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ABSTRACT 

Let G be a simple connected graph of order m. Let  D2(G, i)  

be  the family of  2-dominating sets in G with cardinality i. The polynomial  

D2(G, 𝓍) = ∑ d2(G, i)𝓍im
i=γ2(G)  is called the 2-domination polynomial of G. In this paper we obtain a 

recursive formula for d2(Cm, i). Using this  

recursive formula we construct the 2-domination polynomial,  

D2(Cm, 𝓍) = ∑ d2(𝐶𝑚, i)𝓍im

i=⌈
m+1

2
⌉

, where d2(Cm, i) is the number of 2-dominating sets of Cm of cardinality 

i and some properties of this polynomial have been studied.  

 

Keywords: Cycle, 2-dominating set, 2-domination number,  2-domination polynomial. 

 

I. INTRODUCTION 

         Let G = (V, E) be a simple graph of order m. For any vertex vV, the open neighbourhood of V is 

the set  N(v) = {uV / uvE} and the closed neighbourhood of V is the set N[v] = N(v)  {v}. For a set 

S V, the open neighbourhood of S is N(S) = ⋃ 𝑁(𝑣)𝑣∈𝑠  and the closed neighbourhood of S is N[S] = 

N(S)  S.  

A set D V is a dominating set of G if  N[D] = V or equivalently, every vertex in V − D is adjacent to at 

least one vertex in D.  

 The domination number of a graph G is defined as the minimum cardinality taken over all 

dominating sets D of vertices in G and is denoted by (G).  

We use the notation ⌈𝑥⌉ for the smallest integer greater than or equal to 𝑥 and ⌊𝑥⌋ for the largest integer 

less than or equal to 𝑥. Also, we denote the set  

{1, 2, 3 … m} by [m], throughout this paper. 

mailto:priyanka86nair@gmail.com
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II.  2-DOMINATING SETS OF CYCLES 

 

               In this section, we state the 2-domination  number of cycle and  some of  its properties  

 

Definition 2.1: 

               Let G be a simple graph of order m with no isolated vertices. A subset D⊆V is a  

2-dominating set of the graph G, if every vertex v ∈V−D is adjacent to at least  2 vertices in D. The 

minimum cardinality taken over all 2-dominating sets of  G is called the 2-domination number and is 

denoted by 𝛾2(G).                     

 

Lemma 2.2: 

              Let  Cm   be the cycle with m vertices, then  its  2-domination  number  is 𝛾2(Cm)=⌈
𝑚

2
⌉. 

 

Lemma 2.3:  

              Let Cm, m ≥ 5 be the cycle with |V(Cm)| = m. Then, d2(Cm, i) = 0  

if  i < ⌈
𝑚

2
⌉  or  i > m  and d2(Cm, i) > 0 if ⌈

𝑚

2
⌉ ≤ i ≤  𝑚. 

                       

Proof:                                                                                                             

                   If   i < ⌈
𝑚

2
⌉   or  i > m, then  there  is no 2-dominating set of cardinality i.  

Therefore, D2(Cm, i) = .                                                                                                             

By Lemma 2.2, the cardinality of  the  minimum  2-dominating  set  is ⌈
𝑚

2
⌉. 

Therefore, d2(Cm, i) > 0  if  i ≥ ⌈
𝑚

2
⌉  and  i ≤ m. 

Hence, we have, d2(Cm, i) = 0  if  i < ⌈
𝑚

2
⌉ or   i > m  and  d2(Cm, i) > 0  if  ⌈

𝑚

2
⌉ ≤ i ≤ m. 

 

Lemma 2.4 : 

 Let Cm, m ≥ 5 be the cycle with m vertices. 

(i) If D2(Cm-1, i-1) =  and D2(Cm-3, i-1) = ,  then D2(Cm-2, i-1) = . 

(ii) If D2(Cm-1, i-1) ≠  and D2(Cm-3, i-1) ≠ , then D2(Cm-2, i-1) ≠ . 

(iii) If D2(Cm-1, i-1) =  and D2(Cm-2, i-1) = , then D2(Cm, i) = . 

(iv) If D2(Cm-1, i-1) ≠  and D2(Cm-2, i-1) ≠ , then D2(Cm, i) ≠ . 

Proof: 

(i) Let D2(Cm-1, i-1) =   and D2(Cm-3, i-1) =  . 

Then by Lemma 2.3, 

                  i−1 >  m−1   or  i−1 <  ⌈
𝑚−1

2
⌉  and  i−1 >  m−3   or  i−1 <  ⌈

𝑚−3

2
⌉.   

Therefore, i−1 >  m−1   or  i−1 <  ⌈
𝑚−3

2
⌉. 

Hence, i−1 >  m−2   or  i−1 <  ⌈
𝑚−2

2
⌉  holds. 

Hence, D2(Cm-2, i-1) =  . 

(ii) Suppose that D2(Cm-2, i-1) =  . 

 by Lemma 2.3, then 

we have, i−1 >  m−2   or i−1 < ⌈
𝑚−2

2
⌉.   

If   i−1  >  m−2, then  i−1 >  m−3.  

Therefore, D2(Cm-3, i-1) =  , a contradiction. 

If   i−1 < ⌈
𝑚−2

2
⌉  , then  i−1 < ⌈

𝑚−1

2
⌉ holds. 

Therefore, d2(Cm-1, i-1) = , a contradiction. 
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Hence, D2(Cm-2, i-1) ≠ . 

(iii) Since D2(Cm-1, i-1) =  and D2(Cm-2, i-1) = , 

by Lemma 2.3, 

                  i−1 >  m−1   or  i−1 <  ⌈
𝑚−1

2
⌉  and  i−1 >  m−2   or  i−1 <  ⌈

𝑚−2

2
⌉.   

Therefore, i−1 >  m−1   or  i−1 <  ⌈
𝑚−2

2
⌉. 

Therefore, i  >  m     or    i  <  ⌈
𝑚

2
⌉. 

Hence, d2(Cm, i) = .  

(iv) By hypothesis, 

     ⌈
𝑚−1

2
⌉ ≤ 𝑖 − 1 ≤ 𝑚 − 1 and  ⌈

𝑚−2

2
⌉ ≤ 𝑖 − 1 ≤ 𝑚 −2. 

Therefore, ⌈
𝑚−2

2
⌉ ≤ 𝑖 − 1 ≤ 𝑚 −1. 

Therefore, ⌈
𝑚

2
⌉ ≤ 𝑖 ≤ 𝑚 holds. 

Hence, D2(Cm, i) ≠ . 

 

Lemma 2.5 : 

If D2(Cm, i) ≠ , then for every m ≥ 5, we have, 

(i) D2(Cm-1, i-1) = , D2(Cm-2, i-1) ≠  and D2(Cm-3, i-1) ≠  iff  m =2k−1 and i = k  

for some k ≥ 3. 

(ii) D2(Cm-1, i-1) ≠ , D2(Cm-2, i-1) =  and D2(Cm-3, i-1) =   iff  i = m. 

(iii) D2(Cm-1, i-1) ≠ , D2(Cm-2, i-1) ≠  and D2(Cm-3,i-1) =   iff  i =  m−1. 

(iv) D2(Cm-1, i-1) ≠ , D2(Cm-2, i-1) ≠   and D2(Cm-3, i-1) ≠   iff ⌈
𝑚−1

2
⌉+1≤  i ≤  m−2 

Proof: 

(i) Assume D2(Cm-1, i-1) = , D2(Cm-2, i-1) ≠  and D2(Cm-2, i-1) ≠ . 

Since, D2(Cm, i-1) = , 

by Lemma 2.3,  i−1 > m−1  or   i−1 <  ⌈
𝑚−1

2
⌉. 

If  i−1 > m−1, then  i > m, which implies D2(Cm, i) = , which is a contradiction. 

Therefore, i−1 <  ⌈
𝑚−1

2
⌉. 

That is,  i ≤ ⌈
𝑚−1

2
⌉  ----------------- (1) 

Since, D2(Cm-2, i-1) ≠  and D2(Cm-3, i-1) ≠ , we have  

⌈
𝑚−2

2
⌉ ≤ 𝑖 − 1 ≤ 𝑚 − 2 and  ⌈

𝑚−3

2
⌉ ≤ 𝑖 − 1 ≤ 𝑚 −3. 

Therefore, ⌈
𝑚−2

2
⌉ ≤ 𝑖 − 1 ≤ m−3. 

Therefore, ⌈
𝑚

2
⌉ ≤ i ---------------- (1) 

From (1) and (2)  

We get ⌈
𝑚

2
⌉ ≤ i ≤ ⌈

𝑚−1

2
⌉ 

This inequality is true only when m = 2k−1 and  i = k for some k ∈ N and  k ≥ 3. 

Conversely, assume that m = 2k−1 and i = k 

Therefore, m−1 = 2k−2 and i −1 = k− 1. 

Therefore, k = 
𝑚+1

2
 

We have, i−1  =  k−1 

                        =  
𝑚−1

2
 < ⌈

𝑚−1

2
⌉  

Therefore, D2(Cm-1, i-1) = . 
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Also, D2(Cm-2, i-1) = D2(C2k-3, k−1) ≠ ,  since, ⌈
2𝑘−3

2
⌉ = ⌈𝑘 − 3/2⌉ = k−1. 

D2(Cm-3, i-1) = D2(C2k-5,k−1) ≠ ,  since, ⌈
2𝑘−5

2
⌉ = ⌈𝑘 − 5

2⁄ ⌉  = k−2. 

(ii) Assume D2(Cm-2, i-1) =   and  D2(Cm-3, i-1) =  and  D2(Cm-1, i-1) ≠ . 

Since, D2(Cm-2, i-1) =   and  D2(Cm-3, i-1) = , 

Then by Lemma 2.3, 

We have  i−1  >  m−2 or  i−1  <  ⌈
𝑚−2

2
⌉ and  i−1  >  m−3 or  i−1  <  ⌈

𝑚−3

2
⌉ 

Therefore, i−1 > m−2  or i −1 <  ⌈
𝑚−3

2
⌉. 

If   i−1  <  ⌈
𝑚−3

2
⌉, then  i−1  <  ⌈

𝑚

2
⌉ holds. 

Therefore, by Lemma 2.3,  

D2(Cm, i) = , which is a contradiction. 

So, we have,    i−1  >  m−2 

Therefore,  i ≥ m  ----------------(1) 

Also, since D2(Cn-1, i-1)  ≠ , 

We have ⌈
𝑚−1

2
⌉ ≤ 𝑖 − 1 ≤ 𝑚 − 1  

Therefore, i ≤ m   ----------------(2) 

From (1) and (2) we get, i = m 

Conversely, if i = m,  

D2(Cm-2, i-1)  =  D2(Cm-2, m-1) =  

D2(Cm-3, i-1)  =  D2(Cm-3, m-1) =     

D2(Cm-1, i-1)  =  D2(Cm-1, m-1) ≠  

 

(iii) Assume that, D2(Cm-1, i-1) ≠ ,  D2(Cm-2, i-1) ≠   and  D2(Cm-3, i-1)   = . 

Since, D2(Cm-3,i-1)   = , 

then by Lemma 2.3,  i−1  >  m−3   or   i−1 <  ⌈
𝑚−3

2
⌉. 

If  i−1 < ⌈
𝑚−3

2
⌉, then  i <  ⌈

𝑚

2
⌉ holds. 

Therefore, D2(Cm, i)   = , which is a contradiction. 

Therefore, i−1  >  m −3. 

Therefore, i ≥ m−1  ---------------(1) 

Since, D2(Cm-1, i-1) ≠  and D2(Cm-3, i-1) ≠ , 

We have ⌈
𝑚−1

2
⌉ ≤ 𝑖 − 1 ≤ 𝑚 − 1   and ⌈

𝑚−2

2
⌉ ≤ 𝑖 − 1 ≤ 𝑚 − 2. 

Therefore, ⌈
𝑚−1

2
⌉ ≤  i−1 ≤   m−2.  

Therefore,  i  ≤  m−1  ---------------(2). 

From  (1) and (2)  we get, 

      i = m −1. 

Conversely, 

suppose  i =  m −1, 

Then, D2(Cm-1, i-1)  =  D2(Cm-1, m-2) ≠ , 

D2(Cm-2, i-1)  =  D2(Cm-2, m-2) ≠  and 

D2(Cm-3, i-1)  =  D2(Cm-3, m-2) = . 

 

(iv) Assume that, D2(Cm-1, i-1) ≠ , D2(Cm-2, i-1)  ≠   and  D2(Cm-3, i-1) ≠ . 

Then by Lemma  2.3, we have, 

⌈
𝑚−1

2
⌉ ≤ 𝑖 − 1 ≤ 𝑚 −1, ⌈

𝑚−2

2
⌉ ≤ 𝑖 − 1 ≤ 𝑚 − 2  and  ⌈

𝑚−3

2
⌉ ≤ 𝑖 − 1 ≤ 𝑚 − 3. 
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Therefore, ⌈
𝑚−1

2
⌉ ≤ 𝑖 − 1 ≤ 𝑚 −3 

 Hence,      ⌈
𝑚−1

2
⌉ + 1 ≤ 𝑖 ≤ 𝑚 − 2 

Conversely, 

 suppose  ⌈
𝑚−1

2
⌉ + 1 ≤ 𝑖 ≤  m – 2. 

Then, ⌈
𝑚−1

2
⌉ ≤ i−1 ≤ m – 3,  

Therefore, ⌈
𝑚−2

2
⌉ ≤ i−1 ≤ m –2, ⌈

𝑚−3

2
⌉ ≤ i−1 ≤ m – 3. 

From these we obtain, 

D2(Cm-1, i-1) ≠ , D2(Cm-2, i-1) ≠ , D2(Cm-3, i-1) ≠ . 

 

Theorem 2.6: 

 For every m ≥ 5 and  i  >  ⌈
𝑚

2
⌉, 

(i) D2(C2m, m) = {1,3,5,…,2m−1}⋃{2,4,6,…,2m}. 

(ii) If D2(Cm-2, i-1) = , D2(Cm-3, i-1) =  and  D2(Cm-1, i-1) ≠ , 

 then D2(Cm, i )  =  D2(Cm, m) = {1,2,3,...,m}= [m]. 

(iii) If  D2(Cm-1, i-1) ≠ , D2(Cm-2, i-1) ≠ , and D2(Cm-3, i-1) = , 

then  D2(Cm, m-1) = {[m]−{𝓍} ∕ 𝓍 ∈ [m]}. 

(iv) If  D2(Cm-1, i-1) = , D2(Cm-2, i-1) ≠   then,  

D2(Cm, i) = {{X∪{m−1} if  m−3 ∈ X}⋃{X ∪ {m} if  m−2 ∈ X} ∕X ∈ D2(Cm-2, i-1)} 

(v) If  D2(Cm-1, i-1) ≠ , D2(Cm-2, i-1) =    

 then,  D2(Cm, i) = {Y ∪ {m} ∕Y ∈ D2(Cm-1, i-1)} 

(vi) If  D2(Cm-1, i-1) ≠ , D2(Cm-2, i-1) ≠    

then, D2(Cm, i) = {{X ∪ {m−1} if  m−3 ∈ X}⋃ {X ∪ {m}  

                    if  m−2 ∈ X} ⋃ {Y ∪ {m−1} if  m−2 ∈ Y} ⋃ {Y ∪ {m} if  m−1 ∈ Y}} 

Where X ∈ D2(Cm-2, i-1) and Y ∈ D2(Cm-1, i-1). 

Proof:  

(i) For every m ≥ 5, D2(C2m, m) = {1,3,5,…,2m−1}⋃{2,4,6,…,2m}. 

(ii) Since D2(Cm-2, i-1) = , D2(Cm-3, i-1) =  and D2(Cm-1, i-1) ≠ ,  

 by Lemma 2.6 (ii), i = m. 

Therefore, D2(Cm, i) =  D2(Cm, m) = [m]. 

(iii) If D2(Cm-1, i-1) ≠ , D2(Cm-2, i-1) ≠  and  D2(Cm-3, i-1) = . 

Then, D2(Cm, i) = D2(Cm, m−1) = {[m]−{𝓍}/𝓍 ∈[m]}. 

(iv) Let X be a 2-dominating set of Cm-2  with cardinality i−1. All the elements of  

D2(Cm-2, i−1) end with m−3 or m−2. Therefore, m−3 ∈ X, adjoin m−1 with X and when m−2 ∈ X 

adjoin m with X. Hence, every X of  D2(Cm-2, i-1) belongs to D2(Cm, i)  by adjoining m−1 and m. 

(v) Let Y be a 2-dominating set of Cm-1 with cardinality i−1. All the elements of D2(Cm-1, i-1) end with 

m−1. Adjoin m with Y. Hence, every Y of  D2(Cm-1, i-1) belongs to D2(Cm, i) by adjoining m only. 

(vi) The construction of D2(Cm, i) from D2(Cm-1, i-1) and D2(Cm-2, i-1) 

Let X be a 2-dominating set of Cm-2 with cardinality i−1. All the elements of D2(Cm-2, i-1) ends with m−3 

or m−2. Therefore, m−3 ∈ X, adjoin m−1 with X and when m−2 ∈ X adjoin m with X. Hence, every X 

of  D2(Cm-2, i-1) belongs to D2(Cm, i) by adjoining {m−1} or {m} only. Now let us consider D2(Cm-1, i-1), 

Here all the elements of D2(Cm-1, i-1) end with m−2 or m−1. Now let Y be 2-dominating set of Cm-1 with 

cardinality 

 m−1.  

Here all the elements of  D2(Cm-1, i-1) ends with m−2 or m−1. Therefore, when m−2 ∈ Y, adjoin m−1 

with Y and when m−1 ∈ Y, adjoin m with Y. Hence, every Y of  D2(Cm-1, i-1) belongs to D2(Cm, i) by 

adjoining {m−1} or {m}. 
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Theorem 2.7: 

      If D2(Cm, i) is the family of the 2-dominating sets of Cm with cardinality i, where i  ≥ ⌈
𝑚

2
⌉ 

Then  d2(Cm, i)= d2(Cm-1, i-1) + d2(Cm-2, i-1). 

Proof:     

 From Theorem 2.6, we consider all the  four cases as given below, where i  ≥ ⌈
𝑚

2
⌉. 

(i) If D2(Cm-1, i−1) =  and D2(Cm-2, i−1) = , then  D2(Cm, i) = . 

(ii) If  D2(Cm-1, i-1) = , D2(Cm-2, i-1) ≠  then, 

 D2(Cm, i) = {{X ∪ {m−1} if  m−3 ∈ X}⋃  

                           {X ∪ {m} if  m−2 ∈ X} ∕X ∈ D2(Cm-2, i-1)}.  

(iii) If  D2(Cm-1, i-1) ≠ , D2(Cm-2, i-1) =    

 then, D2(Cm, i) = {Y ∪ {m} ∕Y ∈ D2(Cm-1, i-1)} 

       (iv) If  D2(Cm-1, i-1) ≠ , D2(Cm-2, i-1) ≠  then  

        D2(Cm, i) = {{X ∪ {m−1} if  m−3 ∈ X}⋃ {X ∪ {m} if  m−2 ∈ X}⋃{ Y ∪ {m−1} 

                        if  m−2 ∈ Y} ⋃ {Y ∪ {m} if  m−1 ∈ Y}} 

     Where X ∈ D2(Cm-2, i-1) and Y ∈ D2(Cm-1, i-1). 

 From the above construction we obtain that  

            d2(Cm, i) = d2(Cm-1, i-1)+ d2(Cm-2, i-1). 

 

 

III. 2-DOMINATION POLYNOMIALS OF CYCLES 

 

Definition 3.1 :     Let D2(Cm, i) be the family of 2-dominating sets of Cm with cardinality i and let d2(Cm, 

i) = |D2(Cm, i)|. Then, the 2-domination polynomial D2(Cm, 𝑥) of Cm  is defined as,  

                              D2(Cm, 𝓍)  =  ∑ d2
m
𝑖=𝛾2(𝐶𝑚)

(Cm, i)𝓍𝑖  

 where 𝛾2(Cm) is the 2-domination number of Cm. 

Theorem 3.2 : 

For every  m ≥ 5, 

 D2(Cm, 𝓍) = 𝓍 [D2(Cm-1, 𝓍) + D2(Cm-2, 𝓍)]  with  the initial values  

 D2(C3, 𝓍)  = 𝓍3+3𝓍 2 

  D2(C4, 𝓍)  = 𝓍 4+4𝓍3+2𝓍 2 

Proof: 

 We have d2(Cm, i)  =  d2(Cm-1, i-1) + d2(Cm-2, i-1) 

Therefore, 

   d2(Cm, i) 𝓍 i  =  d2(Cm-1, i-1) 𝓍 i + d2(Cm-2, i-1) 𝓍 i 

  ∑ d2(Cm, i) 𝓍 i  =  ∑d2(Cm-1, i-1) 𝓍 i +∑ d2(Cm-2, i-1) 𝓍 i 

                        = 𝓍∑d2(Cm-1, i-1) 𝓍 i-1 + 𝓍∑ d2(Cm-2, i-1) 𝓍 i-1 

  D2(Cm, 𝓍)      = 𝓍D2(Cm-1, 𝓍) + 𝓍D2(Cm-2, 𝓍)   

  D2(Cm, 𝓍)      = 𝓍[ D2(Cm-1, 𝓍) + D2(Cm-2, 𝓍)], with the initial values 

  D2(C3, 𝓍)      = 𝓍 3+3𝓍 2 

  D2(C4, 𝓍)      = 𝓍 4+4𝓍 3+2𝓍 2 

We obtain d2(Cm, i), for  2≤ 𝑚 ≤15 as shown in table 1 
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TABLE  1 

d2(Cm, i) , the number of 2-dominating sets of Cm with cardinality i 

m\i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

C3 3 1             

C4 2 4 1            

C5 0 5 5 1           

C6 0 2 9 6 1          

C7 0 0 7 14 7 1         

C8 0 0 2 16 20 8 1        

C9 0 0 0 9 30 27 9 1       

C10 0 0 0 2 25 50 35 10 1      

C11 0 0 0 0 11 55 77 44 11 1     

C12 0 0 0 0 2 36 105 112 54 12 1    

C13 0 0 0 0 0 13 91 182 156 65 13 1   

C14 0 0 0 0 0 2 49 196 294 210 77 14 1  

C15 0 0 0 0 0 0 15 140 378 450 275 90 15 1 

 

 

In the following Theorem, we obtain some properties of  d2(Cm, i). 

Theorem 3.3: 

     The following properties hold for  the coefficients of  D2(Cm, 𝓍). 

(i) d2(Cm, m) =  1, for every m ≥ 3. 

(ii) d2(Cm, m−1) =  m, for every m ≥ 3. 

(iii) d2(Cm, m−2)  =  
1

2
[m2−3m], for every  m ≥ 4. 

(iv) d2(Cm, m−3)  =  
1

6
[m3−9m2+20m], for every  m ≥ 6. 

(v) d2(Cm, m−4)  =  
1

24
 [m4−18m3+107m2−210m], for every m  ≥ 8. 

(vi) d2(C2m, m)  =  2, for every  m ≥ 4. 

(vii) d2(C2m-1, m) = 2m−1, for all m ≥ 5.   

(viii) d2(C2m, m+1)  =  m2 ,  m ≥ 2. 

 

CONCLUSION 

             In this paper, the 2-domination polynomials of cycle has been derived by identifying its 2- 

dominating sets. It also helps us to characterize the 2-dominating sets of cardinality i. We can generalize 

this study to any power of cycle and some interesting properties can be obtained via the roots of the 2-

domination polynomial of Cm. 
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