
game theory based consensus learning in unidirectional rings

903

Turkish Online Journal of Qualitative Inquiry (TOJQI)

Volume 13, Issue 1, January 2022: 903-916

Game Theory based Consensus Learning in Unidirectional Rings

Radha Rani a, Mayank Kumar Singh b, and Dharmendra PrasadMahato c

aPh.D. Research scholar, Department of Computer Science and Engineering, National Institute of Technology,

Hamirpur, India 177005, radharani8288@gmail.com

bM.Tech. Research scholar, Department of Computer Science and Engineering, National Institute of

Technology, Hamirpur, India 177005

cAssistant Professor, Department of Computer Science and Engineering, National Institute of Technology,

Hamirpur, India 177005

Article History: Do not touch during review process(xxxx)

Abstract:This paper discusses the game theory based consensus learning in unidirectional rings.

Distributed

systemfindstheambiguousprocessorsorrationalagentsinthesamewayasgametheoryfindsambiguous

players. The rational agents are those processors which deviate from the protocol and instead they

follow their own path in order to fulfil their utility. In a bidirectional rings, the rational agents can be

detected easily by each neighbourhood agents. But, in unidirectional case, the rational agents cannot

be easily detected. This limits the honest agent to detect incorrect IDs sent by adversarial agents. So,

our main focus is on the asynchronous unidirectional ring. We study the shortcomings of the protocol

presentedin(Abrahametal.2013)and(Afeketal.2014).Inthispaper,wepresentanimprovedversion

oftheprotocolbasedonGameTheorywhichismoreresilienttothepreviousone,byapplyinginvasion of

adversarial processors and by proving it to be resilient in presence ofadversaries.

Keywords: Consensus problem; Leader Election; Game Theory; Unidirectional Rings.

1. Introduction

Obtaining consensus in distributed computing on some data value is a fundamental problem to

achieve overall reliability. In distributed system, the all components cannot be fault free. Therefore,

all the components should agree on some data or state to guarantee the reliability of the system.

Consensus can be understood as an agreement between the components of the distributed system on

a data value or component. When the consensus is achieved on a component, then this mechanism is

known as consensus mechanism based on leader election.

Consensus in distributed system is to elect a leader in an anonymous networks. Message passing in

this network does not have a fixed time to send or receive the messages. There is no guarantee that

the message will be received on time or reach to its destination. Therefore, some components may

become rational components in the system and they start their own paths.

In this paper, we incorporate game theory approach to maximize its Expected Utility. In this case, the

utility will be to choose itself as a leader or to form a coalition of agents to elect a leader among

mailto:radharani8288@gmail.com
mailto:ani8288@gmail.com

Radha Rani , Mayank Kumar Singh , Dharmendra PrasadMahato

904

themselves. The implementation of this algorithm is done on unidirectional ring networks.

Therestofthispaperisorganizedasfollows. SectionIIbrieflydescribesthebackgroundinformation.

Section III presents the fundamentals of game theory and game models that are commonly used in

blockchain. Section IV discusses applications of game theory for security issues in blockchain.

Section

Vpresentsapplicationsofgametheoryfortheminingmanagementinblockchain.SectionVIdiscusses

applications of game theory atop blockchain platforms. Section VII outlines challenges and future

research directions. Section VIII summarizes and concludes thepaper.

2.BackgroundInformation

2.1 Consensus

Designing and Implementation of a fault tolerant distributed system is considered as one of the

complex endeavours in the last few years. The verification of these models is the next challenge that

we face after implementation. Nowadays, several new techniques have been developed to identify

and simplifythesetasks.Therearetwotechniqueswhicharewidelyusedforthispurpose.

TheyareAtomic Broadcasting and Consensus. In distributed system, simple definition of consensus is

agreement. It is a task to get all the processors in a network to agree on some specific protocol or

condition based on the votes of each processors. It allows each processor to reach to a common

conclusion and result, where each processor may or may not have similar inputs. Many problems that

arise in distributed system can be solved through such as leaderelection.

2.2 Unidirectional RingNetwork

Inaunidirectionalringnetwork as shown in

Fig.1,thedataflowsinonlyonedirectioneitherclockwiseoranti-clockwise and such a network is called a

half-duplex network. In a bidirectional ring network, each agent can communicate with its

predecessor and successor as well. This allows each agent to detect faulty agents in its neighborhood

by continuously matching the information sent by its neighbor agents in previous rounds. However,

this is not the case in unidirectional ring networks. The message is passed in only single direction

and that direction is decided beforehand. This limits the honest agent to detect incorrect

IDssentbyadversarialagents.So,ourmainfocusisonasynchronousunidirectionalringnetwork.

game theory based consensus learning in unidirectional rings

905

2.3 Game Theory in DistributedSystem

Game theory approach has been a better option for solving the complicated problems in distributed

system. In game theory concept, there are no good players or bad players, but rational players make

moves in selfish manner by assigning payoffs (or utilities) to outcomes. With this type of play with

rational players, game theory-predictions consists of several solution concepts considering

theoutcome of a game with rational players. In selfish type of play in game theory, the players make

bestresponsesto their beliefs. But, in the team, all the players are unknown what the others players’

strategies are.

Letusassumeamulti-partygamemodelwheretherearennumberofparticipantsandnoneofthem

arehonest.Theseparticipantsorplayersarereferredaseitherrationaloradversarial.Therationalplayers

arethosewhoactintheirselfishinteresttomaximizetheirutility.Adversarialplayersarethosewhoact

arbitrarily (Lysyanskaya et al.2006).

2.4 Assumptions

In our protocol, we assume that each processor knows about their IDs as well as the IDs of the

processors present in the network. This assumption is necessary because getting to know the

information about each and every processor during the execution of the protocol is trivial in electing

a leader. Hence, we created a wake-up phase which runs before the actual protocol and facilitates

each processor with the information of other processors. Once each processor knows about every

other processor, our main protocol starts. Although, we should not deny the fact that knowing the IDs

of other processors may have many other advantages over not knowing about it atall.

Thefirstadvantageisthateachprocessorgetstoknowaboutthetotalnumberofprocessorspresent

inthering.Thisinformationshouldnecessarilybeavailableorelsetheyprotocolwouldneverstop.The

processors may not know when to stop sending messages to their neighbouring processors if

thereisnotstoppingconditionsuchaswhenthelastprocessorreceivesthefinalmessage,nonew

messagesshouldbesentuntiltheinitiatorstartsendingagain.Thesecondadvantageofthisisthat

atthetimeofsendingtheirIDstoitsneighbours,processorswillreceiveIDsfromotherprocessors

aswell.Hence,theyusethisinformationtoverifythattheIDssentbyotherprocessorsisthesame id that they

sent during wake-upphase.

We assume that the agents are rational. If we assume that each processor prefers to have a leader

rather than having no leader at all and that they are indifferent of who becomes the leader then any

leader election algorithm can be applied. But if there exist a single rational agent among the

honestagentswhodeviatesfromtheprotocoltogetthemaximumbenefit,thentheseprotocolsfail to perform

well. If we view the scenario as a formal intuition where all the processors arehonest,

thenweimplicitlyassumethatinstandarddistributedsettingsallprocessorsfollowthedesignated algorithm.

But what happens when agents prefer to have different leaders? One of the cases maybe when

someagentwantshimselftobeelectedasaleaderasitwouldlowerthecostofroutingwithother agents. Here,

the standard settings of distributed protocol (which assumes that each agent has distinct id, and the

leader is elected based on thehighest or the lowest id present in the network) fails to work. Thus, our

major focus being on obtaining a fair Nash Equilibrium, where each processor has an equal

Radha Rani , Mayank Kumar Singh , Dharmendra PrasadMahato

906

probability of becoming a leader. In simple words, the probability that

someonewillbeelectedasaleadershouldbe1.Butbeforedigginginintothesolutions,weneed to understand

what Nash equilibrium means in an asynchronoussetting.

2.5 Advantages

Indistributedsystem,leaderelectionisanideaofgivingsomespecialpowerstooneoftheprocessors in a

network which include assigning work, scaling bottlenecks, handling responsibilities of requests in a

system. It is a powerful tool for reducing operations, reducing coordination, improving efficiencyand

throughput, simplifying architecture, etc. Leader election provides a centralized way of management

where a single processor makes decisions suitable for the rest of the processors and the entire system

itself. Advantages of leader election are asfollows:

• A leader provides consistency to the clients as it has the power to control the changes that can be

made to the state of thesystem.

• Designing a software for one specific processor is much easier than designing different protocols

for each individual processor. The leader does not care about the conditions of system whether

working or not at the time of decisionmaking.

• One of the major advantages of leader election is to reduce partial failures and keeping logs and

metrics for failure and recovery. If there is one centralized system that takes all the decisions, it

makes the system easier for humans to thinkabout.

• Efficiency of a centralized system is better since it can simply circulate the changes need to be

made rather than building consensus about the changes need to bemade.

• Asingleleadercanimproveperformanceorreducecostbyprovidingasingleconsistentcacheof data

which can be used everytime.

2.6 Disadvantages

Disadvantages of leader election are as follows:

• Paradigms like partial deployment, incremental deployment, A-B testing, automatic rollback is

hard to apply in leader electionsystem.

• Adversarial attacks of processors may result in disobeying leader’s decision and following their

own protocols to maximize their optimal expectedutility.

• Asingleleaderispronetosinglepointfailure.Theentiresystemwillsufferfromunavailabilityif the leader

itself is failed or fix a faultyprocessor.

• Iftheleaderitselfisnotfollowingthedesigner’sprotocolanddoingwrongworkandifthereisno

othernodetocheckforit,thenitcanmakedecisionsfortheprocessorswhichwillbeinfavorof the leader

and the entire system will have a high blastradius.

game theory based consensus learning in unidirectional rings

907

2.7 Motivation

In this paper, our motive is to solve the consensus problem based on game theory approach. Here,

leader election is used because of:

• Data Consistency: In a bank server system, multiple servers exist in a cloud, but only a single

server should be responsible for a singlecustomer.

• Data Replication: If a group of servers decide to replicate files among themselves, they need to

electaoneserverthatcontainstheprimarycopyofthefilethatwillcommunicatewithotherclient

machines.

• Error-Free Transition: In comparison to government elections, sometimes leadercommunicate

withclientsthathavedifferentkindsofinformationwhichmayormaynotbeunderstoodbyother

servernodes.So,leadertransformstheinformationsothatitisunderstoodbyallthenodes.

This paper does not focus on how leader election can be applied using game theory approach, butit

focuses on how leader election in a unidirectional ring can be made fault tolerant so that it is efficient

andthatnoothernodedeviatesfromtheprotocol.Thepaperproposessometheoremsandproofstouse game

theory as a tool to define how leader is elected and that why other nodes get to the conclusion of

electing that particular node as a leader. Also, it states why no other node (not leader) deviates from

its decision of choosing a leader rather than beingone.

3. Relatedwork

Thereisonestudywhereitisproventhatarandomprotocolcanachieveresiliencetocoalitionoflinear size.

This means that if the coalitions are linearly dependent to n then the protocol is resilient. This

wasfoundbyMichealSakswhichisgivenin(SaksandMichael1989).Inthelateryears,Boppana optimal

resilience. i.e., resilience to size (
1

2
- ϵ). It is important to note that our approach can be and

Narayanan (Boppana et al. 2000) provided a brief proof of this protocol that has approximate

wellsuitedtodefinetheunderlyingprincipleof(Abrahametal.2013)whichshowsthatitiseasierto design a

leader election protocol when working under synchronous or completely connected network.

Forasynchronoussettings,theseprotocolsfailtoperformwellevenifthereisasingleprocessorfailure since

we cannot identify whether the processor is really at fault or just responding really slowly. They

alsostatedthatinbidirectionalringnetwork,eachprocessorcansendmessagestoitspredecessoraswell as its

successor since the ring is bidirectional. This means that if there is a single fault in the network, the

processors can confirm it by sending the message in the opposite direction from where the fault has

initiallyoccurred.Theprotocolthatworksforunidirectionalnetworkinsynchronoussettingswillwork

sameasinbidirectionalnetworkinsynchronoussettings.Theonlythingneedstochangeisthedirection of the

message transfer at the time of initiation. If there is no agreement among the processors on the

orientationofmessagepassingthentheinitiatorprocessorcanchoosethedirectionarbitrarilyandrestof

theprotocolwillbeexecutedasdesigned;alltheotherprocessorswillcontinuetoforwardtheirmessages in

the same direction. If any of the processor registers its buffer with ‘null’, then the protocol will fail

and no leader will be chosen. Since this approach reduces the adversarial attacks on the protocol,

itwill not be fair in terms of getting an elected leader. If the processor keeps on deviating from the

Radha Rani , Mayank Kumar Singh , Dharmendra PrasadMahato

908

protocol, no leader will be chosen at all. That is why, we assume in our model that each processor

follows a solution-drivenapproach.

3.1 Secret sharing and MultipartyComputation

Secret Sharing method: A method to divide a secret into parts, called shares that are distributed

among a group of agents such that the secret can only be reconstructed when an authorized group of

agents combine their shares. Combinations of shares of unauthorized agents do not reveal the secret.

Multipartycomputationmethod:Insecuremulti-partycomputation(MPC),asetofparties,eachhaving

asecretvalue,wanttocomputeacommonfunctionovertheirinputs,withoutrevealinganyinformation

abouttheirinputsotherthanwhatisrevealedbytheoutputofthefunction.In(Abrahametal.2006)they

mathematicallyprovedthatifthereisacoalitionCofsizekandallthemembersofthecoalitiondeviates

fromtheprotocolthennomembercandobetterinelectingaleaderamongthem.Fewotherthingsother

thanthiswasthattheadversarialagentscanattackandgetaleaderelectediftheypreferasolutiondriven

approach, which is exactly what we assumed in our model. In solution driven approach the

processors tend to elect a fair leader rather than having no leader at all. Finally, Abraham et al. in

(Abraham et al. 2006) discussed the mediator technique and simulated games with mediator by

games without

mediator.Theirmaincontributionliesontheimprovementoftheresultsby(Andrychowiczetal.2014)

wheretheyusedrationalitytostickoutfromthetraditionalmethodof‘good-guy’‘bad-guy’modelwhich

isastandarddistributedcomputingcommunitymodel. (Andrychowiczetal.2014)providedamodelthat

hadaresultwith1-resilientequilibrium.(Abrahametal.2013)improvedthisresultto(n-1)resilience.

Thismeansthatifanymultipartycomputationiscarriedoutbyatrustedmediator,thenitcanalsobe done

without a mediator with a high resilience output. Their result gives a deeper understanding of cheap

talk where a model can be built to securely simulate resilient equilibrium without the use of a trusted

third party mediator. The motivation to do so is because there is a possibility that we may not find a

trusted third party all the time. In (Izmalkov et al. 2011) and (Lepinski et al. 2004) theoretically

described two ways to actually get an equilibrium in a game which is converted from using trusted

mediatortonotrustedmediatoratall.Theyreliedontwoverystrongfundamentalsknownasballotbox

andenvelope.Thesefundamentalsareundevelopedtobeimplementedinamodelyet.(Vidaetal.2013)

proposedamodeltosimulateNashequilibriumwiththehelpofatrustedmediator.Heusedthestrategy called

‘punishing the player’ which threatens the players who deviate from the protocol by notelecting

anyprocessorasaleaderiftheycometoknowsomeoneisnotfollowingtheprotocol.Later(Hellerand

Yuval2010)extendedBenPorth’sresulttomodelthisapproachinacoalition.Theyshowthatifstandard

assumptionsaremadeincryptography,anequilibriumofagamecanbesimulatedwithamediatorsuch that

players use punishmentstrategy.

3.2 BARModel

BAR Model (Byzantine, Altruistic, Rational): Byzantine nodes may deviate arbitrarily from the

suggestedprotocolforanyreason.Theymaybebroken(e.g.,misconfigured,compromised,malfunctioning,

ormis-programmed)ormayjustbeoptimizingforanunknownutilityfunctionthatdiffersfromtheutility

functionusedbyrationalnodes—forinstance,ascribingvaluetoharminflictedonthesystemoritsusers.

game theory based consensus learning in unidirectional rings

909

Altruisticnodesfollowtheexactprotocol. Theyrepresent“seednodes”inrealsystem.Rationalnodes

areself-interestedandseektomaximizetheirbenefitaccordingtoaknownutilityfunction.Theydeviate

fromtheirsuggestedprotocolonlyifindoingso,givesthembetterutilityinparticipatinginthesystem.

(Aiyeretal.2005)discussedBARmodelandprotocolsthatcantolerateByzantinebehaviourswhenthe

protocolisnotfollowed,misconfiguredorbroken. Rationalbehaviourofanagentwhenselfishprocessor

deviates from the designer’s specification to increase their expectedutility outcome. Amidst this, they

reduced the complexity of a general three-level architecture model under BAR to get optimal

building services. They described the first ever backup service to condone Byzantine processors and

the number of unbounded rationalusers.

(Chandra et al. 1996) introduced a fault detection algorithm which is based on the study of an actual

RAIN system. RAIN stands for Reliable Array of Independent Nodes which is implemented to

recovering faults using distributed checkpoint. Other than this they designed a fault tolerantdatabase

and distributed web services. For a system to be fault tolerant, the system must monitor each node

independentlyandkeeptrackonfailuresandneighbouringprocessorsmusttakeactionsiftheirsuccessor

orpredecessorareatfault.Theyspecificallymakeuseoftwoapproachestohelpdetectfailureandtake

necessary actions forrecovery.

The first approach is group membership that provides coalition of processors which work in unison

to detect their neighbour’s status (Lysyanskaya et al. 2006). The second approach is that this paper is

based on i.e., leader election. Leader election protocol brings an inconsistency in global state. Tasks

like consensus, load balancing, resource allocation, etc can be solved once a leader has been elected

(Abraham et al. 2013). But even these approaches have some problems related to them.Both of them

require some kind of agreement during the presence of failure. One should keep in mind the

impossible result that (Fang and Chunsheng 2011) which showed that it is impossible to get

consensus in an asynchronous network if there exist a single silent failure. (Chandra et al. 1996)

discussed that we can remove weakly specified group members that are prone to system failure

sooner than other healthyagents.

3.3 SimilarAlgorithms

(Bakshi et al. 2011) presented a leader election algorithm in asynchronous bidirectional ring based on

probabilistic approach. The final election of leader is done through random identity selection, to

detect identity clashes they used hop counters and round modulo 2. The validation and verification

are donebybuildingthemodel,final-state,sothattheprobabilityofelectedleadershouldbe1.Theirwork

isanextendedstudyoftheleaderelectionalgorithmin(Changetal.1979).Theyrequiredtohaveunique

identities for each of the processor and that it should be ordered. Their algorithm elects a leader with

the largest identity available in the network. This may give rise to adversarial attack of the

processors. Processors can deliberately choose a highest number and confirms it to be itsID.

(Bauk and Sung Uoon 2005) designed a leader election algorithm for unidirectional ring where the

size of the ring was known and it was similar to the leader election model of (Abraham et al. 2006).

(Fischer et al. 2006) presented a self-stabilizing leader election algorithm for unidirectional ring

where the size of the ring was unknown which, at the end, returns the same leader to each agent.

Aftercarefulconsiderationofthisproblem,weconcludethatitishelpfultouseamediatorinelecting

Radha Rani , Mayank Kumar Singh , Dharmendra PrasadMahato

910

aleaderinnetwork.Buttakingintoaccounts,athird-partymediatorwillincreasethechancesofdata leak and

reduced security. Basically, giving authority to an agent, who is not participating in the leader

election, to elect leader among various agents is risky. Hence, there has been studies on whether a

problem that can be solved with a third-party mediator can be converted to be solved using cheap-

talk, withouttheconcernofamediator.Themethodofusingamediatorhasgainedcurrencyintherecentyears

sinceitcanbeusedtosolvemanydistributedcomputingproblems.Forexample,byzantineagreementis

achievableusingamediatorevenifhalfoftheagentsarecorrupted.Eachagentcantellthemediatortheir ID’s

and their preference to who should be the leader, and the mediator chooses the majority. We focus on

this type of problem, i.e., to study the result of the protocol in (Abraham et al. 2013), and formulate

an enhanced version ofit.

4. ProblemStatement

Inthispaper,wefocusontheproblemofconsensusbyleaderelectioninasynchronoussettings.Wesay

thatadistributedsystemisasynchronousifthereisnotimelimittoexecuteasteplikemessagedelivery,

clockdrift,etc.Ithassimplesyntax;theportabilityoftheapplicationsbasedonthismodeliseasierthan

assumingtimeconstraints;andpracticallywecansaythatunexpectedloadoveraspecificprocessorisa

specialityofsysteminasynchrony.Theprotocolbreaksifevenasinglenodefailstofollowtheprotocol in

unidirectional or bidirectional ring. However, there are some chances of recovery when protocol is

appliedinacompletelyconnectednetwork.Thefaultyagentscanbereducedbyapplyingthealgorithm

designed in the failed areas which can detect failures consistently in distributed system. The

processors should be able to differentiate between a fault-free population and faultyone.

5. Acceptance-Based-a-Lead uni A Robust FileProtocol

In this section, we will be discussing about the enhanced approach of leader election which is an

extendedversion of A-Leaduniby (Abraham et al. 2013). This protocol is expected to be resilient to

O(√𝑛)

Inthissection,wewillbediscussingabouttheenhancedapproachofleaderelectionwhichisanextended

dishonest processors. We extend the A-Leaduniprotocol and add an “acceptance” stage which

keepsall the processors in synchrony. We apply “dashing of data” technique where the adversarial

agents waitto receive all the messages from other agents before sending its own message. In this way,

the adversarial

processorsminimizethenumberofmessagesbeingtraversedalongthering.Themajordrawbackthatwe

observed in A-Leaduniis that during the execution of the protocol, all the processors

shouldnecessarily be in synchrony or else the honest processors can detect the fault and abort the

protocol. We know that in A-Leaduni, theprocessors keep sending the secret messages till all the

processors has received the IDs of every other processor in the ring. The processors do this by

keeping the number of times they

havesentandreceivedIDsfromtheirrespectivepredecessorprocessor.Thisissimulatedusing“circular trip”

starting and ending from and to the originator. In each circular trip, every processor receives a secret

message from its predecessor and transfer the secret message (also known as the ID of previous

processor) that it received in the precedingtrip.

game theory based consensus learning in unidirectional rings

911

To understanditsimply, letusassumeTransmiti,tobethetotalnumberofsecretmessages there are no

adversaries in the ring then we have, | Transmiti - Transmitj ≤ 1 |. The equation already sent by a

processor i (be it honest or adversarial processor). If we consider a case where confirms that all the

processors are in synchrony. Since, we are focused on solving the leaderelection problem in

asynchronous ring network, our attack, invasion of adversarial processor, makes use of the

disadvantage of asynchronous settings in distributed system and de-synchronize non-adversarial

processors. The crucial remark that can be made here that enabled the attack to occur is the difference

between | Transmiti - Transmitj | is considerably substantial as compared to longest genuine

portion, H1. This is the major reason how an adversarial processor Aicomes to know about all the

secret messagesbeforechoosingitsownmessage. The“acceptance”stageworksinthefollowingmanner:

Every processor needs to choose a uniformly distributed “acceptance value”, aiϵX where X = n2.

Thedecisionforhowmanynumberofcirculartripsarerequiredwillbebasedonthetotalnumberof processors

participate for the leader election present in the ring.

Each processor will be given the opportunity to validate the acceptance value of other processors.

Only one processor will be allowed to become the acceptor in a particular circular trip. That is, in

theithtrip,ithprocessorwillbecometheacceptorandsendsitsacceptancevalue,ai.Alltherestof the

processors will receive and send this acceptance value immediately to their neighbouring processor

with no delay in the ring.

No other processor can save this acceptance value or send its own value in the ring unless its his turn

to do so. When all the processors have transferred the value, the value will be checked by the trip’s

validator that whether it is the same acceptance value that he sent and committed to in the beginning.

The acceptance value is not same as the secret message that every processors send. We distinguished

both the values for different purposes. The secret message is used

tocalculatethefinalresult,thatis,whichprocessorshouldbeelectedasaleaderandacceptancevalue

isusedtovalidatewhetherornotisthereanyprocessortryingtomanipulatetheincomingmessages.

Inotherwords,weuseacceptancevaluetokeepalltheprocessorsinsynchrony. Thesecretmessages are the

random values that each processor, i selects to send. The final result will be calculate ∑ 𝑚𝑛
𝑖=1 i(mod

n).

The vital distinguished design behind the enhanced protocol is to force all the processors to be more

synchronized than before. Since, there are some drawbacks in synchronization settings like small

informationcanmovefaster,sothemethodusedtoprovepreviousresiliencefails.Therefore,inorderto

copeupwiththisproblem,thenewprotocolmakesuseofrandomfunctionthatgeneratesrandomvalues for

each processor. Hence, adversarial processors receive lots of information before getting biased to

calculate the output. Therefore, we prove that there is a need to send an enormous amount of

messages by an adversarial processor before knowing about the secret messages of otherprocessors.

Radha Rani , Mayank Kumar Singh , Dharmendra PrasadMahato

912

Fig. 2. Secret Sharing Protocol

If we look back on the A-Leaduniprotocol, it was based on Shamir’s secret sharing sub-protocol. Our

protocol is based on the similar paradigm which deals with sharing secret messages along the ring

and wait to receive an acknowledgement from the receiver.

Algorithm 1 Acceptance-based-A-LEADuni

Phase 1 – For originator processor 1

1: Initially select an acceptance value a1,tand a secret message mi, t = mi, where t is the trip number.

2: Send the secret message in the ring and wait for the secret message m1,nt+1(modn)

3: if it is the first trip, i.e. t = 1,

then Send its acceptance value in the ring and wait to receive it at the end of the trip to validate the

synchrony of processors.

4: ifitisnotthefirsttrip

then forwardimmediatelytheincomingacceptancevaluetothesuccessive processor. Finally, forward the

remaining secret messages m1,nt+1(modn)

Phase 2 – For standard processor i

5: Choose a secret message mi, i = miand an acceptance value ai,t=ai

6: Since it is a standard processor, it will receive the secret message m1,nt+1(modn) and then it will

send the message stored in the bufferm1,nt+1(modn)

7: if The value of trip number, t is equal to i i.e., the ithprocessor

game theory based consensus learning in unidirectional rings

913

then send theacceptance value ai,tand wait to receive it at the end of the trip to validate the synchrony

of processors.

8: if They are not equal

then forward immediately the incoming acceptance value to the successiveprocessor.

At first, the originator processor 1 chooses a random secret message m1 and an acceptance value a1.

Using Shamir’s secret sharing protocol send the secret message and acceptance value {m1} and {ai}

to every processor in the ring. Foraprocessoriitreceivesmi,1,...,mi,n,ai,1,...,ai,n.Thesevaluesare value

with the one that it sent at the beginning of the trip. If ai,j ≠ aithe processor aborts the protocol

receivedalternativelyandnotduringthesametrip. Eachprocessorthenverifiestheincomingacceptance by

giving output =NULL.

Inourmodel,weassumethattheprocessorsareconsecutivelyplacedinanincreasingorderoftheir IDs.

However, this arrangement can be changed according to the need. Our protocol works even when

theprocessorsarelocatedrandomlyinthering.WeprovethatSync-A-Leaduniisareliableprotocol

byshowingthatadversariescannottransferlargeamountofinformationamongthemselveswhichisthe

crucial step for them to know the secret messages of every processor and bias the outcome. We apply

a random function R instead of the summation function to calculate the final result/output. To stop

the adversaries from misusing the acceptance stage for their own benefit, we apply the random

function to both secret message and acceptance value stage so that even if the processors calculate the

partial sum of the secret messages during the execution of the protocol, they will not be able to bias

the result of random function at the end that determines a fair leader for the asynchronousring.

6. Results

GameTheoryandDistributedSystemproblemsgohandinhand. Bothstriveindeterminingthebest possible

outcome for a player/processor in a game/network.We studied the drawbacks of A-Leaduni protocol

and proposed an enhanced version of it resilient to O√nadversaries and design a new protocol after

some modifications. Our protocol performedwell even in the presence of invasion of adversarial

processors. Although there were few assumptions in out model, they helped us in overcoming the

drawbacks of A-Leaduni and design a new protocol after some modifications.

We can say that our protocol used game theoretic approach as a tool to define how leaders are elected

and also how each processor comes down to electing only a single leader among various candidates.

Lastly, we can say that with the help of our model, we managed to keep all the processors in

synchrony and that they follow a solution based approach where they will choose to have any leader

rather than having no leader at all.

7. Conclusion and FutureScope

Our protocol performed well even in the presence of invasion of adversarial processors.

Althoughthere were few assumptions in our model, they helped us in overcoming the drawbacks of

A-Leaduniand design a new protocol after some modifications. We can say that our protocol used

game theoretic

Radha Rani , Mayank Kumar Singh , Dharmendra PrasadMahato

914

approachasatooltodefinehowleadersareelectedandalsohoweachprocessorcomesdowntoelecting only a

single leader among various candidates. Lastly, we can say that with the help of our model, we

managed to keep all the processors in synchrony and that they follow a solution based approach

where they will choose to have any leader rather than having no leader atall.

Therearemanyassumptionsonwhichourmodelisbasedupon.Inthissection,wediscussaboutthe

variousassumptions and behavior of processors based on these assumptions that helped us designing

the improved version of the protocol in (Abraham et al. 2006). Below are some of the questions that

arises when we make thoseassumptions:

• In (Abraham et al. 2006), processors do not know the size or IDs of other processors in the ring.

So they are transferred during the wake-up phase and then the processors decide the direction for

message passing. We assumed that we don’t need a wake-up phase because our invasion of

adversaries do not affect the wake-up phase nor it tries to deviate from the designated protocol.

Hence, we assume that processors already know about the size and IDs of each processor. Our

invasion protocol can be extended to execute honestly, the wake-up phase of the protocol in

(Abraham et al. 2006).However, we cannot say that adversaries will never abuse this phase.

Hence, the question still remains open fordiscussion.

• For rational agents, we defined that the output of the given protocol will be [n] ∪ [NULL]. But the

problem still revolves around the fact when IDs are unknown. Simply put, it is still difficult to

find a resilient FLE protocol when the IDs are unknown. To understand this, let’s consider an

example. Let the IDs are from huge sample space ∑. Now, the expected utility of a processor, i

will be, EU: ∑∪ [𝑁𝑈𝐿𝐿] → [0,1].This function will be considered rational when EUi[NULL]=0.

Consider the protocol in (Abraham et al. 2006) to be P having the EUP[∑].Although, an

adversarial agent may or may not obey the protocol and abuse to have EUA[∑]=
𝑘

𝑛
.This means that

in a unidirectional ring, for k adversaries with k > 1, there does not exist a k resilient protocol.

• In order to find a solution to this problem, what we can do is define an ϵ-k-unbiased protocol for

all the IDs. Let the deviation from every dishonest processor be Ɐx ϵ ∑ : Pr(output = x) ≤ ϵ+
1

𝑛
 .

Hypothetically, we proved that A-Leaduni and Acceptance based-A-Leaduni are ϵ - k – unbiased for

k and ϵ.

• Amongvariouschallengesthatwefacedtodesignaninvasionofadversarialprocessors,wetackle a

particular problem which is an adversarial coalition can bluff the honest set into believing that

there exist an Originator processor in every set. Considering the protocol discussed in (Abraham

et al. 2006) and (Abraham et al. 2013), the processors tend to know the IDs of every other

processor during the wake-up phase by exchanging and selecting the lowest ID among them to be

the Originator. No honest set can have two Originator processors as each processor receives a

setofIDswhichisusedtoidentifyifalltheprocessorsarehonestandthatnoIDisrepeated more

thanonce.However,anadversarialcoalitioncanabusethisphasebyhidingthehighestIDamong

honestprocessorsh Є Hiand change it to 0 before forwarding it to the next set Hj, j ≠i.The

adversary can use this highest ID to set it for itself.

game theory based consensus learning in unidirectional rings

915

References

1. Abraham,Ittaiand Dolev, DannyandGonen,RicaandHalpern,JoeDistributedcomputingmeets game theory: robust

mechanisms for rational secret sharing and multiparty computation, Proceedings of thetwenty-

fifthannualACMsymposiumonPrinciplesofdistributedcomputing,53–62,2006.

2. Abraham, Ittai and Dolev, Danny and Halpern, Joseph Y.Distributed protocols for leader election: A game-theoretic

perspectiveInternational Symposium on Distributed Computing 61–75.

3. Afek, Yehuda and Ginzberg, Yehonatan and Landau Feibish, Shir and Sulamy, Moshe, Distributed computing

building blocks for rational agents Proceedings of the 2014 ACM symposium on Principles of distributed

computing406–4152014.

4. Aiyer,AmitanandSandAlvisi,LorenzoandClement,AllenandDahlin,MikeandMartin,Jean-Philippe and Porth, CarlBAR

fault tolerance for cooperative servicesProceedings of the twentieth ACM symposium on Operating

systemsprinciples45–582005.

5. Ajtai,MiklósandLinial,NathanTheinfluenceoflargecoalitions,Combinatorica,132129–1451993Springer.

6. Andrychowicz,MarcinandDziembowski,StefanandMalinowski,DanielandMazurek,LukaszSecure

multipartycomputationsonbitcoin2014IEEESymposiumonSecurityandPrivacy443–4582014 IEEE.

7. Bakhshi, Rena and Endrullis, Joerg and Fokkink, Wan and Pang, JunFast leader election in anonymous rings with

bounded expected delayInformation Processing Letters11117864–8702011Elsevier.

8. Bar-Joseph,ZivandKeidar,IditandLynch,NancyEarly-deliverydynamicatomicbroadcastInternational Symposium on

DistributedComputing1–162002Springer.

9. Bauk, SungUoon Revisiting the election problem in asynchronous distributed systemsInternational Workshop on

Advanced Parallel Processing Technologies141–1502005Springer.

10. Boppana, Ravi B and Narayanan, Babu OPerfect-information leader election with optimal resilienceSIAM Journal on

Computing 29 4 1304–13202000SIAM.

11. Chandra, Tushar Deepak and Toueg, SamUnreliable failure detectors for reliable distributed systemsJournal of the

ACM (JACM) 432225–2671996ACM New York, NY, USA.

12. Chang, Ernest and Roberts, RosemaryAn improved algorithm for decentralized extrema-finding in

circularconfigurationsofprocessesCommunicationsoftheACM225281–2831979ACMNewYork, NY,USA.

13. Clementi,AndreaandGualà,LucianoandProietti,GuidoandScornavacca,GiacomoRationalfair consensus in the gossip

model 2017 IEEE International Parallel and Distributed Processing Symposium(IPDPS)163–1712017IEEE.

14. Coccoli, Andrea and Bondavalli, Andrea and Simoncini, LucaConsensus in asynchronous distributed systemsProc.

of the 5th Int. Conf. on Integrated Design and Process Technology (IDPT’00)2000Citeseer.

15. Fang,ChunshengNovelFrameworksforMiningHeterogeneousandDynamicNetworks2011University ofCincinnati.

16. Fischer, Michael and Jiang, HongSelf-stabilizing leader election in networks of finite-state anonymous

agentsInternational Conference On Principles Of Distributed Systems 395–4092006Springer.

17. Gordon,SDovandKatz,JonathanRationalsecretsharing,revisitedInternationalConferenceonSecurity and Cryptography

forNetworks229–2412006Springer.

18. Heller, YuvalMinority-proof cheap-talk protocol, Games and Economic Behavior2010.

19. Hsieh,Hui-ChingandChiang,Mao-LunAnewsolutionfortheByzantineagreementproblemJournal of Parallel and

DistributedComputing71101261–12772011Elsevier.

20. Izmalkov, Sergei and Lepinski, Matt and Micali, SilvioPerfect implementationGames and Economic

Behavior711121–1402011Elsevier.

21. Lamport,LeslieandShostak,RobertandPease,MarshallTheByzantinegeneralsproblemConcurrency: the Works of

LeslieLamport203–2262019.

22. Lepinski, Matt and Micali, Silvio and Peikert, Chris and Shelat, AbhiCompletely fair SFE and coalition-safe cheap

talkProceedings of the twenty-third annual ACM symposium on Principles of distributedcomputing1–102004.

23. Lysyanskaya, Anna and Triandopoulos, NikosRationality and adversarial behavior in multi-party computationAnnual

International Cryptology Conference180–1972006Springer.

24. Moses, Yoram and Dolev, Danny and Halpern, Joseph YCheating husbands and other stories: a case study of

knowledge, action, and communicationDistributed computing13167–1761986Springer.

25. Pease, Marshall and Shostak, Robert and Lamport, LeslieReaching agreement in the presence of faultsJournal of the

ACM (JACM)272228–2341980ACM New York, NY, USA.

26. Saks,MichaelArobustnoncryptographicprotocolforcollectivecoinflippingSIAMJournalonDiscrete Mathematics22240–

Radha Rani , Mayank Kumar Singh , Dharmendra PrasadMahato

916

2441989SIAM.

27. Vida,PéterandForges,FrançoiseImplementationofcommunicationequilibriabycorrelatedcheaptalk: The two-player

caseTheoretical Economics8195–1232013Wiley OnlineLibrary.

28. Zuckerman, DavidRandomness-optimal sampling, extractors, and constructive leader electionProceedings of the

twenty-eighth annual ACM symposium on Theory of computing286–2951996.

