further as the (5.7) holds good for arbitrary vector field, we have  

  𝑅𝑗𝑖 ∝ 𝑔𝑗𝑖  when  𝑏𝑙𝑎𝑙 ≠ 0 

 and 

  𝑅𝑗𝑖 = 0  when 𝑏𝑙𝑎𝑙 = 0 

 Thus, we conclude that 

Theorem 5.2 If generalised recurrent Kaehlerian space admits a parallel vector field and associated 

vectors 𝑎𝑙 and 𝑏𝑙 are orthogonal, then it space becomes a Kaehlerian Einstein space. 

Theorem 5.3 If generalised recurrent Kaehlerian space admits a parallel vector field and associated 

vectors𝑎𝑙  and 𝑏𝑙 are orthogonal, then it reduces to a space of zero Riemannian curvature. 

 Now, in the following space will be assumed to be generalised Ricci recurrent, so that the 

identities of article 3 holds good. 
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 On differentiating (5.3)(b) covariantly with respect to xh and using (3.1), (5.1) and (5.3)(b) 

after simplification we get that 

  bhvj=0 

 shows that there are two possibilities 

(i) The parallel vector field is null vector field. 

(ii) The vector field vj is null vector field. 

Since bh≠0 we immediately find that vj=0 and therefore 

Theorem 5.4 The parallel vector field in a generalised Ricci recurrent Kaehlerian spaces reduces to a 

null vector. 
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