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Abstract— Three alternative AES architectural designs will be presented in this study with the goal of 

establishing a symmetric block ciphering standard. Pipe structures and resource sharing were used in the 

development of the three concepts. The open standard AMBA AHB governs how blocks in a SoC are 

interconnected (SoC). 
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I. INTRODUCTION 

The Advanced Encryption Standard was created in 2000 as a result of work done by the NIST (AES). The open 

competition for algorithm selection was won by Rijndael, a substitution-permutation block cypher. AES was first 

developed by the US federal government to protect sensitive data before becoming a global de facto standard. 

AES's flexibility to a broad variety of hardware and software settings is one of its most attractive features. 

In this article, three different AES encryption schemes are examined. They may be integrated into more complex 

systems thanks to a common communication protocol, and they provide answers for many problems. To put it 

another way, it works like this: During encryption and key expansion, the AES algorithm adapts to all of the 

changes that occur. Section III discusses the techniques used to design individual architectural projects. 

II. DESCRIPTION OF THE AES ALGORITHM  

However, secret key sizes are most often found at 128, 192, or 256-bit levels, with AES using 128-bit 

data blocks. Figure 1 depicts the encryption process' iterated use of invertible transformations, often known 

as rounds. The first round is followed by iterations of the Nr-1 general round, and the final round has just 

one iteration. A 128-bit key has 10 round iterations; a 192-bit key has twelve round iterations; and a 256-bit 

key has fourteen round iterations. The secret key must be used to generate a sub -key (likewise known as a 

overweight key) using an expansion algorithm for each round. There is XOR operation in the first round, 

whereas general rounds contain four alterations called SubBytes (SB),  MixColumns (MC), Shiftrows (SR) 

and AddRoundkey (A) between the plain text block and the first round key (ARK). When it comes to the 

concluding round, it's comparable to other circles excluding that the MixColumns transformation is absent. 

It's omitted from the list. As a consequence of the intermediate results during encryption, all input and 

output data blocks are also encoded as a 4*4 matrix known as a  state matrix, which corresponds to the 

sixteen bytes fashionable a 128-bit data. To learn more about different kinds of encryption, keep reading.  
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Fig.1: Diagram of the AES encryption algorithm 

A. SubBytes 

  In the AES standard, there is just one nonlinear operation, and that is the algorithm's replacement 

layer transformation. A change is applied to each member of the state matrix (referred to as S -BOX). Galois 

Finite Field (GFf28g) S-BOX inversion using irreducible polynomial x8+x4+x3+x+1 and affine mapping. 

I.eno byte maps to either itself or its own reverse value. As a result, the transformation becomes more 

complicated while also avoiding fixed and opposing places. The S-BOX transformation is often carried out 

using lookup tables or arithmetic operations in finite fields (LUTs). 

B. ShiftRows 

Changing the rows in the state matrix causes this change. All succeeding rows are rotated one byte to the left, 

even if the first row remains unchanged. As a consequence, the last row is three bytes to the left of where it 

originally was. 

 

C. MixColumns 

 The state matrix's columns may be seen as discrete units of change. In mathematics, this is equivalent to 

multiplying polynomials over the finite field GFf28g. Each column is represented by polynomial 

coefficients multiplied by the constant polynomial 03x3+01x2+01x+02, which is known as the irreducible 

polynomial x4+1 in the standard. Equation 1 may demonstrate this for a single column. A superscript 0 is 

appended to a state matrix entry after a change (zero).  

  

 

D. Key Expansion 

 Encryption sub-keys are generated via the use of a recursive approach. Depending on key size, this 

technique is fast or slow. A 128-bit secret key's primary sub-key and key are the same. The final 

sub-keywords are calculated using Equation 2, as stated above. For example, using a similar S-BOX for 

encryption, you may execute circular shift followed by replacements, and then perform an XOR process 

amongst the maximum substantial bit and an 8-bit continual named RC to keep the value changing every 

time the programme is performed in a loop. 

W[4i] = W[4(i- 1)] + g(W[4i - 1])             (2) 
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W[4i + j] = W[4i + j - 1] +W[4(i- 1) + j]   (3) 

Regardless of the development technique, nearby are two methods near handle overweight keys. Popular the 

principal method, referred to as precompute, all of the subkeys are generated before any encoding takes 

place. On the other hand, a dynamic method uses only when they are really needed to generate sub -keys. 

There is no requirement for parallelism inside the encryption process with the designs in this study since 

they use a 128-bit secret key and a precompute method. 

 

E. Procedure modes 

 Plain text delivery to the cypher is controlled by operating modes when the block size is exceeded. NIST's 

full recommendations describe the most commonly utilised operating modes. Codebook (ECB), Cipher 

(CFB), OFB, and Counter are all acronyms that should be familiarised with (CTR) ECB mode is used in 

these systems, which means that each segment of the plain text is encrypted separately, according to this 

study. Because it keeps the plain text statistics, this mode of operation is insecure when it comes to 

encryption. Because it's not a feedback mode, we may encrypt a huge number of data blocks at once as a 

foundation for both opposing modes. 

 

III. DESIGN 

 This study's designs include three major components: key extension, encryption, and control. The standard's 

expansion method turns a square key into a round one. Encoding begins as soon as key expansion is complete, 

thanks to a fsm that controls communication between blocks involved in key expansion and encryption. An output 

text block notifies the control module that a replacement has arrived, and the output data is now legitimate. . The 

three designs are referred to as "basic," "pipeline," and "compact," respectively. It's important to note that their 

blocks are implemented in very different ways. 

 

A. Basic architecture 

All of the 128-bit wide internal buses are cycled once every clock cycle. Cryptographic blocks are 

constructed using the architecture shown in Figure 2, with the result being transmitted back via a register as 

an input after one general round. To implement AddRoundkey, each byte has its own LUT instance, and 

each word has its own MixColumns instance. There are a total of 32 LUTs used in this round. The 

addressing between the SubBytes output and the MixColumns input determines the ShiftRows 

transformation. There's a multiplexer just before the final match.  

 
Fig.2: Implementation of an encryption block in the underlying architecture 

 

Since the sub-keys have already been calculated, the key may be expanded more quickly. Basic design 

compromises between size and performance due to key development block's one sub-key calculation per 

clock cycle.. The final result is revealed in Fig. 3. Send the encryption block the keys first, and it will store 

them in an array. 

 
Fig.3: Implementation of the key expansion in the fundamental architecture 
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B. Pipeline construction 

This design's primary objective is to outperform the core module in te rms of throughput. The only way 

you're going to go this far is by going through a lot of rounds at once. Figure 4 shows an encryption block, 

thus there are a total of nine general rounds and a final round. Four AddRoundkey instances are used in 

addition to four MixColumns instances for each general round. By using registers to connect the rounds, 10 

data blocks may be processed in the same amount of time (fully-pipelined structure). Every clock cycle, a 

new cypher text block will be produced using the finalised design's basic structure. There is a striking 

resemblance between this design's primary expansion block and a building block from classical 

architecture. 

 
Fig.4: Implementation of an encryption block in a pipeline architectural design 

 

C. Compact architecture 

Compact architecture is being utilised to minimise the amount of hardware needed to encrypt data. It is 

possible to fit a single 128-bit block inside a module by splitting it into four 32-bit blocks. The encrypted 

transitional consequences are deposited in four memory blocks, one for each row of the national matrix. 

SubBytes and AddRoundkey instances, as well as a MixColumns, are shown in Figure 5 of the encryption 

block One bank of memory blocks stores the round input file, the other the round outpu t file. Interpretation 

a expression since an input bank and dispensation it using combinatorial logic is how encryption is done in 

rounds. The results will be deposited in the production bank until the succeeding watch series. Before the 

next cycle begins, the input and output banks exchange places. 

 
Fig.5: Compact implementation of the encryption block.  

 

The proper addressing determines how the Shift Rows architecture transforms while reading from memory. 

A clock cycle's worth of memory reads and writes are shown in Fig. 5 through colour coding. 

The 32-bit internal buses of the compact design's main expansion block are also included [9]. As shown in 

Figure 6, one sub-keyword is computed for each tick of the clock. For each computed word in the encryption 

block, round keys are kept in four memory blocks (one for every key matrix row). The AddRoundkey 

transformation allows instant access to these blocks. 

 
 

Fig.6: Compact architecture implements a key expansion. 
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IV. AMBA CROSSING POINT 

For the AMBA AHB interface, wrappers were employed. This allowed it to be integrated into a variety of AES 

designs. Wrappers are used to offer a 32-bit datapath for the smallest and most basic systems (HRDATA and 

HWDATA buses in AMBA). Pipelines now feature buses with a bit depth of 128 bits. A clear text block may be 

transmitted to the cypher per clock cycle thanks to the AMBA AHB standard, which supports this bus width. A 

pipeline design's maximum throughput can never be reached with smaller data paths. Data (plain text and the 

secret key) is sent to the cypher by AHB Master via registers. Because information is transferred from a datapath 

to an AES-cypher after the least significant number of word registers are written with datapath wrapping, AHB 

Master must write registers in a certain order (from most to least important) while using datapath wrapping. In 

basic and compact architectures, the HREADYOUT signal is set to zero while encryption or key expansion is 

taking place to indicate that no new data will be received. HREADYOUT is set to a coffee value only while the 

key expansion procedure is in ongoing since the pipeline structure encrypts several bits of data at once. As soon as 

encryption is complete, the AMBA AHB interface is updated with wrappers for future AES designs. Basic and 

small systems may both benefit from 32-bit datapath wrappers (HRDATA and HWDATA buses in AMBA). 

Pipeline buses now have a bit depth of 128 bits rather than 64 bits. One clear text block may be sent to the cypher 

per clock cycle under the AMBA AHB standard utilising this bus width. If smaller data channels are utilised, the 

pipeline architecture's maximum throughput will never be reached. AHB Master utilises registers to send plain 

text and the secret key to the cypher. AHB Master must first set up the registers in a certain order before sending 

the data to AES (from most significant word to least). The HREADYOUT signal in basic and compact 

architectures is set to zero while encryption or key expansion processes are in progress, signalling that no further 

data will be received. A single value for HREADYOUT is only utilised while the key expansion procedure is in 

place since pipeline architecture encrypts several bits of data at once. There are three methods to save the cypher 

text once it has been encrypted: (four 32-bits registers for basic and compact and one 128-bits register for 

pipeline). Before creating a new cypher text block, the AHB Master should double-check these registers. AMBA 

In order to avoid data loss and maximise pipeline efficiency while using AHB Master and skimming Slaves at the 

same time, cypher text blocks must be preserved. 

V. SIMULATION RESULTS 

The new and enhanced architecture was simulated using Xilinx ISE 14.7. After the key expansion process is 

complete, the Master directs the underground key also the cypher gets the plane text blocks. At the end of the 

encryption development, the test bench compares the value returned by the cypher with the conforming cypher 

transcript in the file. 

 

Fig.7: Showing Detailed RTL Schematic of AES AHB DATA 

 

Fig.8: Showing RTL Schematic of AES AHB DATA 
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Fig.9: Showing Technology Schematic of AES AHB DATA 

 

Fig.10: Showing RTL Schematic of AES AHB Interface 

 

Fig.11: Showing Detailed RTL Schematic of AES AHB Interface 

 

Fig.12: Showing Detailed RTL Schematic of AES AHB Interface_1 

 

Fig.13: Showing RTL Schematic of AES AHB Interface Pipelining 
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Fig.14: Showing Detailed RTL Schematic of AES AHB Interface Pipelining 

 

Fig.15: Showing RTL Schematic of AES 1-Stage Pipelining 

 

Fig.16: Showing RTL Schematic of AES 2-Stage Pipelining 

 
Fig.17: Showing Simulation waveform of AES AHB DATA 

 

Fig.18: Showing Simulation waveform of AES AHB Interface 

 

Fig.19: Showing Simulation waveform of AES AHB Interface Pipelining 

 



 

 

Mohammed Murtuza Mohiuddin, Shaik Mohammed Rasool, Dr. Mohammed Jabirullah 

1048 

 

Fig.20: Showing Simulation waveform of AES 1-Stage Pipelining 

 

Fig.21: Showing Simulation waveform of AES 2-Stage Pipelining 

VI. TIMING DELAY SUMMARY 

 
Fig.22: Showing Timing Summary of AES AHB DATA 

 
Fig.23: Showing Timing Summary of AES AHB Interface 

 

Fig.24: Showing Timing Summary of AES AHB Interface Pipelining 

 

Fig.25: Showing Timing Summary of AES 1-Stage Pipelining 

 
Fig.26: Showing Timing Summary of AES 2-Stage Pipelining 
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VII. DEVICE UTILIZATION SUMMARY 

 

Fig.27: Showing Device Utilization Summary of AES AHB DATA 

 

 

Fig.28: Showing Device Utilization of AES AHB Interface 

 

Fig.29: Showing Device Utilization of AES AHB Interface Pipelining 

 

Fig.30: Showing Device Utilization of AES 1-Stage Pipelining 

 

Fig.31: Showing Device Utilization of AES 2-Stage Pipelining 

 

VIII. CONCLUSION 

AMBA AHB and other standard interface protocols with enhanced AES provide the proposed architecture more 

flexibility, enabling it to be used and integrated into additional compound organizations comparable SoCs. 
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