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Mathematical programming formulations will most likely produce the next generation of 

transportation, location, and land use models. Trip asslgnment and population placement are both 

referred to as op t1m1zat lori problems in mathematlca and programming formulatlons in the 

examples given. First, a trip assignment model with constant llnh costs is shown, and then the same 

model is changed to highlight the flow-dependent link cost formulatlon's ramifications. For the same 

reason, a simple, linear model of population distribution has been turned into a complex, nonlinear 

model that takes into account the varying tastes and perceptions among people who live in a certain 

area. A nonlinear programmlngformulaton that solves both the trip assignment and the location issue 

at the same time is then shown. The theoretical merits and practical disadvantages of this approach 

are briefly mentioned in the paper's concluding section. These strategies may be used in applied 

planning systems if they can be used to solve practical issues. 

 

There has been considerable refinement of practical methods of forecasting urban location and 

transportation patterns during the past 10 to 15 years. Although there is continuing discussion and 

development, and even the best of forecasts are far from perfect, there appears to be a greater 

consensus on what methods are clearly outmoded and in what directions future efforts should move. 

This author’s views on general progress in the field have already been published (1 ). Among the 

most sophisticated practical methods of transportation and land use forecasting are the extended 

spatial interaction models, es- pecially when they are included in comprehensive integrated model 

systems [see paper by Bly and Webster in this Record and Putman (2 )]. 

In addition to these practical developments there have also been important theoretical 

developments. On the transportation side these include the development of discrete choice models, 

especially for travel demand and mode choice (3 ), and the shown the existence of clear errors in 

prior practice; and othersmay offer substantial improvements for future applications.Past experience 

suggests that there is a lag of 10 years,sometimes more, between the initial development and subse-

quent practical application of new techniques in transportation and land use forecasting. Thus, 

although there have been some attempted applications of these methods (7 ,8 ), they are farfrom 

being the accepted norm. The purpose of this paper is topresent some illustrations of the 

mathematical programmingformulations along with some simple numerical examples. Theintent is to 
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show some of the benefits, both practical andtheoretical, of these formulations and to provide the 

practical planner with an introduction to this promising new area. 

 

NETWORKS AND TRIP ASSIGNMENT 

 

In thediscussionthatfollows,extensiveusewillbemadeofthe data describing Archerville, a simple five-

zone numerical ex- ample. Table 1 give the land use and socioeconomic data for Archerville. Figure 

1 shows the Archerville highway system. 

 

Shortest Path Problem 

 

A frequently encountered problem in transportation and loca- tionanalyses is that of finding the 

shortest path from one node to another over the links of a network. This is a problem that can be 

considered as a linear programming problem. The equa- tion form is (1) 

subject to 

 

JJ, pigs 

 

 

development of mathematical programming formulations  of the traffic assignment problem (4 ). On 

the location side the development of utility theory as a basis for location models (5 )and the general 

discussion of mathematical programming mod- elsas alternate or underlying structures for 

spatialinteraction—Z -1 if i =destination 

k 

 

 (2) 

(3) 

models (6 )were major developments. Some of these develop- mentsare important principally 

because they provide an im- proved underpinning of existing practical methods; some have 

whereciiiscostoftraversinglinki,yandX;jisflow(trips)on 

link i, y. 
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TABLE 1 ARCHERVILLE—LAND USE AND SOGOECONOMIC DATA 

LandUseData SocioeconomicData 

 

Zon

e 

Resi- 

dential 

Commer- 

cial 

Indus- 

trial 

 

Vacant 

 

Total 

 Cmnmercial

 Industrial 

Employment

 Employme

nt 

Total 

Employment 

M House- 

holds 

HI House- 

holds 

Total 

Populatio

n 

1 2.5 1.0 1.0 0.5 5.0  150 150  200 100 860 

2 3.0 1.0 1.5 0.7 6.2  200 150 350 300 50 1,050 

3 1.0 2.0 3.0 0.8 6.8  100 400 8 150 50 585 

4 2.5 1.0 0.0 4.5 8.0  200 0  100 300 550 

5 1.5 0.5 0.0 6.6 8.6  100 0 I£D 50 150 515 

Tota

l 

      750 700 1,450 800 650 3,560 

 

Employee-HouseholdCrossTabulation Employee-Household ConversionMatrix 

 LI HI Total   LI HI Total 

Commer

cial 

400 350 750  Commer

cial 

.533 .467 1.00 

Indusuial 400 3% 700  Industrial .571 .429 1.00 

 800 650 1,450      

None: M = low-income and HI = high-income. 

FIGURE 1 Archervillehighway system. 
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network node, balance. Thus for each node the total flow of trips into the node minus the total flow 

of trips out of the node must equal the net trips supplied (or demanded) at the node. The last 

constraint equation (Equation 3) is simply the non- negativity requirements that prohibit negative 

flows. It can readily be seen that writing the shortest path problem in this form yields a rather good 

sized problem. In the objective function the number of terms equals the number of links in the 

network. There must be a constraint equation (Equation 2) for each network node and a constraint 

equation (Equation 3) for each network link. 

For practical applications there are many fast algorithms for solving this problem. However, it is 

worth noting here that, because this is just a simple linear program, it can be solved by the well-

known simplex method. If it were done that way, it would be necessary to solve the problem once for 

each origin- destinationpath thatwaswanted.Furthernotethatthisproblem only addresses the situation 

for fixed link costs and flow vol- umes, which must, of course, be known in advance of any attempt 

to solve for the minimum path orpaths. 

 

Minimum-Cost Flow Problem 

 

Another type of linear programming problem is that known as the minimum-cost flow problem. The 

Archerville data may be used as an example. Assume that there are a known number of households 

of each income group in each zone and a known number of employees of each type working in each 

zone. Implicitly there is a zone-to-zone matrix of home-to-work trips that can be estimated by 

standard techniques. Suppose now that the location of households in Table 1 and the location of 

industrial employment in the same table are taken as given. By first assuming that there will be one 

employee per household and then applying the Employee-Household Conversion Matrix given in 

Table 1, the number of industrial employees residing in each zone may be calculated. These were 

146, 173, 98, 188, and 95, respectively. Note that the number of industrial em- ployeesworking in 

each zone is 150, 150, 400, 0, and 0, respectively. 

It is possible to consider the proposal that each employee is to choose a place of work such that the 

total travel cost for all employees is minimized. If network link capacities, and the consequent 

congestion, are ignored for this illustration, this problem may be stated as a linear program problem. 

If there were specified link capacities (Y;j) for each link, which could not be exceeded, then another 

set of con- straints would be substituted for Equation 6. This new set of constraints would be of the 

form 

 (7) 

Note that the objective function here is the same as that for the shortest path problem given in 

Equation 1. The constraints, Equations 5, are a set of flow-balance relationships similar to those of 

Equations 2. 

Because the intrazonal travel costs are 1.0 for each zone, clearly the first consideration is that all 

employees residing in any zone first be assigned to jobs in that zone. Given the Archerville data, 

Zone 1 requires 4 workers and Zone 3 re- quires 302. Zones 2, 4, and 5 have 23, 188, and 95 surplus 

workers, respectively. The link flows produced by the simplex algorithm to solve this problem are 

shown in Figure 2. Note that if it were desired that some of the network links have a maximum 

allowable flow, then some constraints of the form of Equation 7 would have to be added. 

 

Nonlinear Minimum-Cost Flow Problem 
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The minimum-cost flow problem described here can be recon- sidered as a nonlinear programming 

formulation. In the pre- viousformulation the linear objective function, Equation 4,  was simply the 

sum of the trips (flows) on each network link times the travel cost of the link. The link costs were 

fixed, remaining constant regardless of link flows (though it was 

shownhowthelinkflowscouldthemselvesberestrictedbyuse of additional constraint equations). 

Suppose the more realistic view was taken that link costs depend on link flows. For the sake of 

illustration consider the following function, where link cost varies with linkflow 

 

 (8) 

 

where 

 

 

 

subject to 

ZZ 

k 

O; if i = origin 

—— —D; if i= destination 0 otherwise 

(4) 

(5) 

(6) 

 

With this function the link travel cost is equal to the free-flow cost when the link flow volume is 

zero. As link flow volume increases, link travel cost increases too. 

In the linear version of this problem the solution involved only the finding of the minimum paths 

and the subsequent routing of trips along those paths. If there were specific link flow volume 

constraints, then the excess trips would be re- routed to the second shortest path. When link flows 

determine link costs the essential nature of the problem changes. The solution becomes a matter of 

adjusting volumes, observing the 

whereO;isnettripsleavingnodeiand D;isnettripsarrivingat 

node i. 

Equations 4, 5, and 6 are the general minimum-cost flow resulting costs, and then adjusting the 

volumes again. Thus, in a very real sense, even for the small problem size of the Archervilledata the 

complexity ofthe problem begins to defy 

C; = ”congested” or flow-related link travel cost, 

 
X;j 

= 
= 

free-flow link travel cost, 
link flow volume (trips), and 

6 = a parameter. 
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FIGURE 2 Archervllletrip flows resulting from mlnimum-cost Bow asslgnmentalgorithm with 

constant llnltcosts. 

 

solution by inspection. The introduction of simultaneity or nonlinearity, or both, to a problem often 

transforms the prob- leminto one that lies beyond intuitive solution. 

Incorporating Equation 8 into the original objective function of Equation 4 yields 

k%m:Z=Z  

and thusthe objective function becomes a cubic equation. The same linear constraints as before 

(Equations 5, the flow-bal- ancerelationships) still hold true, as do the nonnegativity constraints of 

Equation 6. This new set of equations is a nonlinear programming (NLP) problem with a nonlinear 

objec- tivefunction and linear constraints. 

It was necessary  toset a value for the parameter  6. Avalue 

 

of 100 trips would result in a tripling of link cost. At this scale, link costs increase significantly, but 

not astronomically, with link flows on the order of those observed in the linear form of the problem 

described previously. The flows on the network that result from this new nonlinear problem are 

shown in Figure 3, and the link volumes, free-flow link costs, and con- 

gestedlinkcostsaregiveninTable2(onlythoselinks thathave flows are included).  The results hold no 

great surprises  butdo show a clear response to the reformulation of the problem so that link costs are 

a function of link flows. 

It is interesting to compare the results shown in Figure 3 from the NLP solution with those in 

Figure 2 from the linear programming (LP) solution. The NLP solution, due to the effects of 
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t
0 

1
4 

1
8 

congestion on link travel costs, shows much greater utilization of network links. For the LP solution 

only 11 links were used whereas for the NLP solution 20 were used. As a 

result, thetripsonlinks Xt0andXt0t2, whichwere 188in the LP solution, are only 112 in the NLP 

solution. 

These examples only hint at the substantial additional work that has been done with user 

equilibrium and stochastic user equilibrium formulations of the traffic assignment problem as a 

mathematical program. Yet, they do give a clear way of seeing the assignment problem, as well as 

networks in general, ex- pressed in equation form. This will be particularly helpful in analyzing ways 

of linking transportation and location models. Thisinsight 

alsoprovidesamucheasierwayofcomprehending the problems of traffic assignment than did the 

“black-box” approach of traditional all-or-nothing assignment procedures. In the next section of this 

paper simple examples will be presented of location models presented as mathematical programs. 

 

 

 

FIGURE 3 Archervilletrlpflows resulting from mlnlmum-cost flow assignment 

algorlthmwlt'avarlable link costs. 

 

TECHNIQUE FOR THE OPTfifiAL PLACEMENT OF ACTIVITY IN ZONES: TOPAZ 

TOPAZ is a mathematical programming technique that was originally proposed in the late 1960s and 

early 1970s (9, 10). The most complete discussion of the applications of the model is to be found in 

the book by Brotchie et a1. (11 ). The model was originally proposed as a method for determining 

least cost allocations of activities to zones. Perhaps the most recently 

publishedworkonTOPAZisbySharpe eta1.(12)fromwhich the formulation used here isadapted. 

To begin, the model was abbreviated to a form for residence location only. Further, it was 

assumed, as is customary in these examples, that there is one employee per household and thus one 

work trip per household. The Archerville data show 0.55 low-income households per 1.0 employee 
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and 0.45 high- income households per 1.0 employee. Thus the new, simplified, problem formulation 

becomes 

Min:  Z  =Z  ZZ (0) 

subject to 

 

(11) 

 

 
 

 

 

where 

 

r; 

 

 

A; 

 

 

= regional total of activityi, 

= unit cost less benefit of locating activity 

iin zone j, 

= unit cost less benefit of interaction for activity ibetween zone j and zone 1, 

= level of interaction (trips generated) per unit of activity i, 

=  trips attracted by employment per unit of activityi, 

= level of interaction (trips) of activity i 

between zone y and zone 1, 

= amount of activity ito be allocated to zone j, and 

= capacity of zone y. 
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(13) 

(14) 

 

(15,16) 

Volume Cost Cost 

Note that the second term in the objective function issimply 

(12) a  minimum-cost  location  term.  The  first  term  is  thelinear 

 

 

TABLE 2 ARCHERVILLE—COMPARISON OF FREE-FLOW AND CONGESTED LINK COSTS 

FOR NONLINEAR OBJECTIVE FUNCTION 

 

 

 

 

 

 

 

 

or, in words,  the sum over  all  possible desiinationzones f  ofall 

-trip»of-type i-leaving (4.e., produced in) xono y-nitistectualthe 

Link 

 

 

 

 

 

 

 

 

 

 

23 1.£D 1.11 
*4.11 188 1.00 8.07 

95 1.£D 2.81 
6,1 

4 1.£D 1.(D 

’6,7 10 2.€D 2.04 

10 2.ID 2.04 
8,12 10 2.€D 2.04 

35 4.(D 4.96 
xs,ia 38 7.00 9.07 

112 2.€D 7.06 
50 5.ID 7.52 

11,10 112 1.ID 3.53 
25 4.€D 4.52 

t2,3 302 1.€D 19.24 
13,12 58 2.00 3.33 

63 6.€D 10.74 
37 2.€D 2.56 
58 2.€D 3.33 

16,t3 58 4.£D 6.65 
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trips of type igenerated in zone y. In this example the trips of type i(i.e., household type i) 

generated in zone j equal the number of households of type i living in zone j. 

Following the same reasoning, the r; will be equal to the household-type-per-employee 

ratios, so that the constraint equation(Equation12)willbeasgivenearlier,withr;--0.55, 

fi2=0.45,andX=totalemploymentinzonef.Then,inwords, 

the sum over  allpossible origin  zones j of  all  trips of  type  i 

terminating in zone I must equal the total households of type iattracted to employment in zone 1. 

The total households of type iattracted to employment in I is simply the conversion rate times 

the employment. 

An extensive  seriesof  test  runs  was done with  thismodel 

with varying weightings multiplied times one or another of the two components of the objective 

function. At the extremes, a location-cost-only solution and a transportation-cost-only solu- 

tionwere found. 'l'heminimum transport cost solution gave somewhat more dispersion of 

households to zones than did the minimum location cost solution. This was due in large part to 

the  exogenouslydetermined  location  of  employment. Were 

“ transportation" problem. Taking the location problem first, it is clear that developing the 

necessary “ data" raises some difficult issues.Thenetbenefits{bj;)aresupposedtobethe net of the 

costs and benefits of locating a unit of activity type iin zone y. In many TOPAZ applications the 

virtual impossibility of Measuring bericfitsresulted in the b;, being simply a cost of location, to 

be iiiinirnized. For the Arclicrvillcexample several possibilities existed. The easiest way was 

simply to create an average annualized house cost variable, realizing that then the model would 

attempt to locate all households in the zone with the lowest house cost. All that prevents this 

location are the constraints on the amount of activity that can be accommodated in each zone. 

Raisingtheissueof zonalconstraintsraises,inturn,theissue of converting activity types into land 

consumed. Here again, there were several possible ways to proceed: (a) regional land 

consumption rates by activity type, (b) zonal land consumption rates by activity type, or (c) 

exogenously developed housing stock estimates. For this illustration of the model a set of 

regional land consumption rates was assumed, and their values were set so as to allow all 

households to be accommodated by existing residential land in the region. The rates were 

0.00525 land units per low-income (LI) household and 0.00646 land units per high-income (HI) 

household. The cost of location by zone was taken to be the average annualized house cost by 

zone, which was set to $7,800, $7,200, $7,600, $6,8€O,and 

$9,668, respectively, for the five zones. 

Next the transportation or interaction, cost term in the nhjer-- tivefunction (Equation 10) was 

examined This required the specification of data for the trip end constraints (Equations 11 and 

12) as well. As mentioned previously, it was assumed that therewasonlyoneemployee 

perhouseholdandthattherewere 

0.55 LI and 0.45 HI households per employee. Recalling that, in this example, only home-to-

work trips are being dealt with and there is only one employment type, then hoths; will equal 

one, so that the constraint equations (Equation 11) will be 
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employment to be less dispersed, then, subject to thelandusecontraints, residential location 

would be less dispersedaswell.Another matter that will have interestingconsequencesforthe next 

set of tests, in which both locationandinteractioncosts are used along with a dispersion termto 

determineresi-dentiallocation, was that even though the locationcostcompo-

nentwasalmostfourtimeslargerthanthetransportcostcom-ponent, the transport cosiportion of 

theobjectivefunction completely dominated the model solution. In severalmoretestruns the 

weighting of the location cost term in theobjective 

function was varied from 0.01 to 2.00. 

Over the range from 0.045 to 1.00 the location cost multi- plier resulted in a more or less 

gradual shift from the transport- cost-only solution toward the location-cost-only solution. From 

a value of slightly less than 1.0 to a value of 1.1852 the multiplier causes no change in the 

model solution. At a value of 1.1855 the multiplier results in a model solution identical to that 

of the location-cost-only solution. Thusat some critical point whcrcthcmultiplier of the location 

cost term in the objective function is between 1.1852 and 1.1855, there is a sudden shift in the 

model solution from an apparently stable intermediate solution to the location-cost-only 

solution. Al- though it is presented as an aside here, clearly the matter of model sensitivity and 

solution stability is an area for future research. In any case, for a midrange weighting of 0.70, 

the results of the TOPAZ model solution were as given in Table3. 

 

isumericainxampieincorporating Dispersion 

The location patterns produced by the linear programming version of this model, particularly 

when examined at the zone- to-zone trip level, are rather lumpy. The addition of a nonlinear 

dispersion term to the objective function can make a noticeable difference. This is achieved by 

substituting a constrained grav- itymodel for the linear “transportation" model portion of the 

objective function. 

  

TABLE3ARCHERVIL OVATION OF HOUSEHOLDS BASED ON LOCATION COST PLUS 

TRANSPORTCOSTCOMPONENTSOFMODEL( =0.70) 

Households Households, Showing Place ofWork 

Zone LI HI Total  LI HI 

1 0 294 294  0 1-135 3-69 4-45 5-45 

2 359 173 532  1-166 2-193 2-157 4-16 

3 0 155 155  0 3-155 

4 441 28 469  3-276 4-110 5-55 4-28 

5 0 0 0  0 0 

Now: = locati‹xicost multiplier in objectivefunction. 

 

The standard doubly (or fully) constrainedspatialinteraction zz 

model has the form 

 

T j ---- Aj B 0 j D exp(--|3cj ) where 

Tj --    number of  trips between zone j and zone 1, 

Oj= trips generated  in(originating  from) zonej, 
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D = trips attracted to (terminating in) zonef, 

c; j -- zone-to-zone travel cost, and 

§   = aparameter; 

 

(17) 

 

 

subject to 

 

s 

+ZZZ 

b ij ij 

 

(x) 

(26) 

and where 

Aj---- [ Z B D exp(Qcjt)]°' 

 

B -- [ 

 

(18) 

(19) 

=A; 

s 

 

27) 

 

(28) 

 

(29,30) 

IthasbeenshownbyMurchland(13jandWilson(14jthatthis model can be derived from an equivalent 

optimization prob- lem. The form of that problemis 

The Archerville data were again used for tests of the model, which now required a numerical value 

of Q. This, however, raises an interesting question, which relates directly to the previously described 

experiments with weightings or multi- pliers of the terms in the objective function. To simplify the 

Max: S = -- Z  

subject to 

 

 (20) 

coming discussion it will be convenient to think of the objec- tive function, Equation 24, as having 

three components: 
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 (21) 

 (22) 

 (23) 

where the only new value is C, taken to represent the total system travel cost. 

There is a relationship between § in Equations 17--19 and C in Equation 23. The |3 in the spatial 

interaction model produces a dispersion of trips away from the optimum or minimum-cost solution. 

What human behavior might account for this disper- sionis unspecified but presumably includes such 

factors as variables not in the model, as well as variations in individual perceptions of costs and 

differences in individual utility functions. 

To introduce the spatial interaction model into TOPAZ in lieu of the minimum-cost “ 

transportation” model requires that the model of Equations 20--23 be substituted for the transport 

cost term in the TOPAZ objective function. Following al- gebraic manipulations, this yields (after 

changing signs to al- low minimization) 

(31) 

where k;,, and are arbitrary weights, and where U is the transport cost term, U is the location cost 

term, and U is the entropy term. The no-dispersion solution given in Table 3 was for k equals one, 

equals 0.70, and equals zero. 

Thevalueof  as discussed here is the inverse of the § of Equation 17 and thus will directly affect 

the extent to which location is dispersed from the no-dispersion casewhere = 0 and  thus  |3  =  -. 

With a of 20 and thus }3 = 0.05, the dispersion shows quite clearly in the results given in 

Table 4. A further increasein  , to 30, giving Q = 0.033, yields even greater dispersion. 

Numerous tests were run with different combinations  of values fork,  ,and . In all 

cases increas- ingvaluesof produced  increased  dispersion  of household location. The most 

dispersion was achieved with values of k equaltoone, in  thevicinity  of0.3,and equal to 30 

or more 

 

TABLE4 ARCHERVIL LOCATION OF HOUSEHOLDS BASED ON LOCATION COST 

PLUSTRANSPORTCOSTCOMPONENTSOFMODEL( =0.70), 

INCORPORATING DISPERSION, WITH g = 0.05 

Households Households, Showing Place ofWork 

Zone LI HI Total  LI HI 

1 45 258 302  1-42 3-3 1-128 2-21 3-84 

      4-14 5-11 

2 319 205 524 1-105 2-181 3-25 1-6 2-135 3-17 

     4-4 5-4 4-32 5-15 

3 20 138 158 1-1 3-19 3-117 4-12 5-9 

4 416 49 465 1-1g 2-11 3-230 3-6 4-33 5-10 

     4-106 5-51 

5 0 0 0 0 0 

None: = location cost multiplier in objectivefuncuon.  

 

COMBINED  ACTIVITYLOCATIONANDTRIP ASSIGNMENTMODEL 

s 
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Having shown in the preceding two sections of this paper how 

both a traffic assignment model and an activitylocationmodel Z  

could be formulated as mathematical programming problems, 

it  isnow  possible  to  consider  linking  them  togetherintoa single model to solve both 

problemssimultaneously. 

First, note that the original transport cost term in the location model objective function is simply 

the sum of all trips between 

 

(34) 

 

(35) 

 

(36) 

 

(37) 

 

(38, 39,40) 

origins j and I, times the cost of those trips. It is reasonable to assume that, regardless of whether a 

congested or uncongested networkisbeingusedinthemodel, thecostsusedwillbethose of the minimum 

paths through the network. In the location model the zone-to-zone costs used are the exogenously 

deter- mined minimum costs given as input to the calculations. The minimum-cost flow problem 

determines the set of minimum cost paths through the network. Given that these minimum paths are 

the same, the flow cost produced by the minimum- cost flow problem solution should be identical to 

the transport cost term in the location modelobjective function. 

In the nonlinear version of the location model the entropy term of the cost function takes care of 

keeping the zone to zonetrips in the objective function, thus the transport cost term can be replaced 

by the objective function from the minimum-cost flow problem. It will, of course, be necessary to 

add the flow balance constraints in order to describe the network, and to set them equal to what is 

now a variable set of trip origins and destinations. These are now variable because the activity loca- 

tions, and thus the trip matrix, are to be determined as part of the model solution. Thusthe combined 

model has the follow- ing form: 

 

(32) 

 

subject to 

 

 
where the variable names d and F (link cost and link flow) are substituted for the c and X used in the 

minimum-cost flow problem equations. I isthe number of zones (load nodes). In additionemployment 

in zone I is represented by £ in Equation 35 to avoid confusion. 

The objective function now has three terms, minimum-cost flows, eotropyor trip dispersion, and 
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minimum-cost location. Anewsetofconstraints(Equations 33)isaddedtotheprevious set of location 

model constraints to incorporate the flow-bal- anceportion of the minimum-cost flow problem. This 

being done it is possible to solve the combined problem for both link flows and household location. 

Now it is possible to include congestion in this rnblemtrim. The first term in the ohjectivefunction 

(Equation 32) is modified as per Equation 9 to make link cost a function of link volume (flow). The 

remainder ofthe objective function and all of the constraints areunchanged. 

 

CONCLUSIONS 

The work described in this paper is only a brief introduction to the topic, yet certain conclusions can 

now be clearly drawn. The first of these is that numerous model tests using the kinds of models 

described here indicate that linear mathematical programming models of location are inherently 

unrealistic. The least-cost zone will get all possible locators even it the next-to- least-cost zone is 

only marginally more expensive. The objec- tivefunction component weighting problem implies that 

an arbitrary difference in units of measurement (e.g., between hundreds of dollars or thousands of 

dollars for annualized rent) can result in one component of a model solution’s being domi- 

imnvoverrunner. 

To a rather considerable degree  theconstraint  equations of a linear programming model can 

ameliorate some of thesedif- faculties. This  is,  however,  a  mixed  blessing.  That  theycan 

ameliorate some of the difficulties also points  up  the rather considerable extent to which they 

determine the model solution. The constraints (e.g., available residential land per zone) must be 

exogenously determined, yet their determina- tion, in and of itself, implies a difficult forecasting 

problem. The availability of data for constraints during the development of a mathematical 

programming location model can give afalse sense of confidence in the model’s predictive power if 

the problems of forecasting the constraints are not taken into account. 

Another major issue is that of obtainingthe necessarydata. Housing costs are notoriously difficult 

to estimate.WiththeTOPAZ model the literature suggests that it has oftenbeensodifficult to estimate 

the benefits of location orinteractionthatonly costs were used. Yet, both versions 

ofTOPAZwouldcertainly have given different results if somelocationaladvan-tagevariable had been 

used to yield a “net”locationcostvariable for the location cost temiin 

theobjectivefunction.Finallythere is the computational problem.TheGAMSpackage (15} was used for 

all of the Archervilletestsreportedhere. The linear fomiulationswere run on an IBMPCwith640K of 

memory and a hard disk drive. These runs tmkjustafew minutes each. The nonlinear 

formulationswereproblem-aticon the PC; some took 2 or more hours to 

solve,andotherswouldnotrunatall.Finally,aversionofGAMSfortheIBM3081 GX mainframe was used 

for thenonlinearformulations.In the combined model there were 622 variables intheobjec- tive 

function. The objective function for thefinalnonlinearversion of TOPAZ, alone, had 110 variables, 

but, iftherewerea 30-zone region to be analyzed, the objective functioninthenonlinear TOPAZ model 

would have 3,660 variables. Thisisarather sizable problem, and yet a 30-zonespatialinteractionmodel 

is really too highly a8gregated for mostpolicyanalysispurposes. Further, the examples presented 

usedonlytwohousehold types and no housing stockconsideration.Currenttransportation and location 

modeling applications tendtohavefrom 200 to 300 zones. With no increase in activitytypes,250zones 

would yield 250,5tD variables in TOPAZ.Themodelformulations that combine location and 

tripassignmentareeven larger. Problems of this size are reallyquiteimpracticalfor direct solution. The 

problems of solvingoptimizingmodelsof a realistic (from the applications point of view)size canbe 
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dealt with by decomposition procedures if it is desirabletomaintain the mathematical 

programmingformulations.Thepossibility of transforming programming modelsintospatialinteraction 

models as briefly mentioned earlieroffersanotheravenue of approach, Both of these approaches will 

beexam- 

inedin future research. 

Despite these cones acre are several important points to 

belearnedfromtheseexperiments.Perhapsthemostimportant is that developing these model 

formulations and then testing theirbehaviorgiveswonderfulinsightintovarioushypotheses 

such formulations became clearly evident in these experiments. At the same time the experiments 

clearly illustrated the need for inclusion of dispersion terms in such models. The inference is that 

although locational behavior may be said to be, in principle, an optimizing process, in actuality there 

are ob- viouslyother factors that result in a dispersion of locations around a simple “least-cost” 

optimYet  the  optimizing  process provides a model-building rationale that can be par- 

ticularlyhelpful in understanding the implications of model structure and can thus, in turn, be 

expected to improve model- ingpractice aswell. 

 

REFERENCES 

1. S. Putman. FutumDirections for Urban Systems Models: Son Pointers from Empirical Investigahons. In 

Advances in (/rbanSystems ñfodnlling(B. Hutchison and ML Batty, eds.), North-Holland. Amsterdam. 

The Netherlands,1986. 

2. S.Putman.IntegratedUrban3fodelz.PionLtd.,London,England,1983. 

3. M. Ben-Akiva and S. Lerman. Discrete Choice Analysis. MIT Press, Cambridge, Mass.,1985. 

4. Y.Sheffi.UrbanTransportationNetworks.Prentice-Hall,Inc., Englewood Cliffs, N.J.,1985. 

S. A. Anas. Residential Lnc‹zfioztMarkets and Urban Trancportation. 

Academic Press, New York,1982. 

6. A.Wilson,I.Coelho,S.Macgill,andH.Williams.Optimizationin 

LocationalandTransportAnal:ysis.JohnWiley&Sons,Chiches-ter, England,1981. 

7. D.BoyceandR.Eash.ApplicationofaCombinedResidential 

Location,Mode,andRomeChoiceModeitoSDategicPlanningfor the Northeastern Illinois Regional 

Transportation Authority.Presentedat66thAnnualMeetingoftheTransportationResearch Board, Washington, 

D.C.,1987. 

8. P. Prastacos. Urban Development Models for the SanFrancisco 

Region:FromPLUMtoPOLIS.Presentedat64thAnnualMeet- ingof the Transportation Research Board. 

Washington, D.C., 1985. 

9. J. Brotchie. A General Planning Model. 3fnnagemenfScience, 

Vol. 16, 1969, pp. 265-266. 

10. R.SharpeandJ.Brotchie.AnUrbanSystemsStudy.JtynfAus- 

tralian Planning Institute Journal,of. 10, 1972, pp.105—

118.t1.I.Brotchie,J.Dickey,andR.Sharpe.TOPAZLectaznNotesinEconomics and Mathematical Systems 

180.Springer-Verlag, 

Heidelberg, Federal Republic of Germany, 1980. 

12. R.Sharpe,B.Wilson,andR.Pailot.ComputerUserManualfor 

ProgramTOPAZ82.DivisionofBuildingResearch,Common-wealth Scientific and Industrial, Research 

Organisation, Highett,Victoria, Australia,1984. 



A Review on Mathematical Programming Formulations for Transportation and Land Use 

Models 

4268 

 

13. I.Murchland.SomeRemarksontheGravityfodelofTripDis-

IribizfionandanEquivalentMaximizingProcedure.LSE-TNT-38. London School of Economics, London, 

England,1966. 

14. A. Wilson. A Sta0stical Theory of Spatial DistribufionModels. 

Transport‹zfion Researc:h.Vol. 1, 1967, pp. 252-269. 

15. D.KendrickandA.Merraus.GAMS,Aniztfroduciion.TheWorld Bank, Washington, D.C.,1985. 

aboutlocationalbehavior.Theeminentsensibilityofdescrib-  

inglocational behavior as an optimizing process is beyond reproach Theeffects, and general 

importance, of constraints in 


