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Abstract- There is a large number of techniques available for deriving reduced order models and 

lower order controllers. In this paper, the features and analysis of Frobenius Hankel (F H) norm, H2 

norm and H∞ norm reduced order approximations is given. Also The necessary and sufficient 

conditions  for the  existence of an approximate solution within  a specified error γ will be found, 

these conditions  are given in terms  of a set of linear matrix  inequalities (LMI)  and  a matrix  rank  

constraint for both  continuous  and  discrete  time  multi input-multi output systems.  

In this paper we will introduce some of the popular methods to reduce the complexity of models, 

which depends mainly on the balanced state space representation and the Hankel singular values. 

These methods are balanced truncation and Hankel norm reduction methods. 

Keywords: Model Order Reduction, linear matrix inequalities, Modal Truncations. 

I. INTRODUCTION 

Simple models are preferred above complex models and accurate models are preferred above 

inaccurate models.  To obtain high accuracy models, we usually need to implement complex models, 

while simple models are generally inaccurate.  In this paper, we assume that a stable linear time-

invariant system is given and we address the problem to approximate this system by a simpler one. 

The approximate system is required to have a dynamic behavior which is as close as possible, to the 

behavior of the system which we wish to approximate. The problem on this thesis is an optimal 

model approximation. This problem is definitely a relevant one as many models derived from first 

principles or identification routines tend to become complex.  Also, in the design and synthesis of 

control systems, controllers may become too complex to be implemented. 

The complexity of linear time-invariant models is generally defined as the dimension of the state 

vector of any minimal state space representation of the system. This number is also known as the 

McMillan degree or the order of the system.  After the definition of complexity the model 

approximation problem can be stated as follows: 

Given a stable, linear time-invariant system G(s) of McMillan degree n, find a lower to the behavior 

Bˆ  of Gˆ(s).There  are  a  large  number  of techniques  available  for deriving  reduced  order models 

and  lower order  controllers.   One of the most commonly used methods is the balanced truncation 

method.   The  procedure  is easy to  be implemented  and also the  method  is extensively  studied  

[1].  Another method is the Hankel norm approximation [2]. As we can recognize from the model 

reduction techniques, there is an error between the original high order system and the obtained 
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reduced order model in some sense as an index of how good the approximate is.  For both of the 

methods upper bounds on the error in the H∞ sense and also a lower bound for the Hankel norm 

approximation method are expressed in terms of the Hankel singular values of the original system.   

The  previous  methods  do not  in general  produce optimal approximates in the H∞ sense and there 

are several methods for H∞ optimal model reduction  are developed to reduce the error γ between the 

reduced and the original model [3, 4] are examples of the developed H∞  optimal  model reduction. 

II. STATE TRUNCATIONS 

Consider a dynamical system in input-state-output form: 

x˙ (t) = Ax(t) + Bu(t) 

y(t) = C x(t) + Du(t)   (1.1) 

Here, we have a system with n states, m inputs and p outputs. That is, x (t) ∈  R
n
, 

u(t) ∈  R
m

  and y(t) ∈  Rp  for all time instants t ∈  R.We will have  (A11, B1, C1, D)  as a kth  order  

truncation of (A, B, C, D). This kth order truncation for the system (1.1) is: 

ξ˙(t) = A11ξ(t) +B1u(t) 

y(t) = C1 ξ(t) + Du(t)   (1.2) 

Although, the original system is stable, controllable and minimal the truncated system may not be. 

III. MODAL TRUNCATIONS 

Consider a state space transformation: 

x = T x´     (1.3) 

for the system (1.1) with T a non-singular  matrix  of dimension n × n.  Since such a transformation 

only amounts  to  rewriting  the  state  variable  in a new basis,  this transformation does  not  affect  

the  input-output behavior  associated  with  (1.1).  

Theorem 1.1. The If Σ is represented by (1.1), then the external (or input-output behavior) of 

Σ is equivalently represented by the input-state-output model. 

´x˙ (t) =T 
−1

AT x´(t) + T
−1

Bu(t) 

y(t) = C T x´(t) + Du(t)  (1.4) 

Proof: Can be obtained from (1.1) by substituting (1.3) in (1.1) and solving for x´. In fact, we 

describe all minimal input-state-output representations of Σ by varying T over the set of non-singular 

matrices. The transformation: 

A→ T 
−1

AT  = A´ 

is called a similarity  transformation of the matrix  A.   

The characteristic polynomial of the A matrix  occurring in (1.1) is the polynomial p(s) = det(sI  − A). 

We can write this polynomial in various formats. 

p(s) = det(sI  − A) 

        = p0 + p1s + ... + pns
n
 

        = (s − λ1)(s − λ2)...(s − λn)  (1.5) 

where λ1 , ..., λn  are  the  so called modes of the  system.   For the modal canonical form we assume 

that the natural frequencies λ1, λ2, ...λn  are all different.  For each natural frequency  λi  there  exists  

a (complex)  eigenvector  vi  of dimension  n  such that [λi  − A]vi   = 0.  If we store these eigen 

vectors  v1, ..., vn  in one n × n matrix. 

T = [v1 v2 ... vn] then we obtain a non-singular transformation (1.3) and the transformed A matrix 

takes the form 

A´x := T −1AT  = diag(λ1 , ..., λn)   (1.6) 
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which is called a Jordan  form of the matrix  A.  The resulting state space system is said to be in 

modal canonical form. 

Definition 1.1: (Modal canonical form) the input-state-output system: 

x˙ (t) = A´x(t) + B´ u(t) 

y(t) = C´x(t) + D´ u(t)   (1.7) 

with A´ = T 
−1

AT as in  (1.6), B´ =T 
−1

B,  C´ =T C and  D´=D is called a modal canonical state space 

representation. 

Definition 1.2: (Modal truncations) If (1.7) is a modal canonical state space system, then the k
th

 

order truncation 

 ξ˙(t) = A
r
11ξ(t) +B

r
1u(t) 

y(t) = C
r
1 ξ(t) + D

r
u(t)   (1.8) 

is called the k
th 

order modal truncation  of  (1.1). 

IV. BALANCED TRUNCATION 

A second popular procedure for model approximation is the method of balanced truncations.   It  

requires  a  state  truncation of a  system  which  is represented   in balanced  state  space form.   The 

balanced state space representation is an input- state-output representation of the form (1.1) for which 

the controllability grammian and the observability  grammian  are equal and diagonal. 

A. Balanced state space representations 

Suppose that a minimal and stable state space representation (1.1) of a dynamical system is given. 

We define two matrices. 

Since the system is assumed to be stable,  the eigenvalues of A has a negative  real part,  and from 

this it follows that  the integral  in (1.9) is well defined. Note that P is an n × n real matrix, it is 

symmetric. 

The observability  grammian  associated with the system (A, B, C, D) is the matrix 

  (1.10) 

Again, the stability assumption implies that the integral in (1.10) is well defined. Q is an n × n real 

symmetric matrix. 

Fortunately, to compute the controllability and observability  grammians  of a state space system,  

it is not  necessary to perform the  integration as in (1.9) and (1.10) the next theorem tell us how to 

obtain the grammians  from the Lyapunov equation. 

Theorem 1.2. Given a minimal and stable system (1.1), its controllability gram- mian P is the 

unique positive definite solution of the Lyapunov equation. 

AP + P AT   + BBT = 0       (1.11)  

Similarly, the observability grammian  Q is the unique positive definite solution of 

       AT Q + QA + C T C = 0        (1.12) 

If the system we have is minimal, then grammians P and Q are the unique solutions to (1.11) 

and (1.12), respectively.   The  computation of the  grammians  is therefore  equivalent to the  

algebraic  problem  to find solutions  of Lyapunov  equations  (1.11) and  (1.12).   Balanced state 

space  representations are now defined as follows. 

Definition 1.3: A minimal s t a t e  space representation   (1.1) is called balanced if the 

controllability and observability grammians are equal and diagonal, i.e, if 
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P = Q = diag(σ1, σ2,...σn) 

Where, σi is real and positive numbers that are ordered according to 

σ1 ≥ σ2 ≥ ... ≥ σn > 0 

B. Existence of Balanced State Space Representations 

To find the balanced  representation of the system (1.1), let us assume that  we cal- culated  the 

controllability  and observability  grammians  for the stable  system (1.1) and let us see how these 

grammians  transform  if we change the  basis of the  state space.  Thus, consider again the state 

space transformation (1.3).  As we have seen, this results in the transformed  state  space parameters 

(A´, B´ , C´, D´ ) as shown on def- inition(1.1)  yields that  the transformed  grammians  take the 

form 

P´ = T −1P (T −1)T ;  

Q
r
=TTQT 

This  shows that  the  grammians  depend  strongly  on the  basis of the  state  space. However, their 

product 

Ṕ Q́ = T −1P (T −1)T T T QT=T −1 PQT 

so that  The eigenvalues of P Q are  invariant  under state space transformations. Let 

λ1, ..., λn denote the eigenvalues of the product  P Q.  Then λi are positive real numbers for i 

= 1, ... n so that  it makes sense to consider their square roots. We just showed that t h e s e  

numbers are system invariants:   they do not change by transforming the basis of the state 

space.  In the literature, these system invariants play a crucial role and are called the Hankel 

singular values of the system (1.1). To show that balanced  state space representations actually 

exist, we need to construct a non-singular state transformation matrix T that simultaneously 

diagonalizes the controllability and  the observability  grammians  P and Q. 

The algorithm (which is of course i mplemented in MATLAB) is as follows: 

INPUT: State s p ace  parameters (A, B, C, D)  of a minimal,  stable  system  of the form (1.1) 

 

Step 1:  Compute the grammians P and Q. 

Step 2:  Factorize P = R> (the routine chol in MATLAB is doing this for you). 

Step 3:  Construct the  matrix  RQR> and  (since it  is positive  definite)  factorize it as 

RQR> = U >Σ2U  where U is a unitary  matrix  (i.e., U U > = U >U = I ) and 

Σ = diag(σ1 , σ2, ..., σn) then the numbers σi are the Hankel singular values (i.e., the square 

roots of the eigenvalues λi(P Q)). 

Step 4: Define the non-singular matrix T:  =  R>U Σ−1/2. 

OUTPUT: the matrices (Á, B́ , Ć, D́ ) as defined in definition(1.1) 

It is easily seen that t h e  state t ransformation  defined in step 4 of the algorithm achieves that 

the  grammians of the transformed s ys t em  are 

Q́=T >QT = Σ−1/2U >RQR>U Σ−1/2 = Σ−1/2Σ2Σ−1/2  = ΣṔ = T −1P (T −1)−> = 

Σ1/2U >R>P R−1U Σ1/2  = Σ1/2Σ1/2  = Σ 

i.e., they are equal and diagonal with the Hankel singular values as diagonal elements.  We thus 

proved the following important result. 

Theorem 1.3. Every stable dynamical system of the form (1.1) admits a balanced input-

state-output representation. 
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C.  Balance Truncation 

The above interpretation justifies the following definition of a model reduction procedure based on 

balanced state space representations. 

Definition 1.4(Balanced Truncations):  If (1.1) is a stable, balanced state space system, 

then the kth order truncation 

ξ̇(t) = A11ξ(t) +B1u(t) 

y(t) = C1 ξ(t) + Du(t)            (1.13) 

This simple approximation method provides  very efficient and good approximate models.  It 

eliminates the poorly controllable and poorly observable states f rom a state space model. The 

number k may in practice be determined by inspecting the ordered sequence of Hankel singular 

values σ1, ..., σn. A drop in this sequence (i.e., a number k for which σk+1 /σk << 1) may 

give you a reasonable estimate of the order of a feasible approximate model. If σk >  σk+1 (as 

will be the case in many practical situations) the kth order balanced truncation turns out to 

have good properties. 

Theorem 1.4.  Suppose that (1.1) is a balanced state space representation of a stable system.    

Let  k  <  n  and  suppose  that  σk    >  σk+1 .   Then t h e  kth  order  balanced truncation is 

minimal,  stable, balanced. 

Now let us consider the following remarks: 

Remark 1.1:  If G(s) denotes the transfer function corresponding to (1.1) and Gk (s) is the 

transfer function of a kth order balanced truncation of G(s) then it is known that the  error G − 

Gk satisfies, 

kG(s) − Gk (s)k∞  ≤ 2(σk+1 + σk+2 + ... + σn)     (1.14) 

Thus the maximum peak in the Bode diagram of the error system is less than twice the sum of 

the tail of the Hankel singular values. 

Remark 1.2:   All the results of this section can be repeated f o r  discrete time systems. 

Formulas change, but the ideas are identical. 

Remark 1.3:   In MATLAB the relevant routines for constructing b a l a n c e d  state space 

models are bal real for continuous time systems and  dbalreal for discrete time systems. 

V. HANKEL NORM REDUCTIONS 

The Hankel norm reductions are  among the most important techniques of model reduction 

procedures  that e x i s t  today.   It  is one of the  model approximation procedures that  

produce  optimal  approximate models according  to some well-defined criterion  that  we will 

introduce  below.  It constitutes a beautiful theory associated with the names of Nehari, Arov- 

Adamjan-Krein (AAK) and Glover [2, 5]. Glover introduced state space ideas in this problem 

area and in our exposition we will follow his work. 

A.  Hankel Singular Values and the Hankel Norm 

The Hankel norm of a system is easily computed.   In fact, it turns out to be equal to the maximal 

Hankel singular value for the systems.  For Discrete time systems is straightforward: 

The controllability grammian is the positive definite matrix 

  (1.15) 

The observability grammian is the matrix 
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  (1.16) 

The grammians of the system are the unique positive definite solution to the Lyapunov 

equations 

  (1.17) 

  (1.18) 

These equations form an efficient approach to solve for the grammians. 

Definition 1.5: The Hankel singular values of G(s) ∈ H2 are given by 

  (1.19) 

Where P and Q are the controllability and  observability  grammians  of G(s). 

As in the previous section, the eigenvalues λ1, ..., λn of the product  P Q are input- output 

invariants   and  their  square  roots  σ1, ..., σn  are  called  the  Hankel  singular  values.   We 

assume that t h e  Hankel singular values are ordered according to 

σ1 ≥ σ2 ≥ ..... ≥ σn ≥ 0 and we obtain  the following result. 

Theorem 1.5.  If the system Σ is stable and represented by (1.1), then The Hankel norm 

 
Proof.  The proof of this theorem cab is found on [2]. 

Thus the Hankel norm is nothing else than the largest Hankel singular value of the system and 

it can be computed directly from the product of the two grammians associated with a state 

space representation of the system.  The same result holds for continuous and discrete time 

systems. 

B. The Hankel Norm Model Reduction Problem 

In the previous section we have seen how a balanced representation can lead to a reduced 

order model. However, this algorithm did not allow for an interpretation as an optimal 

approximation. That  is, the model obtained  by balanced truncation did not minimize a 

criterion in which we agreed how far the nth order system Σ is apart from a kth  order  

approximation Σk .   The Hankel-norm model reduction p r o b l em  does involve such a 

criterion. 

INPUT: the system (A, B, C, D) with (A, B) controllable (C, A) observable and A stable. 

 

DESIRED: A system  (Ak , Bk , Ck , Dk ) of order  ≤ k  which approximates the  sys- tem (A, 

B, C, D) optimal  in the Hankel norm. Algorithm: 

Step 1:  Compute the Hankel singular values σ1, ..., σn of (A, B, C, D) and assume that 

σk  > σk+1 = σk+2= ... = σk+r> σk+r+1≥ ... ≥ σn > 0 i.e., σk+r has multiplicity  r. 

Step 2:  Transform (A, B, C, D) to a partially balanced form 

 

where Σ1   = diag(σ1, ..., σk , σk+r+1 , ..., σn) and  Σ2   = σk+1 Ir . That i s , the (k + 1)st 

Hankel singular value is put in the south-east co rner  of the joint gramians. 

Step 3:  Partition (A, B, C, D) conformably with the partitioned gramians as 

, ,  
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Further define 

 
and note that  Γ is non-singular. 

If m ≤ p, proceed.  If m > p, replace (A, B, C, D) by (AT , C T , BT , DT ) and proceed. 

Step 4:  Determine a unitary mat r ix  U satisfying B2 + C T U = 0. 

Step 5:   Determine t h e  stable  su bs ys t em  o f  Σ̂ by choosing a basis of the s tate  space of Σ̂ 

such that 

, ,  

Where A_ has all its eigen values in the open left half complex plane A+ has all its eigen values in 

the open right half complex plane. 

 

OUTPUT:  Set 

Ak   = Â , Bk   = B̂, 

Ck   = Ĉ, Dk   = D̂ 

Then the system Σk   defined by 

 
is a state space representation of an optimal Hankel norm approximant of Σ and the error 

││ Σ-Σk ││H  = σk+1 

VI. CONCLUSION 

 

There we see that there are number of approaches, s u c h  as [6, 7, 8, 9], use first order 

necessary conditions for optimality an d  develop optimization algorithms to find solutions to 

resulting nonlinear equations.  Most of the methods in this direction are only applicable to the 

single input single output (SISO) case. Furthermore, it can be recognized from [10, 11] that  

whether the global optimum  is always achievable is unclear in the continuous  time case (while 

it is shown to exist in the discrete time case [12]) and that,  in the  case of nonexistence  of the  

optimum,  these  approaches  can only find local optima  which may be far from the  true  

(global)  optimum.   Even if the exis- tence of the global optimum is guaranteed, optimization 

methods based on search algorithms can have difficulties [ 13]. There may be one or more 

local optima and it is difficult to guarantee that the obtained solution is close to the global 

optimum. Moreover, there is usually no guarantee that  t he  chosen stopping criterion for such a 

search algorithm is appropriate.  

REFERENCES 

[1] S. Gugercin & A. C. Antoulas, A survey of model reduction by balanced truncation and some 

new results, International Journal of Control, 77(8) Page(s):748-766, (May 2004). 

[2] K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their 

L1-error bounds, International Journal of Control, 39(6) Page(s):1115-1193, (June 1984). 

[3] Y. Ebihara & T. Hagiwara, On H1 model reduction using LMIs, IEEE Transactions on Automatic 

Control, 49(7) Page(s):1187-1191,(July 2004). 



Anand Singh, Dr. Sushil Kumar Agrawal 
 

4001 

 

 

[4] K. M. Grigoriadis, Optimal H1 model reduction via linear matrix inequalities: Continuous and 

discrete-time cases, Systems and Control Letters, 26(5) Page(s):321-333, (December 1995). 

[5] V.M. Adamjan, D.Z. Arov, and M.G. Krein. Analytic Properties of the Schmidt Pairs of a Hankel 

operator and the generalized Schur-Takagi problem, Math. Sb. (N.S.), 86 Page(s):34-75, (1971). 

[6] L. Baratchart, M. Cardelli & M. Olivi, Identification and rational L2 approximation: A gradient 

algorithm, MA Journal of Mathematical Control and In-formation, Automatica, 27(2) 

Page(s):413417, (March 1991). 

[7] A. Ferrante, W. Krajewski, A. Lepschy, & U. Viaro, Convergent algorithm forL2 model 

reduction, Automatica, 35(1) Page(s):75-79,(January 1999). 

[8] L. Meier III & D. G. Luenberger, Approximation of linear constant systems, IEEE Transactions 

on Automatic Control, 12(5) Page(s):585-588, (October1967). 

[9] J. T. Spanos, M. H. Milman, & D. L. Mingori, A new algorithm for L2 optimal model reduction, 

Automatica, 28(5) Page(s):897-909,(September 1992). 

[10] X.-X. Huang, W.-Y. Yan, & K. L. Teo, On H2 near-optimal model reduction, IEEE Transactions 

on Automatic Control, 46(8) Page(s):1279-1284,(August 2001). 

[11] W. Yan & J. Lam, An approximate approach to H2 optimal model reduction, IEEE Transactions 

on Automatic Control, 44(7) Page(s):1341-1358,(July 1999). 

[12] L. Baratchart, Existence and generic properties of L2 approximants for linear systems, MA 

Journal of Mathematical Control and Information, 3 Page(s):89-101,(1986). 

[13] B. Hanzon & J. M. Maciejowski, Constructive algebra methods for the L2- problem for stable 

linear systems, Automatica, 32(12) Page(s):1645-1657, (December 1996). 

 


