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Abstract 

This article provides solutions to some divisibility problems using Fermat's little theorem. To 

have beautiful solutions for each of those problems, mathematicians have combined 

knowledge of: Theory of divisibility and division with remainder, greatest common divisor, 

least common multiple, prime numbers, congruences, exponentiation, etc. This helps students 

think positively and flexibly about their existing knowledge and skills, and present concise 

and creative solutions.  
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Introduction 

Solving an arithmetic problem using theorems has always been an attraction for every 

mathematician. In particular, arithmetic is one of the basic content in the high school math 

program and is featured in national and international competitions for excellent students and 

many other math competitions. Fermat's little theorem is one of the most famous and useful 

theorems in mathematics, which is applied in many different fields. The study of Fermat's 

little theorem, in addition to providing mathematical knowledge, also helps students to 

analyze, research, explore, exploit, develop problems to generalize, generalize knowledge 

and improve high thinking about problem solving. In addition, in-depth study of this theorem 

is also an effective tool to solve intensive problems of congruence, perfect squares, co-prime 

numbers, paired primes, etc., which are frequent topics. present on Math forums, Math 

meetings, Student Math Olympiads,... as well as related fields. 

 

 

 

 

1 Tan Trao University, Tuyen Quang, Vietnam, tuyetngasp@gmail.com 

Received: xxxxxxx, Accepted: xxxxxxx 

mailto:tuyetngasp@gmail.com


Nguyen Tuyet Nga 

5047 

Methodology 

Authors use experiences, observations and examples with explanatory method to illustrate 

results and draw conclusion. 

Author also use dialectical materialism methods. 

 

Main Findings 

1. Some Knowledge to Remember 

• [1, p. 502] Fermat's Little Theorem: If p is a prime and a is a positive integer then 

(mod )pa a p  

Prove 1. 

Use induction by a. 

With a = 1 tense, the proposition is always true. 

Assume that the statement is true a  I.e | pp a a−  

We will prove the statement to be true 1a+ . Indeed: 

1

1

( 1) ( 1) ( )
p

p p k k

p

i

a a a a C a
−

=

+ − + = − +  

Using | , (1 1)k

np C k p  −  and assuming induction we deduce. Then 

( 1) ( 1) (mod )pa a p+  +  

 

So we complete the proof. 

Prove 2. 

Assume that ( , ) 1a p =  and it is necessary to prove that 
1 1 (mod )pa p−   

Consider integers ,2 ,...,( 1)a a p a− whose remainders when divided by p distinct 

(otherwise, with (mod )ia ja p  then | ( )p i j a−  or |p i j− , sign " "=  

happens if i j= ). 

So ,2 ,...,( 1) 1.2....( 1) (mod )a a p a p p−  −  

It mean 
1( 1)! ( 1)! (mod )pa p p p− −  −  

So ( ,( 1)!) 1p p − =  we infer what we have to prove. 

Note. This theorem can be abbreviated as: 
1 1 (mod )pa p−   
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• [2, p. 27] Definition of Divisibility 

 

An integer a is said to be divisible by an integer ( 0)b b   if there exists an integer x such 

that a bx= . Then we say that a is multiple of b or b is a divisor of a and denoted by a b or 

|b a . If a is not divisible by b, we denote it a b  orb a , then we write a bq r= +  and 

call 0, 1, 2, 1r r= −  the remainder in division a  cho b . 

 

• [3, p. 3] Properties of Divisibility 

   

+) If a b  then ac b  with c Z    

+) If a b  and b c  then a c  

+) If a c  and b c  then ( )ax by c+  with all integer ,x y  

+) If a b  and , 0a b   then a b   

+) If a b  and b a  then a b= or a b=−   

+) If 0m  and a b  then a b am bm=   

2. Some Practical Exercises 

Exercise 1: Prove that 

479 1

8
m

−
=  an odd composite number is not divisible by 3 and 

13 1 (mod )m m−   

The answer: 

First, we show that m  the composite number is odd. Indeed: 

We have 

47 47 479 1 3 1 3 1
.

8 2 4
m

− − +
= =  

Since 

47 473 1 3 1
,

2 4

− +
 are all integers greater than 1, m is composite 

Comment 

47 47
46 459 1 9 1

9 9 ... 9 1 1 (mod 3)
8 9 1

m
− −

= = = + + + + 
−

, I.e m not divisible 

by 3 

Comment: 9
k

 ends in 9 if k is odd and ends in 1 if k is even 

So 
46 459 9+ 46 45 2 46 45 44 43 29 9 ... 9 9 (9 9 ) (9 9 ) ... (9 9)+ + + + = + + + + + +  
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Obviously, each sum in brackets ends with the digit 0, and 46 is even, so the sum above 

consists of 23 pairs. Thus, m ends with the digit 1, so m is odd 

Now we will prove 
13 1 (mod )m m−   

According to Fermat's little theorem, then 
479 9 (mod 47)  

As 
479 9 (mod 8)  and (47, 8) 1=  then 

479 9 (mod 47.8)  

It means that 

479 9
1 47

8
m

−
− =  

As 46  I seven number and (2;46) 1=  then ( 1) 94m−  

From that 
94(3 1) (2 1) (3 1)m m m− −  −  (do 

2(3 1) 8p m−  

Or 
13 1 (mod )m m−   

Exercise 2: With 5p = is prime and ,a b  are two odd natural numbers such that 5a b+  

and 4a b− . Prove 10b aa b+  

Tee answer:  

Assume a b  

Call r  is the remainder in division a  by 5  then (mod 5) (1)a r (do 5a b+ ) 

From 

(mod 5) (mod 5) 0(mod 5) (mod 5)a r a b r b b r b r  +  +  +    −  

(mod 5) (mod 5)b ba r a r    

(mod 5) ( ) (mod 5)a ab r b r −   −  

At that time (mod 5) (1 )(mod 5)b a b a b a b a ba b r r a b r r −+  −  +  −  

On the other hand, by assumption 4a b−  then 4.a b k−  

As r is not divisible by 5, so by Fermat's little theorem, we have: 

4 4.1 (mod 5) 1(mod 5) 1(mod 5)b a k a ba b r r r −+        

From that we get: 0(mod 5)b aa b+  , I.e 5b aa b+  

Furthermore: ,b aa b  are odd integers, so 2b aa b+  

Hence: 10b aa b+  

Exercise 3: Prove with 1, 2, 3,..., 100k =  then 101 101kC  
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The answer:  

Put 
100 101 101

1011
( ) ( 1) ( 1)k k

k
f x C x x x

=
= = + − +  with x   

Apply theorem little Fermat we have:  

101( 1) 1 (mod 101)x x+  + , x   

On the other hand, according to theorem Fermat, we have: 
101 (mod 101)x x , from that 

101 1 1 (mod 101)x x+  + , x   

This leads to equation ( ) 0 (mod 101)f x = has 101 solutions.  

As deg 100f = then f  not have level mod 101, i.e all coefficients of f divisible by 

101. We have what to be proved. 

Exercise 4: Prove with 1, 2, 3,..., 36k =  then 36 ( 1)(mod 37)kC  −  

The answer:  

Consider polynomial 

 

37
36 1

( ) ( 1)
1

x
f x x

x

+
= + −

+
  

Comment: f mod's 37 rank is not over 35 or it has no rank  

Apply theorem little Fermat we see equation ( ) 0 (mod 37)f x   has 36solutions mod 37  

are 0, 1,..., 35 . This means that all coefficients of f are divisible by 37 

Hence 36 ( 1)(mod 37), 1 36kC k −    

Exercise 5: Prove with ,a b   then 
7 7( ) 7ab ba−  

The answer:  

We have 
7 7 6 6( )ab ba ab b a− = − . Then: 

+) If 7 | ab  then 
6 6 7 77 | ( )ab b a ab ba− = −   

+) If 7 | ab  then as (7, ) 1, (7, ) 1a b= =  according to theorem little Fermat we have 

7 6(mod 7) 1 (mod 7)b b b    (1)  

Also according to theorem little Fermat we have 
7 6(mod 7) 1 (mod 7)a a a    (2)  

From(1) and (2)
6 6 0 (mod 7)b a −   

Or 
6 6 7 77 | 7 |b a ab ba−  −   
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So with ,a b   then 
7 7( ) 7ab ba−  

Exercise 6: Prove 
40 3637 41 1 37.41+ −   

The answer: 

As 41  a prime, apply theorem little Fermat we have 
4137 37 (mod 41) .  

From that 
41 4037 37 0(mod 41) 37(37 1) 0(mod 41) (1)−   −   

As (37, 41) 1=  so from (1) we have: 
4037 1 0(mod 41) (2)−   

Obviously 
3641 30(mod 41) (3)  

From (2), (3)  we have 
40 3637 41 1 0 (mod 41)+ −   

Because roles of 41, 37  the same we have: 
36 4041 37 1 0 (mod 37)+ −   

As (37, 41) 1=  then 
36 4041 37 1 0 (mod 41.37)+ −   

From that 
40 3637 41 1 37.41+ − (what to be proved) 

Exercise 7: Prove 
97 97(3 2 1) 42.97− −   

The answer: 

As 97  a prime according to theorem little Fermat we have: 

97 973 3(mod 97), 2 2(mod 97)   

So: 

97 97 97 97

97 97

97 97

97 97

3 2 1(mod 97) 3 2 1 0(mod 97)

(3 3) (2 2) 0(mod 97)

3 2 1 0(mod 97)

(3 2 1) 97 (*)

−   − − 

 − − − 

 − − 

 − −

 

On the other hand: 
97 97 97 973 2 1 [(3 1) 2 ] 2 (1)− − = − −  

Then 
97 97 973 2 1 ( 1) 1 0 (mod 3)− −  − − −  , I.e 

97 973 2 1 3 (2)− −  

Now we prove
97 97(3 2 1) 17+ −  

We have: 
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97 97 96 97

2.48 97

2 48 97

48 97

48 97

3 2 1 3.3 2 1

3.3 2 1

3.(3 ) 2 1

3.9 2 1

3.2 2 1 (mod 7)

− − = − −

= − −

= − −

= − −

 − −

 

And 
48 97 48 97 49 48 973.2 2 1 (2 1).2 2 1 2 2 2 1− − = + − − = + − −  

So:  

97 97 49 48 97

49 3 16 97

49 16 97

16 49 97

49 97

97 49

49 48

49 16

3 2 1 2 2 2 1 (mod 7)

2 (2 ) 2 1 (mod 7)

2 8 2 1 (mod 7)

(8 1) 2 2 (mod 7)

2 2 (mod 7)

(2 2 ) (mod 7)

(2 (2 1)) (mod 7)

(2 (8 1) (mod 7)

0 (mod 7) (3)

− −  + − −

 + − −

 + − −

 − + −

 −

 − −

 − −

 − −



 

From (1), (2), (3) we have 
97 97(3 2 1) 42 (**)− −  

From (*) and ((**) we have: 
97 97(3 2 1) 42.97− −  

Exercise 8: Find all positive integers n  such that 2 1 7n −  

The answer: 

As 2  a prime according to theorem little Fermat, we have 
72 2 (mod 7)  

From that 
6 62 1 (mod 7) 2 1 0(mod 7)  −  , and 

6 3 32 1 (2 1)(2 1)− = − + , so 

3 3 3 37 | (2 1)(2 1) 7 | 2 1 2 1(mod 7)− +  +    

So all numbers n  divisible by 3  satisfying requirement. 

Exercise 9: Prove that there are infinitely many positive integers n that satisfy (2 1) 67n −  

The answer: 

As 2  a prime according to theorem little Fermat, we have 
672 2 (mod 67)  

From that 
66 .662 1 (mod 67) 2 1(mod 67)m   , with m  positive integer. 
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Take .66n m= , with 1 (mod 67)m  − , we have .66 1 (mod 67)n m=   

And 2 2 1 0 (mod 67)n nn−  −   

So there are infinitely many positive integers m such that 1 (mod 67)m  − there are 

infinitely many positive integers n satisfying (2 1) 67n −  

Exercise 10: [5, tr. 45] Prove 
1003 3 13−   

The answer:  

As 13  a prime, according to theorem Fermat we have: 

123 1 (mod 13)  

With 100 12.8 4= +  so 
100 12 8 4 43 (3 ) .3 3 (mod 13)=   

But 
43 81 3 (mod 13)   

Then the remainder in division  
1003 3− by 13  is 0, or 

1003 3 13−  

Exercise 11: With 2, 0n a  is a positive integer and m is a prime such that 

1 (mod )m na m . Prove if 2m   then 
11 (mod )na m −  and if m = 2 then 

11 (mod 2 )na −   

The answer: 

We have 1 (mod )m na m with 2n , so 1 (mod )ma m  

From theorem little Fermat (mod )ma a m , so 1(mod )a m  

In case a = 1, Obviously there is something to prove 

If 1a  , we put 1 ua km= +  (here 1u   and k m . So, 2m  , 

1 2 11m u ua km Vm+ += + +  with V  an integer 

Hence m + 1 > n so 
11 (mod )na m −  

In case 2m = , we have 
22 | 1 ( 1)( 1)n a a a− = − +  

As 1 2, 1 2a a−  +   so 1, 1a a− +  both cannot be multiples of 4. So either expression 

1, 1a a− +  is divisible by 
12n+
, I.e 

11 (mod 2 )na −  . We have what to be proved 

Exercise 12: With a as integer, knowing 
25 ( 1)a a m m−  . Find m  

The answer: 
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Suppose to find a number m that satisfies the requirements of the problem. Then with p is a 

prime number, because 
2p  is not divisible by 

25p p− , so we have 
2p not divisible by m. 

So m multiples of distinct primes 

On the other hand, we have: 
25 22 2.3 .5.7.13.17.241a − =  

As 
253 3 (mod 17) −  and 

253 32 (mod 241)  so m  not divisible by 17 and 241.  

According to theorem little Fermat, we have 
25 (mod )a a p  when {2; 3; 5; 7; 13}p =  

Thus, m will be equal to the divisors of: 2. 3. 5. 7. 13, different from 1 and have 

52 1 31− = their divisors. 

Exercise 13: Let t be a positive integer, k be an odd natural number and .2 1tm k= + an odd 

prime number. Assume that for x, y are natural numbers satisfying 
2 2t t

x y m+ . Prove that 

then ,x y  simultaneously divisible by m. 

The answer: 

We prove it by the method of contradiction 

Assume the opposite, x m , then y m  

As m  a prime according to theorem little Fermat we have: 

1 11 (mod ), 1 (mod )m mx m y m− −  .  

As 1 .2tm k− =  then we have: 
.2 .21 (mod ), 1 (mod )

t tk kx m y m   

From that we get
.2 .2 2 (mod )

t tk kx y m+  . (1) 

According to assumption 
2 2 2 2 0 (mod )

t t t t

x y m x y m+  +   

Because k odd natural number: 

.2 .2 2 2 2 2( ) ( ) ( ) 0 (mod )
t t t k t k t tk kx y x y x y m+ = + +   (2) 

We see (1) and (2) contradict. So x  and y  at the same time divisible by m (what to be 

proved) 

Exercise 14: Using theorem Fermat find remainder when divide 
7893456 by 23   

The answer: 

According to theorem Fermat, we get: 

789 789 35 193456 ( 3456 ) . 3456   
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35 19

19

18

3.6

3 6

6

2

3

3
.

.6

.6

.6

1 . 6 ( mod 23 )

6 ( mod 23 )

6 ( mod 23 )

6 ( mod 23 )

( 6 ) ( mod 23 )

9 . 6 ( mod 23 )

( 9 ) 6 ( mod 23 )

12 . 6 ( mod 23 )

3 . 6 ( mod 23 )

18 ( mod 23 )





















  

So remainder when divide 
7893456  by 23 is 18 

Exercise 15: Prove 
18 18 18 18 18 181 2 3 4 5 6 7+ + + + +  

The answer:  

The numbers 1; 2; 3; 4; 5; 6 is a co-prime to 7, so by Fermat's theorem we have the following 

congruences: 

61 1 (mod 7) ;  

62 1 (mod 7) ; 

6 1 (mod 7)3  ; 

………………………. 

6 1 (mod 7)6  ; 

Raising to the third power on both sides of the above congruence, we get:  

 181 1 (mod 7)  

182 1 (mod 7)  

183 1 (mod 7)  

………………………. 

18 1 (mod 7)6   

Adding the sides of those congruent, we get: 

18 18 18 18 18 18

18 18 18 18 18 18

1 2 3 4 5 6 0 (mod 7)

1 2 3 4 5 6 7

+ + + + + 

 + + + + +
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Exercise 16: With m  is prime and 5m . Prove 
8 1 240m −  

The answer: 

Analyze 240  Product analysis of prime factors (standard form), we get 
4240 2 .3.5=  

Apply little Fermat theorem, we have 
4 1 (mod 5)m   and 

2 1 (mod 3)m   

Call a  positive integer, we see 
4( , 2 ) 1a =  when a  is odd.  

On the other hand apply formula 

1 2

1 1 1
( ) (1 )(1 )....(1 )

k

m m
p p p

 = − − − is the number of 

smaller than m and prime positive numbers with m (với 1 2

1 2. .... kmm m

km p p p=  is the 

standard analysis of m ), we get 
3 31 1

(24) (2 .3) 24.(1 ).(1 ) 8 2
2 3

 = = − − = =  

According to theorem Euler, we get 
8 1 (mod 16)m  . 

Hence 
8 1 (mod )m p  with 3, 5, 16p = . From that 

8 1 240m −  (what to be proved) 

Exercise 17: With p  as a prime and 2 3p − . Prove with ,a b  are integers satisfying 

3 3a b p−  then a b p−  

The answer: 

Consider 2 cases: a  or b  divisible by p  and ,a b  are not divisible by p   

+) Case 1: If 
3a p b p b p  , so a b p−  

+) Case 2: If ,a b  are not divisible by p   

As assumption 2 3 3 2 ( )p p k k−  = +   

According to little Fermat theorem, we get 
1 1 (mod )pa p−   

But 3 2 ( )p k k= +   then 
3 1 1 (mod )ka p+    

Similar proof, we get 
3 1 1 (mod )kb p+   

From that 
3 1 3 1k ka b p+ +−  

According to assumption 
3 3 3 3k ka b p a b p−  −  

From that a b p− (what to be proved) 
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Conclusion 

The diverse and complex topics of Arithmetic problems are always attractive to good 

students, because solving each problem in this field helps train and develop students' 

thinking. Using Fermat's little theorem to solve divisibility problems, in addition to providing 

quick, concise and accurate solutions, also stimulates new discoveries and discoveries in 

problem solving, helping learners to be creative in learning. Through this type of math, 

learners have the ability to think deeply, the ability to flexibly apply knowledge content to 

each type of exercise accordingly, so that they can achieve the best effect to meet the 

program. new general education with the goal of orienting student capacity development. 
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