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Abstract 

Android Operating System’s open-source nature has attracted a broader range of developers which has 

resulted in an unprecedented proliferation of Android-based devices in various sectors of the economy. 

However, despite the fact that this growth has resulted in significant technological advances and the 

ease of conducting business (e-commerce) and social interactions, they have also become powerful 

platforms for unregulated cyber-attacks and espionage against business infrastructures and individual 

users of these mobile devices. Malicious application attacks, as opposed to other attack strategies such as 

social engineering, have taken the lead when it comes to cyber-attack tactics. Android malware has 

advanced in complexity and intelligence to the point where it is now highly resistant to existing detection 

systems, especially signature-based systems. Machine Learning techniques have emerged as a more 

capable choice for countering the complexity and innovation used by emerging Android malware. Machine 

Learning models operate by first learning existing patterns of malware behavior and then using that 

information to isolate or classify any related behavior from unknown sources. As found in recent 

literature, this paper presents a thorough analysis of Machine Learning techniques and their applications 

in Android malware detection. 
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1 Introduction 

Android malware detection[1] can be performed in three different ways, according to various re- searches. 

The first approach entails deploying static and dynamic investigation of application code in order to detect 

malicious components before loading the software onto any system. The second method entails modifying 

the Android system to include modules for monitoring and intercepting abnormal behaviors that may occur 

on the device, while the third method entails using virtual- ization to implement domain separation ranging 

from lightweight application isolation to running several instances of Android OS on the same device 

[2][3]. 

Machine Learning or "anomaly detection" approaches have now emerged as a leading and more successful 

method for overcoming Android malware, according to various reports [4][5]. Unlike static analysis, which 

entails manually inspecting files such as the AndroidManifest.xml file, source files, and Dalvik byte code; 

dynamic analysis entails running an app in a controlled environment to observe its behavior while the 

Machine Learning approach entails learning general rules and patterns from benign and malicious app 

samples and then allowing data to be collected and clas- sified [6][7]. The majority of Machine Learning 

algorithms depend on static attributes extracted from an application[8]. The static components of an 

Android application serve as the foundation for Machine Learning approaches and these static features are 
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meticulously obtained by reverse engineering. 

Machine Learning methods have been commonly used for application classification with an em- phasis on 

generic malware detection. The use of Machine Learning in Android malware detection reduces the time 

and effort required to manually create and update detection patterns. Machine Learning, as shown in 

Figure 1, is a procedure for analyzing data using software techniques i.e algorithms to construct a model 

which is useful for identifying patterns and regularities in data sets [9]. It is a method of teaching 

machines to learn from previous experiences i.e data or in- formation in order to make decisions about 

future events or data instances. Feature vectors are critical components of Machine Learning and they are 

typically created for the particular task that the Machine Algorithm is attempting to complete. Machine 

Learning is based on the concept of obtaining the probability distribution of data. 

 

 

 

Fig. 1: Classification process in Machine Learning [10] 

 

Supervised Machine Learning, Unsupervised Machine Learning, and Reinforcement Machine Learning are 

the three major types of machine learning [11]. In addition, each Learning Cate- gory is correlated with 

three simple Learning Methods: classifications, clustering, and regression. Classification is a Supervised 

Learning process in which data sets are well labeled into groups or classes. Clustering is an Unsupervised 

Learning process for unlabeled data sets while Regression is best associated with Reinforcement Learning in 

which the predicted end result is rated, graded, or estimated. The name of the specific class or category to 

which a particular data instance belongs is called a label. Data is characterized in Machine Learning by a 

fixed number of features that can be categorical, nominal, or continuous [12]. This paper provides a 

comprehensive analysis of the current literature in the field of Machine Learning techniques being used to 

detect Android malware. 

 

2 Attack Trends: Android Malware 

Malware coders use a variety of methods to avoid detection. Various examples of such concealment techniques 

are code obfuscation, encryption, asking for inappropriate and unwarranted permissions to access 

unauthorized hardware, and lastly update attacks in which a benign application updates itself or another 

application with malicious payload [13]. Malware attack methods can be classified as follows: 

1. Information Extraction: Malware in this category infects a computer and then extracts personal 

information such as the device’s IMEI number, the user’s personal information, and so on. 

2. Root Exploits: This type of malware tries to gain root privileges on the device in order to 

take control of it and change its configuration and other data. 

3. Automatic Calls and SMS: This form of malware inflates a user’s phone bill by making automated calls 

and sending SMS to premium numbers. 

4. Dynamically Downloaded Code: This technique allows a benign program to download 

malicious code and deploy it in mobile devices without the user’s knowledge or consent. 

5. Search Engine Optimisations (SEO): The malware in this case artificially searches for a word and 

simulates clicks on targeted websites in order to boost a search engine’s revenue or increase website 

traffic.
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6. Covert and Overt Communication Channels: This is a system flaw that allows informa- tion to leak 

between processes that aren’t supposed to share it. This is regarded as a highly advanced technique. 

7. Botnets: A botnet is a network of infected mobile devices managed by command and con- trol (C&C) 

servers via a Bot-Master. It sends spam and targets the host devices with DDoS (Distributed Denial of 

Service) attacks. 

 

3 Literature Review 

DroidFusion [14] is one of the most proposed and sought-after novel classifier fusion methods based on a 

multilevel architecture that enables efficient Machine Learning algorithms for improved accuracy. 

DroidFusion works by first training the base classifiers at a lower level to construct a model and then 

applying a series of ranking-based algorithms to their predictive accuracies at a higher level to produce 

combination schemes, one of which is chosen to develop a final classification model. The training set used in 

training the base classifiers at the lower level is subjected to a stratified 10-fold cross-validation technique 

in order to estimate their relative prediction accuracies. Various authors have used J48, REPTree, Random 

Tree-100, Random Tree-9, and Voted perceptron as their base classifiers. On all of the data sets given, 

DroidFusion outperformed all of the base classifiers as well as Stacked Generalisation. 

Another research [15] suggested a system for detecting Android malicious applications based on Support 

Vector Machine (SVM) and Active Learning technologies. The authors used dynamic data feature 

extraction and timestamps as attachments to some of the features in order to use novel time-dependent 

behavior monitoring in order to significantly improve malware detection accuracy. The authors used an 

intended error reduction query strategy to combine new insightful instances of Android malware and 

retrain the model to be able to do adaptive online learning in order to create an active learning model. 

The authors used the DREBIN benchmark malware dataset in a series of experiments to test their model 

and the results showed that their system could detect new malware more accurately. 

Idrees et al. (2017) proposed PIndroid which is a novel Android malware app detection system that uses 

permissions and intent features for model training and classifier fusion in order to combine classifiers for 

better results. To conduct the experiments, the authors used 1745 app samples, starting with a performance 

comparison of six classifiers: Multi-Lateral Perceptron (MLP), Decision Table, Decision Tree, Random 

Forest, Nave Bayesian, and Support Vector Machine (SVM) using Sequential Minimal Optimization 

(SMO). They used three fusion schemes: Average of Probabilities, Product of Probabilities, and Majority 

Voting to merge the Decision Table, MLP and Decision Tree classifiers. Through the use of the Product 

of Probability Combination approach, the system provided a 99.8% True Positive detection accuracy rate, 

1.1 percent False Positive detection rate, and a 99.7% F-measure. 

Dong (2017) developed a novel detection method for Android malware using permissions as his 

primary function. A web crawler was used to gather samples of both benign and malicious Apps. To 

complete the reverse engineering process, the author created a tool that automatically decompiles the 

Apps to source code and manifest files. One of the results was that the distribution of App permissions 

differed between the malware and benign datasets. To find patterns and more useful knowledge, the author 

combined Machine Learning algorithms such as Logistic Regression Model, Tree Model with Ensemble 

techniques, Neural Network, and finally an ensemble model. 

The authors have also suggested two methods for static analysis of Android malware that are focused 

on Machine Learning [16]. The first method relied on Android authorization features such as manifest 

analysis, while the second relied on a bag-of-words representation model to analyze Android source code. 

The aim of the project was to show how effective Machine Learning methods are for static analysis of 

Android malware. The Authors used two Machine Learning approaches classification and clustering. The 

classification method was primarily used for malware detection 
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while the clustering method was only used to infer the class of unlabeled data when the data set had few labels 

and the labels obtained from clustering were then used to retrain the classification model with more data. The 

authors used a fusion approach called Majority voting to run the experiment with ensembles that contained 

unusual combinations of three and five classifiers. Permission-based clustering, permission-based 

classification, source code-based clustering, and source code-based classification were the four experiments 

conducted in the study. For the training and testing of the models, 200 malicious and 200 benign 

applications were used. 

Support Vector Machine (SVM), Decision Tree, C4.5, JRIP (Rulebased), Random Forest, Linear 

regression, and Random Tree are some of the classification algorithms which were used in the model 

building while Farthest First, Simple K-means, and Expectation-Maximization (EM) were the clustering 

algorithms used during the model building. The permission-based model was found to be computationally 

less costly than the source code analysis model but the source code analysis model had an FMeasure of 

95.1% compared to 89 percent for the permission-based model. 

The authors have also suggested an anomaly-based malware detection system for the Android platform 

[17]. They used a behavioral analysis technique to study the behavioral habits of both malicious and 

benevolent applications by running them on a physical Android computer. Decision Tree, K Nearest Neighbor, 

Logistic Regression, Multilayer Perceptron Neural Network, Nave Bayes, Random Forest, and Support Vector 

Machine are some of the Machine Learning algorithms used to classify malware. An output metric was used 

to evaluate each algorithm. Support Vector Machine and Random Forest got the best results for malware 

detection according to their findings. 

In another research, the authors proposed a composite classification model for Android mal- ware 

detection based on a parallel combination of heterogeneous classifiers [18]. The algorithms were trained 

using static features extracted from 6,863 app samples and it used Decision Tree (tree-based), Naive 

Bayes (probabilistic), Simple Logistics (function-based), PART (rule-based), and RIDOR as classifiers. 

The classification algorithms were used to compare four classifier hybrid approaches: Average of Probability, 

Maximum Probability, Product of Probability, and Majority Vote. The composite model was created with 

the aim of enabling a more accurate early detec- tion model for Android malware as well as a faster 

white-box analysis through the use of more interpretable constituent classifiers. The approach’s goal was to 

combine the advantages of various supervised learning algorithms to generate a single classification 

judgment for a new application. Static features i.e permissions, APIs, and Android system commands were 

collected from the An- droid application using reverse engineering which used a custom APK analysis 

tool written in Java and was used to detect malware using Machine Learning. Their findings revealed that 

PART worked best for individual classifiers: products of probabilities mixture schemes had the best ac- 

curacy while TPR had the best TPR (True Positive Rate). 

DynaLog, a dynamic Android malware analysis framework that characterizes Android apps was 

proposed in another work [19] as a way to combat malware that uses obfuscation concealment 

methodologies to evade most state-of-the-art static-based detection and analysis systems. It is a 

behavioral-based analysis system that mostly relies on the number of comprehensive dynamic features in 

a given application. It provides an automated environment that can evaluate and characterize a large 

number of applications, quickly detecting and isolating malicious ones. The framework is capable of 

accepting a large number of applications, serially starting them in an emulator, logging the various 

dynamic behaviors, and then removing them for further processing. DynaLog is based on existing open-

source software, providing it with a broad range of capabilities for the dynamic analysis of Android apps. 

The authors in another work published a study on the use of a Machine Learning algorithm to detect 

Android malware [20]. The aim of the study was to compare various static features of applications in 

order to find the best static feature combination that would result in the most efficient Machine Learning 

Detection Model. The study’s main goal was to evaluate the effectiveness of some feature sets familiar from 

desktop systems (x86 domain) but never before used in the Android ecosystem in aiding Android malware 

detection through Machine Learning. The entropy 
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of files in the resource folder, Graphical User Interface (GUI) Layout, Number of methods, and the number 

of instructions per process are among the new proposed features. To effectively classify the different features, 

the authors used WEKA Data Mining Software. They randomly divided their samples into training and 

test sets in the proportion of 80 to 20 for the device evaluation. There are no samples from the malware 

family used in the training set in the test set. The objective of the comparative analysis was to assess the 

features’ individual and collective ability. Their findings showed that, on an individual basis, Android 

permissions are the strongest single indicator of an app’s malignancy, with an accuracy of around 96 

percent. Opcode frequency, opcode sequences, and app components are among others with an accuracy of 

about 90%. Random Forest was found to be the most effective classifier. The accuracy of features 

extracted from the Android Manifest which contains permissions, features, intents, and device components 

was over 97 percent for the attributes or function combination test. As a result, rather than the app’s actual 

code, the best- performing attribute can be extracted from the app’s metadata contained in the Android 

Manifest. 

 

The authors of another work concentrated on identifying and defeating a form of unknown malware 

known as "0-day" malware [21]. They created the SherlockDroid system. The Sherlock- Droid works by 

filtering a large number of applications and keeping only the ones that are most likely to be malicious for 

potential inspections. Apart from crawling marketplaces for apps, Sher- lockDroid extracts code-level 

features and then uses Alligator to classify unknown apps. Alligator is a classification method that 

integrates many classification algorithms effectively and automat- ically. SherlockDroid looked at 

characteristics of Android apps gleaned from a static code study. A lightweight technique for Android 

malware called DREBIN was also proposed, which allows for direct malicious application detection on the 

Smartphone. DREBIN overcomes the disadvantages of a shortage of resources which prevents applications 

from being monitored in real-time. It works by conducting a thorough static review of an application and 

collecting as many features as possi- ble like permissions, API calls, hardware resources, app components, 

filtered intents, and network addresses. These features were embedded in joint vector space so that common 

malware patterns could be automatically identified. The malware classification was done using a Machine 

Learning technique called Support Vector Machine. Using Sandboxing Systems, the work provided a detailed 

description of the various research techniques, including Static Analysis, Behavioural Analysis, and Dynamic 

Analysis. Strings are an important part of any static malware study, according to the researchers, as they 

can include clues about malware construction, functionality, authorship, and Command & Control (C & 

C). The research discovered that when an app is unpacked, the most relevant strings are contained in 

classes.dex, the source code of the app. 

 

The Android operating system is an open platform-based Operating System with many new mobile 

device hardware manufacturers embracing it as their primary operating system. This has resulted in an 

ever-increasing number of new applications being created for the platform. Most mobile applications 

present in today’s world lack a central control system for integrity check which can certify whether they are 

fit and safe for the general public. Hence, many applications which were created with good intentions end 

up behaving maliciously as a result of bad design by novice developers who are either not careful about 

removing all bugs in the apps’ code or do not follow proper security protocols throughout the 

development phase. A large number of poorly created apps along with those created with malicious intent 

pose a serious security hazard for the Android platform. All these security threats aimed at the Android 

platform will continue to serve as the foundation for a slew of new studies focusing on the identification, 

review, and remediation of evasive Android malware. Machine Learning, which is a subset of Artificial 

Intelligence is gaining traction as the best way to fight zero-day malware attacks. As a result, various 

innovative methods for using Machine Learning methodologies in malware detection will continue to be 

investigated and implemented. 
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Table 1: Frameworks Comparison of Machine Learning-Based Malware Detection 
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4 Comparison of different Frameworks for Malware Detection using Machine Learning 

This section compares the malware detection frameworks proposed in the paper under study. Table 1 

compares different techniques available for detecting Android malware based on machine learning techniques 

algorithms. Different machine learning techniques have been used in the development of malicious software 

detection systems such as SVM, NB, Perceptron, and DNN algorithms. In Table 1, if the study authors did 

not mention accuracy, false-positive rate, detection rate, or algorithm used in a specific setting, "Not 

mentioned" will be used. 

 

5 Discussion and Findings 

As shown in Table 1, various machine learning algorithms were used to develop malware detection 

frameworks [10]. The parallel combination of various heterogeneous classifications such as DT, SL, NB, 

PART, and RIDOR algorithms worked well. The four different combination schemes AvgProb, ProdProb, 

MaxProb, and Mvote obtained accuracy 96.3%, 97.2%, 95.2%, and 96.3%, false-positive 

rate with 3.1%, 3%, 7.2%, and 3.1%, and detection rate with 98.8%, 95.3%, 98.6%, and 96.3% 

respectively [10]. “Kernelized One-Side Perceptrons - Polynomial Function" obtained a precision of 

88.84%, a detection rate of 89.96%, and a reasonable false positive rate of 3.9%. The highest accuracy 

was 100%, with a false positive rate of 0.00% from OneR and J48. However, the figures are 83% and 90% 

respectively[12]. Furthermore, the use of "Quantity Dependent Backpropagation (QDBP)" and an "End-to-

end trainable Tree-Shaped Deep Neural Network (TSDNN)" gave good precision and detection results at 

99.63% and 85.4% respectively. 

Since parallelizing machine learning algorithms showed excellent results in [10], parallelizing schemas 

with OneR or J48 [12] or parallelizing TSDNN along with QDBP [14] may increase the accuracy and 

the detection rate of detecting malware on Android devices. In addition, the integration of "Kernelized 

One-Side Perceptrons -Polynomial Function" with OneR or J48 [13] may increase the precision and 

detection rate of Android malware detection. The combination of one or more techniques calls for more 

detailed experiments that focus on the performance of algorithms such as robustness and security. 

 

6 Conclusion and Future work 

Smartphone users have expanded rapidly over the years, mostly Android users. This notable growth in Android 

users has been used by malware authors to target and harm a large number of users in the meantime. The 

primary concern of the growing Android platform is detecting malware. This document examined 

existing Machine Learning like "mobile security platform", "versatile machine learning-based 

framework" and TSDNN as well as QDBP systems and frameworks for malware detection respectively. 

Most of the articles studied are used SVM and NB algorithms for detecting malicious software. However, 

the greatest accuracy was 100%, with a false positive rate of 0.00% obtained with the OneR and J48 

algorithms. Nonetheless, the detection rate is 83% and 90% respectively. In a critical field like malware 

detection, we need a good machine algorithm for detecting malware with high precision and high detection 

rate. In the surveyed papers, TSDNN along with QDBP, SVM, Multi-NB, and parallelizing combination of 

different heterogeneous using AvgProb scheme obtained accuracy and detection rate higher than 90%. 

However, incorporating one or two good techniques will improve their efficiency, accuracy, and 

detection rate. 

In future work, there will be a growing body of work dealing with detecting Android malicious software 

using machine learning techniques. It would be nice to offer new frameworks and algo- rithms that are 

light, fast, and strong enough to detect malware. Based on the documents reviewed, the parallel or integration 

of one or more good techniques may result in a precise and effective 
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mechanism. The use of deep neuron networks in TSDNN with QDBP showed high accuracy with 99.63% 

and a detection rate of 83%. Parallelization of TSDNN and QDBP will demonstrate ef- fective algorithms 

and improve detection accuracy. Moreover, the parallelization of a combination of OneR and J48 

algorithms, using the AvgProb schema should increase the detection rate and prove the efficiency of the 

algorithms. Use of NB in showed 86.7% accuracy and 91.5% detection, while the use of Multi NB in 

yielded good results with 96.88% accuracy and 97.76% detection. For example, test Yerima, SY, and al. 

experience in, and replacing NB with Multi NB will increase the precision and percentages of detection 

rates in all combination regimes. 
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