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Abstract:This paper discusses the game theory based consensus learning in unidirectional rings. 

Distributed 

systemfindstheambiguousprocessorsorrationalagentsinthesamewayasgametheoryfindsambiguous 

players. The rational agents are those processors which deviate from the protocol and instead they 

follow their own path in order to fulfil their utility. In a bidirectional rings, the rational agents can be 

detected easily by each neighbourhood agents. But, in unidirectional case, the rational agents cannot 

be easily detected. This limits the honest agent to detect incorrect IDs sent by adversarial agents. So, 

our main focus is on the asynchronous unidirectional ring. We study the shortcomings of the protocol 

presentedin(Abrahametal.2013)and(Afeketal.2014).Inthispaper,wepresentanimprovedversion 

oftheprotocolbasedonGameTheorywhichismoreresilienttothepreviousone,byapplyinginvasion of 

adversarial processors and by proving it to be resilient in presence ofadversaries. 

Keywords: Consensus problem; Leader Election; Game Theory; Unidirectional Rings. 

1. Introduction  

Obtaining consensus in distributed computing on some data value is a fundamental problem to 

achieve overall reliability. In distributed system, the all components cannot be fault free. Therefore, 

all the components should agree on some data or state to guarantee the reliability of the system. 

Consensus can be understood as an agreement between the components of the distributed system on 

a data value or component. When the consensus is achieved on a component, then this mechanism is 

known as consensus mechanism based on leader election. 

Consensus in distributed system is to elect a leader in an anonymous networks. Message passing in 

this network does not have a fixed time to send or receive the messages. There is no guarantee that 

the message will be received on time or reach to its destination. Therefore, some components may 

become rational components in the system and they start their own paths. 

In this paper, we incorporate game theory approach to maximize its Expected Utility. In this case, the 

utility will be to choose itself as a leader or to form a coalition of agents to elect a leader among 
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themselves. The implementation of this algorithm is done on unidirectional ring networks. 

Therestofthispaperisorganizedasfollows. SectionIIbrieflydescribesthebackgroundinformation. 

Section III presents the fundamentals of game theory and game models that are commonly used in 

blockchain. Section IV discusses applications of game theory for security issues in blockchain. 

Section 

Vpresentsapplicationsofgametheoryfortheminingmanagementinblockchain.SectionVIdiscusses 

applications of game theory atop blockchain platforms. Section VII outlines challenges and future 

research directions. Section VIII summarizes and concludes thepaper. 

2.BackgroundInformation 

2.1 Consensus 

Designing and Implementation of a fault tolerant distributed system is considered as one of the 

complex endeavours in the last few years. The verification of these models is the next challenge that 

we face after implementation. Nowadays, several new techniques have been developed to identify 

and simplifythesetasks.Therearetwotechniqueswhicharewidelyusedforthispurpose. 

TheyareAtomic Broadcasting and Consensus. In distributed system, simple definition of consensus is 

agreement. It is a task to get all the processors in a network to agree on some specific protocol or 

condition based on the votes of each processors. It allows each processor to reach to a common 

conclusion and result, where each processor may or may not have similar inputs. Many problems that 

arise in distributed system can be solved through such as leaderelection. 

2.2 Unidirectional RingNetwork 

Inaunidirectionalringnetwork as shown in 

Fig.1,thedataflowsinonlyonedirectioneitherclockwiseoranti-clockwise and such a network is called a 

half-duplex network. In a bidirectional ring network, each agent can communicate with its 

predecessor and successor as well. This allows each agent to detect faulty agents in its neighborhood 

by continuously matching the information sent by its neighbor agents in previous rounds. However, 

this is not the case in unidirectional ring networks. The message is passed in only single direction 

and that direction is decided beforehand. This limits the honest agent to detect incorrect 

IDssentbyadversarialagents.So,ourmainfocusisonasynchronousunidirectionalringnetwork. 
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2.3 Game Theory in DistributedSystem 

Game theory approach has been a better option for solving the complicated problems in distributed 

system. In game theory concept, there are no good players or bad players, but rational players make 

moves in selfish manner by assigning payoffs (or utilities) to outcomes. With this type of play with 

rational players, game theory-predictions consists of several solution concepts considering 

theoutcome of a game with rational players. In selfish type of play in game theory, the players make 

bestresponsesto their beliefs. But, in the team, all the players are unknown what the others players’ 

strategies are. 

Letusassumeamulti-partygamemodelwheretherearennumberofparticipantsandnoneofthem 

arehonest.Theseparticipantsorplayersarereferredaseitherrationaloradversarial.Therationalplayers 

arethosewhoactintheirselfishinteresttomaximizetheirutility.Adversarialplayersarethosewhoact 

arbitrarily (Lysyanskaya et al.2006). 

2.4 Assumptions 

In our protocol, we assume that each processor knows about their IDs as well as the IDs of the 

processors present in the network.  This assumption is necessary because getting to know   the 

information about each and every processor during the execution of the protocol is trivial in electing 

a leader. Hence, we created a wake-up phase which runs before the actual protocol and facilitates 

each processor with the information of other processors. Once each processor knows about every 

other processor, our main protocol starts. Although, we should not deny the fact that knowing the IDs 

of other processors may have many other advantages over not knowing about it atall. 

Thefirstadvantageisthateachprocessorgetstoknowaboutthetotalnumberofprocessorspresent 

inthering.Thisinformationshouldnecessarilybeavailableorelsetheyprotocolwouldneverstop.The 

processors may not know when to stop sending messages to their neighbouring processors if 

thereisnotstoppingconditionsuchaswhenthelastprocessorreceivesthefinalmessage,nonew 

messagesshouldbesentuntiltheinitiatorstartsendingagain.Thesecondadvantageofthisisthat 

atthetimeofsendingtheirIDstoitsneighbours,processorswillreceiveIDsfromotherprocessors 

aswell.Hence,theyusethisinformationtoverifythattheIDssentbyotherprocessorsisthesame id that they 

sent during wake-upphase. 

We assume that the agents are rational. If we assume that each processor prefers to have a leader 

rather than having no leader at all and that they are indifferent of who becomes the leader then any 

leader election algorithm can be applied. But if there exist a single rational agent among the 

honestagentswhodeviatesfromtheprotocoltogetthemaximumbenefit,thentheseprotocolsfail to perform 

well. If we view the scenario as a formal intuition where all the processors arehonest, 

thenweimplicitlyassumethatinstandarddistributedsettingsallprocessorsfollowthedesignated algorithm. 

But what happens when agents prefer to have different leaders? One of the cases maybe when 

someagentwantshimselftobeelectedasaleaderasitwouldlowerthecostofroutingwithother agents. Here, 

the standard settings of distributed protocol (which assumes that each agent has distinct id, and the 

leader is elected based on thehighest or the lowest id present in the network) fails to work. Thus, our 

major focus being on obtaining a fair Nash Equilibrium, where each processor has an equal 
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probability of becoming a leader. In simple words, the probability that 

someonewillbeelectedasaleadershouldbe1.Butbeforedigginginintothesolutions,weneed to understand 

what Nash equilibrium means in an asynchronoussetting. 

2.5 Advantages 

Indistributedsystem,leaderelectionisanideaofgivingsomespecialpowerstooneoftheprocessors in a 

network which include assigning work, scaling bottlenecks, handling responsibilities of requests in a 

system. It is a powerful tool for reducing operations, reducing coordination, improving efficiencyand 

throughput, simplifying architecture, etc. Leader election provides a centralized way of management 

where a single processor makes decisions suitable for the rest of the processors and the entire system 

itself. Advantages of leader election are asfollows: 

• A leader provides consistency to the clients as it has the power to control the changes that can be 

made to the state of thesystem. 

• Designing a software for one specific processor is much easier than designing different protocols 

for each individual processor. The leader does not care about the conditions of system whether 

working or not at the time of decisionmaking. 

• One of the major advantages of leader election is to reduce partial failures and keeping logs and 

metrics for failure and recovery. If there is one centralized system that takes all the decisions, it 

makes the system easier for humans to thinkabout. 

• Efficiency of a centralized system is better since it can simply circulate the changes need to be 

made rather than building consensus about the changes need to bemade. 

• Asingleleadercanimproveperformanceorreducecostbyprovidingasingleconsistentcacheof data 

which can be used everytime. 

2.6 Disadvantages 

Disadvantages of leader election are as follows: 

• Paradigms like partial deployment, incremental deployment, A-B testing, automatic rollback is 

hard to apply in leader electionsystem. 

• Adversarial attacks of processors may result in disobeying leader’s decision and following their 

own protocols to maximize their optimal expectedutility. 

• Asingleleaderispronetosinglepointfailure.Theentiresystemwillsufferfromunavailabilityif the leader 

itself is failed or fix a faultyprocessor. 

• Iftheleaderitselfisnotfollowingthedesigner’sprotocolanddoingwrongworkandifthereisno 

othernodetocheckforit,thenitcanmakedecisionsfortheprocessorswhichwillbeinfavorof the leader 

and the entire system will have a high blastradius. 
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2.7 Motivation 

In this paper, our motive is to solve the consensus problem based on game theory approach. Here, 

leader election is used because of: 

• Data Consistency: In a bank server system, multiple servers exist in a cloud, but only a single 

server should be responsible for a singlecustomer. 

• Data Replication: If a group of servers decide to replicate files among themselves, they need to 

electaoneserverthatcontainstheprimarycopyofthefilethatwillcommunicatewithotherclient 

machines. 

• Error-Free Transition: In comparison to government elections, sometimes leadercommunicate 

withclientsthathavedifferentkindsofinformationwhichmayormaynotbeunderstoodbyother 

servernodes.So,leadertransformstheinformationsothatitisunderstoodbyallthenodes. 

This paper does not focus on how leader election can be applied using game theory approach, butit 

focuses on how leader election in a unidirectional ring can be made fault tolerant so that it is efficient 

andthatnoothernodedeviatesfromtheprotocol.Thepaperproposessometheoremsandproofstouse game 

theory as a tool to define how leader is elected and that why other nodes get to the conclusion of 

electing that particular node as a leader. Also, it states why no other node (not leader) deviates from 

its decision of choosing a leader rather than beingone. 

3. Relatedwork 

Thereisonestudywhereitisproventhatarandomprotocolcanachieveresiliencetocoalitionoflinear size. 

This means that if the coalitions are linearly dependent to n then the protocol is resilient. This 

wasfoundbyMichealSakswhichisgivenin(SaksandMichael1989).Inthelateryears,Boppana optimal 

resilience.  i.e., resilience to size ( 
1

2
- ϵ).  It is important to note that our approach can be   and 

Narayanan (Boppana et al. 2000) provided a brief proof of this protocol that has approximate   

wellsuitedtodefinetheunderlyingprincipleof(Abrahametal.2013)whichshowsthatitiseasierto design a 

leader election protocol when working under synchronous or completely connected network. 

Forasynchronoussettings,theseprotocolsfailtoperformwellevenifthereisasingleprocessorfailure since 

we cannot identify whether the processor is really at fault or just responding really slowly. They 

alsostatedthatinbidirectionalringnetwork,eachprocessorcansendmessagestoitspredecessoraswell as its 

successor since the ring is bidirectional. This means that if there is a single fault in the network, the 

processors can confirm it by sending the message in the opposite direction from where the fault has 

initiallyoccurred.Theprotocolthatworksforunidirectionalnetworkinsynchronoussettingswillwork 

sameasinbidirectionalnetworkinsynchronoussettings.Theonlythingneedstochangeisthedirection of the 

message transfer at the time of initiation. If there is no agreement among the processors on the 

orientationofmessagepassingthentheinitiatorprocessorcanchoosethedirectionarbitrarilyandrestof 

theprotocolwillbeexecutedasdesigned;alltheotherprocessorswillcontinuetoforwardtheirmessages in 

the same direction. If any of the processor registers its buffer with ‘null’, then the protocol will fail 

and no leader will be chosen. Since this approach reduces the adversarial attacks on the protocol, 

itwill not be fair in terms of getting an elected leader. If the processor keeps on deviating from the 
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protocol, no leader will be chosen at all. That is why, we assume in our model that each processor 

follows a solution-drivenapproach. 

3.1 Secret sharing and MultipartyComputation 

Secret Sharing method: A method to divide a secret into parts, called shares that are distributed 

among a group of agents such that the secret can only be reconstructed when an authorized group of 

agents combine their shares. Combinations of shares of unauthorized agents do not reveal the secret. 

Multipartycomputationmethod:Insecuremulti-partycomputation(MPC),asetofparties,eachhaving 

asecretvalue,wanttocomputeacommonfunctionovertheirinputs,withoutrevealinganyinformation 

abouttheirinputsotherthanwhatisrevealedbytheoutputofthefunction.In(Abrahametal.2006)they 

mathematicallyprovedthatifthereisacoalitionCofsizekandallthemembersofthecoalitiondeviates 

fromtheprotocolthennomembercandobetterinelectingaleaderamongthem.Fewotherthingsother 

thanthiswasthattheadversarialagentscanattackandgetaleaderelectediftheypreferasolutiondriven 

approach, which is exactly what we assumed in our model. In solution driven approach the 

processors tend to elect a fair leader rather than having no leader at all.   Finally, Abraham et al.  in 

(Abraham   et al. 2006) discussed the mediator technique and simulated games with mediator by 

games without 

mediator.Theirmaincontributionliesontheimprovementoftheresultsby(Andrychowiczetal.2014) 

wheretheyusedrationalitytostickoutfromthetraditionalmethodof‘good-guy’‘bad-guy’modelwhich 

isastandarddistributedcomputingcommunitymodel. (Andrychowiczetal.2014)providedamodelthat 

hadaresultwith1-resilientequilibrium.(Abrahametal.2013)improvedthisresultto(n-1)resilience. 

Thismeansthatifanymultipartycomputationiscarriedoutbyatrustedmediator,thenitcanalsobe done 

without a mediator with a high resilience output. Their result gives a deeper understanding of cheap 

talk where a model can be built to securely simulate resilient equilibrium without the use of a trusted 

third party mediator. The motivation to do so is because there is a possibility that we may not find a 

trusted third party all the time. In (Izmalkov et al. 2011) and (Lepinski et al. 2004) theoretically 

described two ways to actually get an equilibrium in a game which is converted from using trusted 

mediatortonotrustedmediatoratall.Theyreliedontwoverystrongfundamentalsknownasballotbox 

andenvelope.Thesefundamentalsareundevelopedtobeimplementedinamodelyet.(Vidaetal.2013) 

proposedamodeltosimulateNashequilibriumwiththehelpofatrustedmediator.Heusedthestrategy called 

‘punishing the player’ which threatens the players who deviate from the protocol by notelecting 

anyprocessorasaleaderiftheycometoknowsomeoneisnotfollowingtheprotocol.Later(Hellerand 

Yuval2010)extendedBenPorth’sresulttomodelthisapproachinacoalition.Theyshowthatifstandard 

assumptionsaremadeincryptography,anequilibriumofagamecanbesimulatedwithamediatorsuch that 

players use punishmentstrategy. 

3.2 BARModel 

BAR Model (Byzantine, Altruistic, Rational): Byzantine nodes may deviate arbitrarily from the 

suggestedprotocolforanyreason.Theymaybebroken(e.g.,misconfigured,compromised,malfunctioning, 

ormis-programmed)ormayjustbeoptimizingforanunknownutilityfunctionthatdiffersfromtheutility 

functionusedbyrationalnodes—forinstance,ascribingvaluetoharminflictedonthesystemoritsusers. 
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Altruisticnodesfollowtheexactprotocol. Theyrepresent“seednodes”inrealsystem.Rationalnodes 

areself-interestedandseektomaximizetheirbenefitaccordingtoaknownutilityfunction.Theydeviate 

fromtheirsuggestedprotocolonlyifindoingso,givesthembetterutilityinparticipatinginthesystem. 

(Aiyeretal.2005)discussedBARmodelandprotocolsthatcantolerateByzantinebehaviourswhenthe 

protocolisnotfollowed,misconfiguredorbroken. Rationalbehaviourofanagentwhenselfishprocessor 

deviates from the designer’s specification to increase their expectedutility outcome. Amidst this, they 

reduced the complexity of a general three-level architecture model under BAR to get optimal 

building services. They described the first ever backup service to condone Byzantine processors and 

the number of unbounded rationalusers. 

(Chandra et al. 1996) introduced a fault detection algorithm which is based on the study of an actual 

RAIN system.  RAIN stands for Reliable Array of Independent Nodes which is implemented   to 

recovering faults using distributed checkpoint. Other than this they designed a fault tolerantdatabase 

and distributed web services. For a system to be fault tolerant, the system must monitor each node 

independentlyandkeeptrackonfailuresandneighbouringprocessorsmusttakeactionsiftheirsuccessor 

orpredecessorareatfault.Theyspecificallymakeuseoftwoapproachestohelpdetectfailureandtake 

necessary actions forrecovery. 

The first approach is group membership that provides coalition of processors which work in unison 

to detect their neighbour’s status (Lysyanskaya et al. 2006). The second approach is that this paper is 

based on i.e., leader election. Leader election protocol brings an inconsistency in global state. Tasks 

like consensus, load balancing, resource allocation, etc can be solved once a leader has been elected 

(Abraham et al. 2013). But even these approaches have some problems related to them.Both of them 

require some kind of agreement during the presence of failure.   One should keep    in mind the 

impossible result that (Fang and Chunsheng 2011) which showed that it is impossible to get 

consensus in an asynchronous network if there exist a single silent failure. (Chandra et al. 1996) 

discussed that we can remove weakly specified group members that are prone to system failure 

sooner than other healthyagents. 

3.3 SimilarAlgorithms 

(Bakshi et al. 2011) presented a leader election algorithm in asynchronous bidirectional ring based on 

probabilistic approach. The final election of leader is done through random identity selection, to 

detect identity clashes they used hop counters and round modulo 2. The validation and verification 

are donebybuildingthemodel,final-state,sothattheprobabilityofelectedleadershouldbe1.Theirwork 

isanextendedstudyoftheleaderelectionalgorithmin(Changetal.1979).Theyrequiredtohaveunique 

identities for each of the processor and that it should be ordered. Their algorithm elects a leader with 

the largest identity available in the network. This may give rise to adversarial attack of the 

processors. Processors can deliberately choose a highest number and confirms it to be itsID. 

(Bauk and Sung Uoon 2005) designed a leader election algorithm for unidirectional ring where the 

size of the ring was known and it was similar to the leader election model of (Abraham et al. 2006). 

(Fischer et al. 2006) presented a self-stabilizing leader election algorithm for unidirectional ring 

where the size of the ring was unknown which, at the end, returns the same leader to each agent. 

Aftercarefulconsiderationofthisproblem,weconcludethatitishelpfultouseamediatorinelecting 
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aleaderinnetwork.Buttakingintoaccounts,athird-partymediatorwillincreasethechancesofdata leak and 

reduced security. Basically, giving authority to an agent, who is not participating in the leader 

election, to elect leader among various agents is risky. Hence, there has been studies on whether a 

problem that can be solved with a third-party mediator can be converted to be solved using cheap-

talk, withouttheconcernofamediator.Themethodofusingamediatorhasgainedcurrencyintherecentyears 

sinceitcanbeusedtosolvemanydistributedcomputingproblems.Forexample,byzantineagreementis 

achievableusingamediatorevenifhalfoftheagentsarecorrupted.Eachagentcantellthemediatortheir ID’s 

and their preference to who should be the leader, and the mediator chooses the majority. We focus on 

this type of problem, i.e., to study the result of the protocol in (Abraham et al. 2013), and formulate 

an enhanced version ofit. 

4. ProblemStatement 

Inthispaper,wefocusontheproblemofconsensusbyleaderelectioninasynchronoussettings.Wesay 

thatadistributedsystemisasynchronousifthereisnotimelimittoexecuteasteplikemessagedelivery, 

clockdrift,etc.Ithassimplesyntax;theportabilityoftheapplicationsbasedonthismodeliseasierthan 

assumingtimeconstraints;andpracticallywecansaythatunexpectedloadoveraspecificprocessorisa 

specialityofsysteminasynchrony.Theprotocolbreaksifevenasinglenodefailstofollowtheprotocol in 

unidirectional or bidirectional ring. However, there are some chances of recovery when protocol is 

appliedinacompletelyconnectednetwork.Thefaultyagentscanbereducedbyapplyingthealgorithm 

designed in the failed areas which can detect failures consistently in distributed system. The 

processors should be able to differentiate between a fault-free population and faultyone. 

5. Acceptance-Based-a-Lead uni A Robust FileProtocol 

In this section, we will be discussing about the enhanced approach of leader election which is an 

extendedversion of A-Leaduniby (Abraham et al. 2013).  This protocol is expected to be resilient to 

O( √𝑛 ) 

Inthissection,wewillbediscussingabouttheenhancedapproachofleaderelectionwhichisanextended 

dishonest processors. We extend the A-Leaduniprotocol and add an “acceptance” stage which 

keepsall the processors in synchrony. We apply “dashing of data” technique where the adversarial 

agents waitto receive all the messages from other agents before sending its own message. In this way, 

the adversarial 

processorsminimizethenumberofmessagesbeingtraversedalongthering.Themajordrawbackthatwe 

observed in A-Leaduniis that during the execution of the protocol, all the processors 

shouldnecessarily be in synchrony or else the honest processors can detect the fault and abort the 

protocol. We know that in A-Leaduni, theprocessors keep sending the secret messages till all the 

processors has received the IDs of every other processor in the ring. The processors do this by 

keeping the number of times they 

havesentandreceivedIDsfromtheirrespectivepredecessorprocessor.Thisissimulatedusing“circular trip” 

starting and ending from and to the originator. In each circular trip, every processor receives a secret 

message from its predecessor and transfer the secret message (also known as the ID of previous 

processor) that it received in the precedingtrip. 
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To understanditsimply, letusassumeTransmiti,tobethetotalnumberofsecretmessages there are no 

adversaries in the ring then we have, | Transmiti - Transmitj ≤ 1 |. The equation   already sent by a 

processor i (be it honest or adversarial processor). If we consider a case where confirms that all the 

processors are in synchrony.  Since, we are focused on solving the leaderelection problem in 

asynchronous ring network, our attack, invasion of adversarial processor, makes use of the 

disadvantage of asynchronous settings in distributed system and de-synchronize non-adversarial 

processors. The crucial remark that can be made here that enabled the attack to occur is the difference 

between | Transmiti - Transmitj | is considerably substantial as compared to longest genuine 

portion, H1. This is the major reason how an adversarial processor Aicomes to know about all the 

secret messagesbeforechoosingitsownmessage. The“acceptance”stageworksinthefollowingmanner: 

Every processor needs to choose a uniformly distributed “acceptance value”,    aiϵX where X  = n2. 

Thedecisionforhowmanynumberofcirculartripsarerequiredwillbebasedonthetotalnumberof processors 

participate for the leader election present in the ring. 

Each processor will be given the opportunity to validate the acceptance value of other processors. 

Only one processor will be allowed to become the acceptor in a particular circular trip.  That is, in 

theithtrip,ithprocessorwillbecometheacceptorandsendsitsacceptancevalue,ai.Alltherestof the 

processors will receive and send this acceptance value immediately to their neighbouring processor 

with no delay in the ring. 

No other processor can save this acceptance value or send its own value in the ring unless its his turn 

to do so. When all the processors have transferred the value, the value will be checked by the trip’s 

validator that whether it is the same acceptance value that he sent and committed to in the beginning. 

The acceptance value is not same as the secret message that every processors send. We distinguished 

both the values for different purposes. The secret message is used 

tocalculatethefinalresult,thatis,whichprocessorshouldbeelectedasaleaderandacceptancevalue 

isusedtovalidatewhetherornotisthereanyprocessortryingtomanipulatetheincomingmessages. 

Inotherwords,weuseacceptancevaluetokeepalltheprocessorsinsynchrony. Thesecretmessages are the 

random values that each processor, i selects to send. The final result will be calculate ∑ 𝑚𝑛
𝑖=1 i(mod 

n). 

The vital distinguished design behind the enhanced protocol is to force all the processors to be more 

synchronized than before. Since, there are some drawbacks in synchronization settings like small 

informationcanmovefaster,sothemethodusedtoprovepreviousresiliencefails.Therefore,inorderto 

copeupwiththisproblem,thenewprotocolmakesuseofrandomfunctionthatgeneratesrandomvalues for 

each processor. Hence, adversarial processors receive lots of information before getting biased to 

calculate the output. Therefore, we prove that there is a need to send an enormous amount of 

messages by an adversarial processor before knowing about the secret messages of otherprocessors. 
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Fig. 2. Secret Sharing Protocol 

If we look back on the A-Leaduniprotocol, it was based on Shamir’s secret sharing sub-protocol. Our 

protocol is based on the similar paradigm which deals with sharing secret messages along the ring 

and wait to receive an acknowledgement from the receiver. 

Algorithm 1 Acceptance-based-A-LEADuni 

Phase 1 – For originator processor 1 

1: Initially select an acceptance value a1,tand a secret message mi, t = mi, where t is the trip number. 

2: Send the secret message in the ring and wait for the secret message m1,nt+1(modn)  

3: if it is the first trip, i.e. t = 1, 

then Send its acceptance value in the ring and wait to receive it at the end of the trip to validate the 

synchrony of processors. 

4: ifitisnotthefirsttrip 

then forwardimmediatelytheincomingacceptancevaluetothesuccessive  processor. Finally, forward the 

remaining   secret messages m1,nt+1(modn)  

 

Phase 2 – For standard processor i 

5: Choose a secret message mi, i = miand an acceptance value ai,t=ai 

6: Since it is a standard processor, it will receive the secret message m1,nt+1(modn) and then it will 

send the message stored in the bufferm1,nt+1(modn) 

7: if The value of trip number, t is equal to i  i.e., the ithprocessor 
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then send theacceptance value ai,tand wait to receive it at the end of the trip to validate the synchrony 

of processors. 

8: if They are not equal 

then forward immediately the incoming acceptance value to the successiveprocessor. 

At first, the originator processor 1 chooses a random secret message m1 and an acceptance value a1. 

Using Shamir’s secret sharing protocol send the secret message and acceptance value {m1} and {ai} 

to every processor in the ring. Foraprocessoriitreceivesmi,1,...,mi,n,ai,1,...,ai,n.Thesevaluesare value 

with the one that it sent at the beginning of the trip. If ai,j ≠ aithe processor aborts the protocol 

receivedalternativelyandnotduringthesametrip. Eachprocessorthenverifiestheincomingacceptance by 

giving output =NULL. 

Inourmodel,weassumethattheprocessorsareconsecutivelyplacedinanincreasingorderoftheir IDs. 

However, this arrangement can be changed according to the need. Our protocol works even when 

theprocessorsarelocatedrandomlyinthering.WeprovethatSync-A-Leaduniisareliableprotocol 

byshowingthatadversariescannottransferlargeamountofinformationamongthemselveswhichisthe 

crucial step for them to know the secret messages of every processor and bias the outcome. We apply 

a random function R instead of the summation function to calculate the final result/output. To stop 

the adversaries from misusing the acceptance stage for their own benefit, we apply the random 

function to both secret message and acceptance value stage so that even if the processors calculate the 

partial sum of the secret messages during the execution of the protocol, they will not be able to bias 

the result of random function at the end that determines a fair leader for the asynchronousring. 

6. Results 

GameTheoryandDistributedSystemproblemsgohandinhand. Bothstriveindeterminingthebest possible 

outcome for a player/processor in a game/network.We studied the drawbacks of A-Leaduni protocol 

and proposed an enhanced version of it resilient to O√nadversaries and design a new protocol after 

some modifications. Our protocol performedwell even in the presence of invasion of adversarial 

processors. Although there were few assumptions in out model, they helped us in overcoming the 

drawbacks of A-Leaduni and design a new protocol after some modifications. 

We can say that our protocol used game theoretic approach as a tool to define how leaders are elected 

and also how each processor comes down to electing only a single leader among various candidates. 

Lastly, we can say that with the help of our model, we managed to keep all the processors in 

synchrony and that they follow a solution based approach where they will choose to have any leader 

rather than having no leader at all. 

7. Conclusion and FutureScope 

Our protocol performed well even in the presence of invasion of adversarial processors. 

Althoughthere were few assumptions in our model, they helped us in overcoming the drawbacks of 

A-Leaduniand design a new protocol after some modifications. We can say that our protocol used 

game theoretic 
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approachasatooltodefinehowleadersareelectedandalsohoweachprocessorcomesdowntoelecting only a 

single leader among various candidates. Lastly, we can say that with the help of our model, we 

managed to keep all the processors in synchrony and that they follow a solution based approach 

where they will choose to have any leader rather than having no leader atall. 

Therearemanyassumptionsonwhichourmodelisbasedupon.Inthissection,wediscussaboutthe 

variousassumptions and behavior of processors based on these assumptions that helped us designing 

the improved version of the protocol in (Abraham et al. 2006). Below are some of the questions that 

arises when we make thoseassumptions: 

• In (Abraham et al. 2006), processors do not know the size or IDs of other processors in the ring. 

So they are transferred during the wake-up phase and then the processors decide the direction for 

message passing. We assumed that we don’t need a wake-up phase because our invasion of 

adversaries do not affect the wake-up phase nor it tries to deviate from the designated protocol. 

Hence, we assume that processors already know about the size and IDs of each processor. Our 

invasion protocol can be extended to execute honestly, the wake-up phase of the protocol in 

(Abraham et al. 2006).However, we cannot say that adversaries will never abuse this phase. 

Hence, the question still remains open fordiscussion. 

• For rational agents, we defined that the output of the given protocol will be [n] ∪ [NULL]. But the 

problem still revolves around the fact when IDs are unknown. Simply put, it is still difficult to 

find a resilient FLE protocol when the IDs are unknown. To understand this, let’s consider an 

example. Let the IDs are from huge sample space ∑. Now, the expected utility of a processor, i 

will be, EU: ∑∪ [𝑁𝑈𝐿𝐿] → [0,1].This function will be considered rational when EUi[NULL]=0. 

Consider the protocol in (Abraham et al. 2006) to be P having the EUP[∑].Although, an 

adversarial agent may or may not obey the protocol and abuse to have EUA[∑]= 
𝑘

𝑛
.This means that 

in a unidirectional ring, for k adversaries with k > 1, there does not exist a k resilient protocol. 

• In order to find a solution to this problem, what we can do is define an ϵ-k-unbiased protocol for 

all the IDs. Let the deviation from every dishonest processor be Ɐx ϵ ∑ : Pr(output = x) ≤ ϵ+
1

𝑛
 . 

Hypothetically, we proved that A-Leaduni and Acceptance based-A-Leaduni are ϵ - k – unbiased for 

k and ϵ. 

• Amongvariouschallengesthatwefacedtodesignaninvasionofadversarialprocessors,wetackle a 

particular problem which is an adversarial coalition can bluff the honest set into believing that 

there exist an Originator processor in every set. Considering the protocol discussed in (Abraham 

et al. 2006) and (Abraham et al. 2013), the processors tend to know the IDs of every other 

processor during the wake-up phase by exchanging and selecting the lowest ID among them to be 

the Originator. No honest set can have two Originator processors as each processor receives a 

setofIDswhichisusedtoidentifyifalltheprocessorsarehonestandthatnoIDisrepeated more 

thanonce.However,anadversarialcoalitioncanabusethisphasebyhidingthehighestIDamong 

honestprocessorsh Є Hiand change it to 0 before forwarding it to the next set Hj, j ≠i.The 

adversary can use this highest ID to set it for itself. 
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