

1A Suresh,1R G Kumar, 2K.Harika, 2D.Harshitha, 2K.Harshitha, 2T.Darshak

14458

Turkish Online Journal of Qualitative Inquiry (TOJQI)

Volume12, Issue 8, July 2021: 14458-14467

Predicting software failures during the development phase using machine

learning

1A Suresh,1R G Kumar, 2K.Harika, 2D.Harshitha, 2K.Harshitha, 2T.Darshak

1Associate Professor, Dept of CSE, Siddharth Institute of Engineering & Technology, Puttur,

Andhra Pradesh, 517583, India.
2UG Student, Dept of CSE, Siddharth Institute of Engineering & Technology, Puttur,

Andhra Pradesh, 517583, India.

csesuresh6@gmail.com
Abstract—Software flaws were common through application development or could create a

variety of issues for both consumers as well as engineers. As a result, different strategies

were used by researchers to alleviate the effects of these faults in the program code. Among

the most important methodologies concentrates upon fault prediction employing machine

learning approaches, that could aid programmers in preventing problems from starting the

construction ecosystem. Alternative methods for predicting the risk of flaws are presented in

these publications. However, the majority of these studies attempt to predict faults from a

large range of software attributes. Another major flaw in the recent literature has been the

lack of a convincing explanation about whatever causes programs to become flawed. We

employ the Extreme Gradient Boosting (XGBoost) methodology, which takes a training

number of data for easy-to-compute component attributes as input but also determines if the

relevant segment was defect-prone. Humans provided a brief pattern sampling strategy that

selects accurate estimates with the smallest set of attributes to take advantage of the

connection across prediction performance as well as concept interpretability. Our main

premise would be elements that don't contribute to the designer's prediction accuracy

shouldn't be shown. Surprisingly, the decreased number of characteristics aids design

explainability, which is critical for providing developers more information on attributes

associated with each component of code that would be more defect-prone. Humans test our

methods on a variety of programs using statistics from leading companies, but they discover

as (I) the characteristics that assist the most to identify the best forecasts vary depending on

the problem, and (ii) it is feasible to create effective approaches with few characteristics that

are easier to grasp.

Keywords— Software Development Life Cycle, XG Boost, Machine Learning, Bug

Prediction, the Design phase

 1. Introduction

Nowadays, completing a software project became a huge challenge [1]. Issues or glitches are

a program owner's worst nightmare. These bugs happen as a consequence of bad code

formulation and construction. The depth of understanding [2] has to be the most significant

difficulty in writing defect-free code. Consider a team of 5-6 programmers working on a

project, some of whom are seasoned or those who are newer [3]. The software employee now

mailto:csesuresh6@gmail.com

Predicting software failures during the development phase using machine learning

14459

has limited expertise with the types of errors that can occur in this code in real-life situations.

As a result, they simply implement the project without regard for future issues. After the

program was delivered to consumers, they would encounter defects in a non-uniform

ecosystem, affecting the application's score, consumer experience, or effectiveness [4].

After that, a lot of effort and resources were spent to correct the errors. These problems or

flaws could sometimes be considered as a weakness, as well as attackers would take

advantage of this to attack the internet or program, compromising crucial information or

income. As a result, it elucidates the difficulty that the computer industry faces, as well as the

relevance of forecasting software faults throughout the development stage [5]. So that we

would take the proper precautions before these impacts manifest themselves. The most

difficult task in the computer industry would be to create a bug-free program. Even if

software development businesses kept on monitoring, resolving this problem was challenging

[6].Although any program created by a human wasn't an advanced method, defects are a

common and important occurrence. Nonetheless, application development firms place a

premium on early fault discovery via a variety of examinations as well as testing techniques.

As a result, the issue was resolved; therefore they looked at a few other approaches based on

machine learning [7].

2. LiteratureReview

He examined the majority of machine learning techniques, including both supervised and

unsupervised methods, throughout this Methodology. The WEKA Tool was employed for the

investigation, as well as the data set from the business was used to train the model [8]. For

accurate determination, a recovery or categorization approach based on Convolution Neural

Networks (CNN) as well as Long Short-Term Memory (LSTM) was developed [9]. Using

historical information, proposed a method based on Supervised Learning methods such as

logistic regression, Nave Bayes, and also Decision Tree (DT). In addition, the K-fold cross-

validation technique [10] was applied. Outlier detection or removal was prioritized, followed

by feature reduction [11].Presented fault identification as a binary classification problem,

e.g., right or wrong, but used the deep Defects architecture to build a classifier that could

identify faulty code over correct code. A flaw sensor system was proposed that works with

several compilers or languages, including java, GCC, and Visual Studio. [12]. Using

marginal R square scores, developed a scheme that uses the smallest and most correct

quantity of executing measures at a period. The Eclipse JDT Core database [13] was chosen.

Using One-Class Support Vector Machine (SVM), presented a one-class Software Fault

Prediction (SFP) methodology [14]. Machine learning was used to forecast the susceptibility

of a web service. This article generates input validation and sanitation properties. For each

sink, it calculates a static backward slice.A web application's data flow graph, instruction

dependence graph, as well as connection dependency graph [15], should be used to assess the

software. The proposed methodology would be to prioritize the issues based on severity and

element characteristics using the Clustering technique employing Bayes Net Classifier [16].

KC1, MC1, AR1, AC6, MC2 were used to train the model, which was compared to the

findings of naive Bayes or j48 [17]. Purpose 10 Data Sets using Supervised Learning

Bagging, SVM, DT, as well as Random Forest (RF) processors are among the tools used by

the organization [19]. The information would be in the form of object-oriented matrices and

1A Suresh,1R G Kumar, 2K.Harika, 2D.Harshitha, 2K.Harshitha, 2T.Darshak

14460

acquired from an open-source code. Genetically based Classification Systems [20] could be

model introduced.

 3. Objectives

• Web development companies could save money by catching flaws early.

• Therefore If customers access games that have problems, the gaming industry

suffers significantly.

• Social media firms require such a system because they are the most susceptible to

cyber assaults that could result in the loss of millions of users' data.

• Government entities must also have bug-free technology to keep confidential material out of

the wrong hands.

4. Methodology

Throughout our investigation and extensive literature review, humans discovered that RF

works well for Software Defects Forecast with a high degree of accuracy, but it could be

further improved by another recently introduced algorithm-based XGBoost. In this study,

we propose a strategy for constructing a statistical method with a higher degree of accuracy

than RF.

Figure 1: Workflow diagram

Predicting software failures during the development phase using machine learning

14461

Figure 2: Workflow of the implementation stage

4.1 Data Prepossessing

The most interesting part of our period was machine learning. For their enterprises,

everyone is starting to use machine learning algorithms. The information would be at the

heart of the convoluted process. Our machine learning techniques ensure that the data we

process would be of high quality. As a result, data pre-processing is an important stage in

the construction of a good forecasting system.

The concept of features multiplication is often used to determine the distance of independent

factors or data attributes. In our study, they used a normalization technique to bring our data

to the same level.

Controlling Class Imbalance: As we would observe from our goal variable's scatter diagram.

If our target variable is highly uneven, our forecasting model would neglect the minority

class while being highly prejudiced toward the majority. In this research, they applied

Synthetic Minority Over-sampling Technique (SMOTE), a synthetic minority oversampling

method, to overcome this difficulty.

4.2 SoftwareDefectDataset

Humans chose a regular software problem database from the industry's Promise Repository

to measure the accuracy of our technique. ABD, ML2, PR4, as well as OPD databases, are

used. Except for ML2, which has 38 characteristics, each dataset comprises 22

characteristics. The following is a detailed explanation of the dataset:

The Metrics Information Program was used to create the business database. Sheppard et al.

cleaned up the database in 2013 by removing duplicate as well as conflicting material. The

database has this recommendation to improve. As a result, they used the cleansed

information from the industry's Database in our research. For each event, the organization

uses Halstead as well as McCabe statistics. Each project in the business has its range of

attributes. Table 1 lists the particular amount of traits available.

1A Suresh,1R G Kumar, 2K.Harika, 2D.Harshitha, 2K.Harshitha, 2T.Darshak

14462

Table 1: Datasets of the Organization

Dataset
Project

Title

Instance Number

of Errors

Errors in

% Parameters

Company’s ABD 8965 1256 20.50% 26

 ML2 569 53 12.83% 24

PR4 632 205 15.50% 24

OPD 1254 265 12.80% 32

4.3 Data Split in Training Data & Testing Data

Humans can't use the dataset for training our algorithm. If they train our system overall data

points, humans have a challenge with overfitting, therefore our algorithm may make an

inaccurate forecast of a public statement. To assess the usefulness but also dependability of

our strategy, humans agreed to separate our dataset into two sections with 80:20 ratios. The

classifier is constructed using 80% of the data set, while the remaining 20% was utilized to

assess the prediction performance using projected and real value connections.

5. Results and Discussions

To verify and compare the outcomes of other ways with the approach they provided, humans

examined all of the models. Researchers tried five methods in this investigation: linear

regression, DT, RF, ADA Boost, as well as Tuned XGBoost. Tuned XGBoost would be a

proposed method in which N estimator, training process, max depth, and subsample

characteristics were tuned across four datasets: ABD, ML2, PR4, and OPD.

A use sequence diagram would be a type of behavioral diagram specified and derived from a

Use-case assessment in the Unified Modeling Language (UML). Its goal is to offer a visual

representation of a system's functionality in terms of players, objectives (expressed as use

instances), as well as any relationships between those, use instances. A use scenario

diagram's principal aim would be to indicate which system activities are conducted for which

player. The roles of the system's players are represented in Figure 3.

Figure 3: Proposed design case diagram.

Upload data

Analyses EDA

Selects features

user

Tunes hyperparameters

Takes data
Performs EDA

Preprocessing

Splitting data

Balancing data

Trains the model

system

Compares models

Predicting software failures during the development phase using machine learning

14463

Figure 4 shows a diagram of the fault identification process.

In the Unified Modeling Language (UML), a sequence diagram is a type of interaction

diagram that depicts how activities engage with one another and in what order. It's a Message

Sequence Chart construct. Figure 4 shows a flow chart, also known as an event chart, an

event situation, or a scheduling chart.

Researchers measured all models that included the goal characteristic to establish the

forecasting ability of computer characteristics. The prediction accuracy in this instance is

defined as the average AUC among all algorithms that included the goal attribute. Similarly,

all models that use the program concept's average Mean Absolute Deviation (MAD) statistic

account for volatility. Our application (USXGB) produced millions of models once more.

Figure 3 depicts the objective software characteristics' predictive performance as well as

variability. Particularly, roughly 3.5 percent of the characteristics were found in systems with

an average AUC of more than 82 percent. Our method of feature selection resulted in the

majority of the characteristics having much lower average AUC values (only around 77

percent).While examining the dissemination of characteristics while taking design variability

into account, they notice a comparable tendency. Around 3% of the characteristics in this

scenario are linked to systems with minimum disturbance. 73 percent of characteristics in the

best-performing algorithms in terms of accuracy (AUC numbers) were related to Object-

Oriented metrics, while the remaining 27% are related to CK metrics. Particular

characteristics such as Measure Functional Abstraction (MFA) were found in roughly 14% of

the best systems. Lines of Code (LOC) occurred in about 12 percent of the designs, while

1A Suresh,1R G Kumar, 2K.Harika, 2D.Harshitha, 2K.Harshitha, 2T.Darshak

14464

Cohesion Among Methods of a Class (CAM) featured in nearly 11 percent of the designs,

rounding out the top three.

In Figures 5–7, the findings obtained in state-of-the-art models have discussed our method.

Figure 5: Prognosis A suggested approaches' reliability.

Figure 6: The database was tested and trained.

Figure 7 shows the XGBoost outcomes.

The trials with predicted precision, as well as variance, supported two key aspects of our

Predicting software failures during the development phase using machine learning

14465

design selection method. First, depending on AUC figures, a limited set of criteria yields

accurate estimates. Second, the program measures used by the most accurate models differ

significantly. Object-Oriented characteristics were prevalent in the top-performing

categories, accounting for over 68 percent of the key methods in terms of variation but nearly

75 percent in terms of effectiveness.

6 Reliability Issues As we'll see later, the research presented in this paper contains numerous

flaws that could jeopardize our findings. Humans begin by describing the possible threats to

authenticity. After that, they go into internal dangers. Furthermore, they look at the

challenges to structure credibility or outcome accuracy.

6.1 External Validity: Factors that restrict our capacity to generalize the outcomes of our

research were known as challenges to external validity. The small number of innovative they

looked at in our analysis represents a danger to our research's external validity. In addition,

all of the applications were based on the Java programming language. As a result, the

findings may not apply to other applications, particularly those written in multiple

programming languages. Moreover, our outcomes are influenced by flaws in the

development's surroundings. As a result, they were unable to make any conclusions about

cross-project faults.

6.2 Internal validity: Impacts that potentially affect the independence variable's causation

are risks to internal consistency. This danger in our scenario pertains to the databases that

blindly implemented the data provided. However, they were unable to verify the information

in form of how the writers received it. For instance, the information could be inadequate or

incorrectly gathered. Researchers use a machine learning approach like cross-validation to

limit the consequences of unbalanced data, but we can't mean that the information represents

the characteristics of the eight Java applications they used in our analysis.

6.3 Construct validity:Structural validity refers to the ability to apply the results of tests to a

notion or idea. SHAP parameters are accepted as an impartial technique to describe machine

learning algorithms in the present research. Other approaches in the literature, on either hand,

could have alternate theories based on a set of features. For example, in the present literature

on prediction models, LIME and BreakDown have already been studied.

7. Conclusions

Using an effective performance of the XGBoost method called USXGBoost, we searched the

space for software estimation models, resulting in millions of random designs. The reliability

or understandability of these algorithms was assessed. In the Jureczko databases, they

discovered that 3.5 percent of the algorithms (out of 1 997 287) outperform the seven basic

baseline models. Our findings also showed that software fault forecasting is a project-specific

challenge, implying that the elements that make up the top-performing algorithms could

differ significantly based on the assignment. As a result, it's crucial to comprehend the

determinants that affect model judgments. As a result, concept descriptions may reveal which

aspects of the code are more likely to fail.Humans plan to harvest information on public

Github sources in the future. The same approaches used in this study might be used to

identify but also evaluate this information. As a result, they would provide additional case

1A Suresh,1R G Kumar, 2K.Harika, 2D.Harshitha, 2K.Harshitha, 2T.Darshak

14466

histories of the paradigm described in this work to the audience. A qualitative investigation

with programmers to see how the descriptions offered in this article might benefit real

projects would be another case study to verify the existing research. The findings of this

research might be utilized to propose a tool for builders to examine their applications, but

also determine which traits may suggest problematic classes.

References

[1] Kallis, R., Di Sorbo, A., Canfora, G., & Panichella, S. (2019, September). Ticket tagger:

Machine learning-driven issue classification. In 2019 IEEE International Conference on

Software Maintenance and Evolution (ICSME) (pp. 406-409). IEEE.

[2] Lwakatare, L. E., Raj, A., Bosch, J., Olsson, H. H., & Crnkovic, I. (2019, May). A

taxonomy of software engineering challenges for machine learning systems: An empirical

investigation. In International Conference on Agile Software Development (pp. 227-243).

Springer, Cham.

[3] Pospieszny, P., Czarnacka-Chrobot, B., & Kobylinski, A. (2018). An effective approach

for software project effort and duration estimation with machine learning algorithms. Journal

of Systems and Software, 137, 184-196.

[4] Di Nucci, D., Palomba, F., Tamburri, D. A., Serebrenik, A., & De Lucia, A. (2018,

March). Detecting code smells using machine learning techniques: are we there yet?. In 2018

IEEE 25th international conference on software analysis, evolution, and reengineering

(saner) (pp. 612-621). IEEE.

[5] Banu, J. F., Muneeshwari, P., Raja, K., Suresh, S., Latchoumi, T. P., & Deepan, S. (2022,

January). Ontology Based Image Retrieval by Utilizing Model Annotations and Content.

In 2022 12th International Conference on Cloud Computing, Data Science & Engineering

(Confluence) (pp. 300-305). IEEE.

[6] Karnan, B., Kuppusamy, A., Latchoumi, T. P., Banerjee, A., Sinha, A., Biswas, A., &

Subramanian, A. K. (2022). Multi-response Optimization of Turning Parameters for

Cryogenically Treated and Tempered WC–Co Inserts. Journal of The Institution of Engineers

(India): Series D, 1-12.

 [7] Azeem, M. I., Palomba, F., Shi, L., & Wang, Q. (2019). Machine learning techniques for

code smell detection: A systematic literature review and meta-analysis. Information and

Software Technology, 108, 115-138.

[8] Manjula, C., & Florence, L. (2019). A deep neural network-based hybrid approach for

software defect prediction using software metrics. Cluster Computing, 22(4), 9847-9863.

[9] Wexler, J., Pushkarna, M., Bolukbasi, T., Wattenberg, M., Viégas, F., & Wilson, J.

(2019). The what-if tool: Interactive probing of machine learning models. IEEE transactions

on visualization and computer graphics, 26(1), 56-65.

[10] Aroulanandam, V. V., Latchoumi, T. P., Bhavya, B., & Sultana, S. S. (2019). Object

detection in convolution neural networks using iterative refinements. architecture, 15, 17.

[11] Torabi, M., Mosavi, A., Ozturk, P., Varkonyi-Koczy, A., & Istvan, V. (2018,

September). A hybrid machine learning approach for daily prediction of solar radiation.

In International Conference on Global Research and Education (pp. 266-274). Springer,

Cham.

[12] Narmadha, R., Latchoumi, T. P., Jayanthiladevi, A., Yookesh, T. L., & Mary, S. P.

(2022). A Fuzzy-Based Framework for an Agriculture Recommender System Using

Predicting software failures during the development phase using machine learning

14467

Membership Function. In Applied Soft Computing: Techniques and Applications (pp. 207-

223). CRC Press.

[13] Vanga, M. S. R., Vijayaraj, J., Kolluru, P., & Latchoumi, T. P. (2022). Semantics-Driven

Safety Measures in Distributed Big Data Systems on IoT. In Advanced Computational

Paradigms and Hybrid Intelligent Computing (pp. 251-259). Springer, Singapore.

[14] Braiek, H. B., & Khomh, F. (2020). On testing machine learning programs. Journal of

Systems and Software, 164, 110542.

[15] Himanen, L., Jäger, M. O., Morooka, E. V., Canova, F. F., Ranawat, Y. S., Gao, D. Z., ...

& Foster, A. S. (2020). describe a Library of descriptors for machine learning in materials

science. Computer Physics Communications, 247, 106949.

[16] Li, Z., Jin, X. Y., & Zhu, X. (2018). Progress on approaches to software defect

prediction. It Software, 12(3), 161-175.

[17] Garikapati, P., Balamurugan, K., Latchoumi, T. P., & Malkapuram, R. (2021). A

Cluster-Profile Comparative Study on Machining AlSi 7/63% of SiC Hybrid Composite

Using Agglomerative Hierarchical Clustering and K-Means. Silicon, 13, 961-972.

[18] Aroulanandam, V. V., Latchoumi, T. P., Balamurugan, K., & Yookesh, T. L. (2020).

Improving the Energy Efficiency in Mobile Ad-Hoc Network Using Learning-Based

Routing. Rev. d'Intelligence Artif., 34(3), 337-343.

[19] Garikipati, P., & Balamurugan, K. (2021). Abrasive Water Jet Machining Studies on

AlSi 7+ 63% SiC Hybrid Composite. In Advances in Industrial Automation and Smart

Manufacturing (pp. 743-751). Springer, Singapore.

[20] Balamurugan, K., Uthayakumar, M., Sankar, S., Hareesh, U. S., & Warrier, K. G. K.

(2017). Mathematical modeling on multiple variables in machining LaPO4/Y2O3 composite

by abrasive waterjet. International Journal of Machining and Machinability of Materials,

19(5), 426-439.

