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Abstract The current paper introduces a second order smoothing technique for classical 1l exact 

penalty function in constrained optimization problems. Error calculations for optimum solution 

values for non-smoothed, smoothed penalty problem and for the original problem have been 

discussed in the paper. An algorithmic procedure for obtaining the solution is demonstrated and 

convergence is discussed. 
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Introduction 

The mathematical form of constraint optimization problem involves the introduction of certain 

terminology which should be known for better understanding of the topic. Let x be an n-

dimensional vector given as 
n21 R  ),...,(  nxxxx , S be a subset of nR . Let )(),...,(),( 10 xfxfxf n

are functions of x .  The main problem in constrained optimization can be represented as   

(1)                                                                  )(  0 xfMin  

  s.t       0  )( xf j mj ,...,3,2,1  

The function 0f and RRf n
j : are continuous differentiable functions of second order. The 

function )(0 xf is called the objective function. The vector function )(),...,(),()( 21 xfxfxfxf m

defined above is generally referred to as the functional constraints. The set S is called the basic 

feasible set. The set  mjxfSxQ j ,...,3,2,1 ,0)( ,   is called the feasible set of the problem 

(1). The set Q is assumed to be nonempty.  The minimization problems can be classified as  

1. Constrained Problems: 
nRQ   
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2. Unconstrained Problems:
nRQ  . 

3. Smooth Problems: All the functions )(xf j are derivable in nature. 

4. Non Smooth Problems: There is a function in the vector function which is not differentiable. 

5. Linear Constrained Problems: All the functional constraints are linear in nature. The 

function )(0 xf defined in (1) if is also linear then the problem in (1) is called linear 

programming problem. If the function )(0 xf is quadratic then the problem is called 

Quadratic Programming Problem. 

On the basis and properties of the feasibleset,the problem defined in (1) can also be classified as  

a) The problem in (1) is called feasible if Q . 

b) The problem stated in (1) is called strictly feasible if   Qxfor  0)(or  0 )( xf j for all the 

inequality constraints and 0)( xf j for all equality constraints. 

The solutions to the problems defined in (1) can also be classified as 

a. 
*x is called the global optimal solution if )()( 0

*

0 xfxf   for all Qx . The solution value 

)( *

0 xf is called the global optimum value. 

b. 
*x is called the local  solution if )()( 0

*

0 xfxf   for all QQx  int .  

 Let us consider some examples which can explain the origin of constrained problems: 

Consider the problem as  

(2)                                 Find 
nRx  such that  

mm axf

axf

axf







)(

)(

)(

22

11

 

Now we can define a problem as 2

1

))((min j

m

j

j axf 


with some additional constraints. This is a 

global problem and can be used in various fields of mathematics comprising of partial differential 

equations, ordinary differential equations, game theory etc. 

Sometimes due to various constraints the decision variables are treated as integers giving rise to 

integer programming problems which is defined in (3) as  
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    (3)          )( 0 xfMin  

s.t m1,2,3...,j , )(  jjj bxfa  

Sx  

The problem defined in (1) can be found in the field of Business Management, Network Structure 

and Flow Problems, Traffic Control Problems and other large number of areas. Large amount of 

work has been done in past to solve the problem proposed in (1) by various authors involving the 

use of various methods. The penalty function method is also an important method developed and 

evolved in recent past to solve (1). The principle behind the concept of penalty function is to 

construct a sequence of unconstrained optimization problems in regard to (1) which can be easily 

solved by various methods and involves less labour. Recent past is replete of work done by various 

authors in the field of penalty function [1-5].  The first approach to solve (1) using penalty 

function was introduced by Zangwill [1] in which he introduced the notion of classical penalty 

function: 

(4)         




Ij

j xfxfxU 0),(max)(),( 01 

 

The equation (4) can also be written as ))(()(),(

1

01 xfpxfxU

m

j

j


   

The corresponding penalty optimization problem using (4) for (1) is defined as  

(5)              ),( 1 xUMin      s.t  nRx  

Another famous penalty function called the square, twice or 2l penalty function which is defined as  

(6)      202 0),(max)(),( 




Ij

j xfxfxU  .  

The penalty parameter  is >0. The function is continuously differentiable or smooth but is not an 

exact penalty function. The apparent problem with the penalty function defined in (4) is its non -

differentiable nature which prevents the use of algorithms based on derivability and thus increasing 

instability.  Huang and Yang et al. [2-5] have studied a new type of penalty function defined as  

(7)                                            
k

Ij

k
j

k
k xfxfxU

1

0 0),(max))((),(













 



  

and is known as k order penalty function and also being studied in [6-7]. The penalty function 

defined in (7) becomes the classical 1l penalty function if the value of k is taken as 1.  The penalty 
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function is smooth for 1k and is not smooth for 10  k . Another lower order penalty function is 

discussed by Meng et al. [8] and Wu et al. [9] of the form  

(8)                                   k

Ij

j
k xfxfxU ]0),([max)(),( 0 



   

here also the function is not derivable for )1,0(k .  

Meng et al. [10] and Wu et al. [11] have also proposed an exact penalty given in (9) and its 

smoothing techniques to solve the problem. 

(9)               2
1

0

2

1 0),(max)(),( 




Ij

j xfxfxU   

The smoothing of penalty functions is of paramount importance as it plays a magnificent role in 

solving (1) using various methods which are more or less based on differentiable functions. Various 

authors in [6-9] and [12-16] have proposed smoothing techniques for classical penalty function for 

constrained non -linear programming problems.  Yang et al. [6-7] have demonstrated smoothing 

techniques for (9).  Many of the methods that are used to solve unconstrained optimization 

problems involves the use of second order derivatives so it has become imperative to form a 

smoothing technique which is second order differentiable to the exact penalty function.  In this 

chapter we will try to formulate a smoothing technique for classical penalty function.  In this 

chapter we will try to formulate a smoothing technique for classical 1l penalty function in terms of 

second order differentiability.  Let us define a function  

(10)      































 t,
5

3

2

3

0 , 
10

0 , 0

)(

2

3

4

t
t

t
t

t

tp  

Using the function defined above a second order differential approximation to the classical exact 

penalty function will be developed in this chapter and an algorithm hinging on the smoothing 

technique will be developed for solving the constrained optimization problem.  Consider the 

function  

(11)  ottp ,max)(   

Using (11)   the problem in (5) becomes  
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(12)  ))(()(),( 01 xfpxfxUMin

Ij

j


    such that  nRx . 

For 0 , let  
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3

0 , 
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0 , 0

)(
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t
t

t
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where 0 is called smoothing parameter. The function )(tp  has some abstractive properties 

which are proved in the theorem given below. 

Theorem 1 

Statement:  For any 0  we have the following results 

(i) )(tp is twice continuously differentiable in t for all 0 . 

(ii) )()(,in each t for tptpR   

(iii) )()(0 tptplt    

Proof: 

(i) 

The second order continuous differentiability can be evaluated by checking the derivability at 0 and 

 .  

Continuity at 0 

LHL= 00)(
00

   tt
lttplt   

RHL= 0
10

)( 3

4

10

)0(
03

4

00



 




h
htt

lt
t

lttplt  

Hence LHL=RHL, Thus the function is continuous at 0 

Now we will discuss the continuity of the function at  . 

LHL=
1010

)(

10
)(

3

4

03

4 











  

h
lt

t
lttplt htt

 

RHL=
105
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3

)(5
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)(
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2
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)(
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Hence RHL=RHL, thus proving that the function is continuous at  . The above two results prove 

the continuity of )(tp at 0 and  .  The first derivative of the function )(tp is given as  

































 t,
5

3
1

0 , 
10

4

0 , 0

)(

2

2

3

3

t

t
t

t

tp  

Now we are going to prove the continuity of first order derivative at 0 and  which will establish 

the first order continuous differentiability of the function.  

Continuity at t=0 

LHL= 00
0

t
lt  

RHL= 0
10

)0(4

10

4
)(

3

3

03

3

00






 




h
lt

t
lttplt htt

 

Hence LHL =RHL , Thus the function is continuous at 0. 

Continuity at t=   

LHL= 
5

2

10

4

10

4
)( 3

3

10

)(4
03

3


 

 







h
htt

lt
t

lttplt  
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5

3
1

)(5

3
1

5

3
1)(

2

2
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Hence LHL=RHL, thus the function is continuous at  . Hence the derivative of the function is 

continuous thus establishing the fact that function is first order continuous differentiable. Let us 

move further to prove the second order continuous differentiability of the function. The second 

order derivative of the smoothing function is given as  
































 t,
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0 , 0

)(
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t

t

tp  

Let us now check the continuity of the above defined second order derivative of the smoothing 

function at 0 and  . 
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Continuity at t=0 

LHL= 00)(
00




  tt
lttplt   

RHL= 0
10

)0(12

10

12
)(

3

2

03

2

00






 




h
lt

t
lttplt htt

 

Hence LHL=RHL, thus the second order derivative is continuous at t=0. 

Continuity at t=   

LHL=
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Hence the function is continuous at t=  . 

Hence the function is second order continuous differentiable.  This completes the proof of (i). 

(iii) 

Consider the function defined in (10) and (11) as  










0 , 0
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)(

t

tt
tp  

and  
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Now consider the difference  
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When  t0 ,   
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Define   

3

4

10
)(



t
ttZ   

3

3

10

4
1)(



t
tZ   

0  )(  tZ  

Now 0)0( Z  and 
10

9

1010
)(

3

4 





 Z  

10

9
)()(0   


  tptp  

Hence )()(0 tptpltt   . 

(ii) 

From the result proved above it is quite apparent that  

0)()(  tptp   

Hence  )()( tptp   

Hence )(tp  is monotonically increasing in t for any 0 . 

Hence Proved. 

Also we see that  )(,0max)(( xfxfp jj   

Supposing that 0f and jf ( mj ,..,.3,2,1 ) are continuous differentiable functions of second order and 

further let us state the penalty function  

(13)      ))(()(),,( 0 xfpxfxU j

Ij




   

where 0  is the required penalty parameter. The function ),.( xU is twice continuously 

differentiable at any point in nR . The application of (13) will help us to formulate the corresponding 

penalty problem to (1) as  

(14)    ),,( xUMin  

such that x lies in n-dimensional space R .  Now we are in a position to study the functional 

relationship between the functions defined in (12) and (14). 
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Theorem 2 

Statement:-    Let for some nRx  and 0  

10

9
),,(),(0 1




m
xUxU   

Proof:- 

From the definition and the result proved in (i) of theorem  , it can be said that  

 

)(  , 
)(5

3

2

3

)(0 , 
10

)(
)(

0)( , 0

))(())((

2

3

4

































xf
xf

xf
xf

xf

xf

xfpxfp

j
j

j

j

j

j

jj  

As we have already proved above that 

10

9
)()(0


  tptp  

10

9
))(()((0


  xfpxfp jj  

10

9
)))(()((((0

1


 

m
xfpxfp j

m

j

j  


 

10

9
))(())((0

11


 

m
xfpxfp j

m

j

m

j

j  


 

10

9
))](()([))](()([0

1

0

1

0


 

m
xfpxfxfpxf j

m

j

m

j

j  


 

10

9
),,(),(0 1




m
xUxU   

Hence Proved. 

The theorem proves that the gap between ),,( xU and ),(1 xU can be controlled by the help of the 

smoothing parameter. An important ramification of theorem 1 is proved in theorem 2. 
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Theorem 3 

Statement:-   For a sequence of positive numbers j which approaches to 0 as j , suppose that 

jx is an optical solution to ),,(min jRx
xUn 


for some 0 .Let x is accumulating point of the 

sequence  jx , then x is an optical solution of the problem ),(min 1 xUnRx
. 

Proof: 

From the result proved in the above theorem we have  

(15)       
10

9
),,(),(0 1

j

j

m
xUxU


   

Since jx is an optical solution to ),,(min jRx
xUn 


 gives us  

(16)   ),,(),,( jjj xUxU   for all nRx  

Now using the above two inequalities  

10

9
),,(),(1

j

jjj

m
xUxU


   

10

9
),,(

j

j

m
xU


   

10

9
),(1

jm
xU


      (from (15) and rearranging) 

As j leads to 0j  , apply it in the above inequality we get  

),(),( 11  xUxU      (since x is accumulating point) 

Hence x is an optical solution to the ),(min 1 xUnRx
. 

Theorem 4 

Statement:-  Let x  is an optimal solution of the problem defined in (5) or in (12).  Suppose nRx 

is assumed to be optical solution of the problem defined in (14).  Then we have the following result  

10

9
),,(),(0 1




m
xUxU   

Proof: 

Using the result obtained in theorem 2 and for the parameter 0  we have   
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(17)   
10

9
),,(),(0 1




m
xUxU   

(18)   
10

9
),,(),(0 1




m
xUxU   

As x  and x   are assumed to be optical solution to the problem ),(min 1 xU and ),,(min xU we get  

(19)    ),(),( 11  xUxU   

(20)   ),,(),,(  xUxU   

Now using all the inequalities from (17), (18),(19),(20)  we have  

),,(),(0 1  xUxU   

),,(),(1  xUxU   

),,(),(1  xUxU   

10

9 m
  

Thus we get  

10

9
),,(),(0 1




m
xUxU   

Hence Proved. 

Definition 1  

Let x be a point in n-dimensional space R . The point is called an  -feasible solution or an 

solution if the following condition is satisfied that is 

mjxf j ,...,3,2,1  ,  )(    

Let us now propose and prove an important theorem concerning the above definition. 

Theorem 5 

Statement: - Suppose x is an optimal solution of (12) and x̂ be an optimal solution of (14) where 

both x  and x̂ lies in n-dimensional space R . Also further presume that x  is a feasible solution to the 

problem defined in (1) and x̂ is  -feasible solution to the problem defined in (1), then  




mxfxf
m

 )ˆ()(
10

00  
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Proof: 

Since x̂ is presumed to be  -feasible solution to (1)  

(21)  
10

)ˆ((

1




m
xfp j

m

j




 

Now it has been given in the statement that x is feasible solution to (1)  

(22)   0)((

1




xfp

m

j

j  

Thus using the result proved in theorem 4 we have  

10

9
),,ˆ(),(0 1




m
xUxU   

10

9
))ˆ(()ˆ())(()(0

1

0

1

0


 

m
xfpxfxfpxf j

m

j

m

j

j  


 

Using (21) and (22) in the above inequality we get  

10

9
))}ˆ(()ˆ({)(0

1

00


 

m
xfpxfxf j

m

j

 


 

))ˆ((
10

9
)ˆ()())ˆ((

1

00

1

xfp
m

xfxfxfp j

m

j

j

m

j




  


  

1010

9
)ˆ()(

10
00

 mm
xfxf

m
  




mxfxf
m

 )ˆ()(
10

00  

Thus the theorem is proved. 

The above theorem shows that a near about optimal solution to (1) can can be obtained under some 

certain soft conditions by solving (12). 

The functions defined in (1) can be convex functions also.  A result describing the sub-optimality 

condition of an optimal solution to (1) bounded by the penalty and smoothing parameter can be 

established and is discussed in the theorem proved below.  Before proceeding  further to state and 

prove  the theorem , let us define the notion of  Lagrange’s multipliers for convex functions. 
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Definition 2  

Forany x
*


nR  , the vector 
*z 

mR is called a Lagrangian augment vector corresponding to 
*x iff 

*x and 
*z  satisfy the necessary condition  

  (23)                                                  0)()( *

1

**
0  



xfzxf j

m

j

j  

  (24)                                                            0)( ** xfz jj  

  (25)                                                                 0* jz  

(26)                                                         0)( * xf j  for mj ,......,3,2,1  

Theorem 6 

Statement: - Suppose that the functions )(0 xf and )(xf j defined in (1) are assumed to be convex 

functions. Let x~ is presume to be an optimal solution of (1) and z be Lagrange Multiplier vector in 

reference to x~ then  

10

9
),,(),,~(




m
xUxU   

provided that  jz , mj ,...,3,2,1  

Proof: 

Using the idea of convexity of both the functions 0f and jf for mj ,...,3,2,1  we have the condition  

(27) )~()~()~()( 00 xxxfxfxf T
o    for all x in nR  also  

(28)  mjxxxfxfxf T
jjj ,...,3,2,1,)~()~()~()(   

As x~ is assumed to be optimal solution to (1) and z is supposed to be corresponding LaGrange 

vector multiplier, therefore by (23), (24), (25),(26), (27),(28) we can say that  

)()~()~()~(),(

1

01 xfxxxfxfxU

m

j

j
T 



    

               = )()~()~()~(

11

xfxxxfzxf

m

j

j
T

j

m

j

j 






    

)())~()(()~(

11

xfxfxfzxf

m

j

jjj

m

j

j 






    








 

m

j

jj

m

j

j xfxfzxf

11

)()()~(   

because )()( xfxf jj
  

hence we have  
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)()()~(),(

1

1 xfzxfxU j

m

j

j




     

So for  jz  and for mj ,...,3,2,1  we get the following result 

(29)   )~(),(1 xfxU   

Now from the theorem 2 we have the result 

(30)  
10

9
),(),,(0 1




m
xUxU   

Since the result is true for every value of x so it must be true for x~ also  

(31)  
10

9
),~(),,~(0 1




m
xUxU   

Moreover x~ is feasible solution so ),~()~( 1 xUxf     (using (12))  

Putting the above equality in (31) we get  

(32)  
10

9
)~(),,~(0




m
xfxU    

Also x~ is feasible solution so we have  

),(),~( 11  xUxU   

(33)   
10

9
),(

10

9
),~( 11







m
xU

m
xU   

Now from (31) we have the inequality  

10

9
),~(),,~( 1




m
xUxU   

),~(
10

9
),,~( 1 


 xU

m
xU   

),~(
10

9
),,~( 1 


 xU

m
xU   

(34)  ),(),,(
10

9
),,~(),,( 1 


 xUxU

m
xUxU   

Also from the inequality (30) we can say that  

0),(),,( 1   xUxU  

Using this in the above inequality in (34)  

0
10

9
),,~(),,( 




m
xUxU  

10

9
),,~(),,(




m
xUxU   

10

9
),,~(),,(




m
xUxU   
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10

9
),,(),,~(




m
xUxU   

10

9
),,(),,~(




m
xUxU   

Hence Proved  

The above result helps us to comprehend that when the value of penalty parameter is large enough 

than an appropriate solution to (12) is also an approximate solution to (1) if the functions are 

assumed to be convex. 

Algorithm 

On the basis of smoothing penalty function defined for smoothing penalty problem defined in (14) , 

we submit an algorithm to solve the problem defined in (1) in the following steps 

Step 1: For given x , 0 , 0 , 0 , 1N and 10   . Let 0k and move forward to step 2. 

Step 2: Solve the problem ),,(min kkRx
xUn 


taking kx as the initial point. Let 1kx is the solution 

obtained in the current step. 

Step3: Check for  feasibility of the solution for the problem (1).  If it is found to be  feasible 

then stop the procedure.  If it is not so then evaluate kk N 1 , kk  1 and 1 kk and proceed 

further as in step 2. 

The step 3 of the above algorithm and by the theorem 5 it can be said that 1kx is an approximate 

optimal solution to (1). Also it can be found that in the above algorithm that as the sequence k

approaches to the value 0 as k and k for k and the  kk  also decreases to 0. 

Theorem 7 

Statement:-  Let  


),,(minarg xU
nRx

 for any   , ,   ,0  . Further if the sequence  kx  

developed by the algorithm defined above has an accumulation point, then any accumulation point 

of  kx  is the solution to (1). 

Proof: 

Let us assume that the accumulation point of the sequence generated is x


. Hence for some subset V

of N we have xxk 
 . In order to show that x


is an optimal solution to the problem (1) it is sufficient 

to prove the following two conditions which are  

a. Qx


 

b. )(inf)( xfxf Qx 


  

a. let us assume that Qx


and and for some 0 there exists an index j such that  

(35)   
)( j

j xf  

Now from the third step in the above algorithm it is clear that k as k . Also from the 

second step of the algorithm it is evident that for any Qx we have  

10

9
),,(),,( kk

kkkk
k m

xUxU


     (from theorem 6) 
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10

9
)()( kkk m

xfxf


  which contradicts as k . Hence our assumption is false. Hence Qx


 

b. From the algorithm we have the condition  

0kk  thus for any 0 we have  kkm . Also from the second step of the algorithm for any 

Qx  

10

9
)()( kkk m

xfxf


   

10


  

Thus )(xf


  satisfies the defined condition. 

Hence Proved. 

Convergence  

Define for all nRx sets  

(36)    mjxfjxV j ,...,3,2,1,)(|)(    

(37)    mjxfjxV j ,...,3,2,1,)(|)(    

Now after defining the above two sets, let us now discuss the convergence in the following theorem. 

Theorem 8 

Statement:-  Let the function satisfies the coercive condition which is 


)(xflt
x  and  kx be the 

sequence generated in the algorithm. Assume that ),,( kk
kxU  is bounded sequence. Then prove that 

the sequence  kx  is also a bounded sequence and every accumulation point x


is an optimal solution 

to the problem defined in (1). 

Proof: 

The proof of the above theorem is divided into two parts. The first part is for proving the 

boundedness of the sequence  kx  and in the second half is to prove that every accumulation point is 

also an optimal solution to (1). 

Let us now prove that the sequence is bounded. Since it is already presumed in the statement that 

the sequence  

),,( kk
kxU  is bounded , hence there exists a no M such that  

(38)   MxU kk
k ),,(  ,....3,2,1,0j  

Now assume that the sequence }{ kx is unbounded and wlog kx as k . 

From the definition of smoothing function it is known that  

(39)                    0)(( 


k
j

Ij

xfp  
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Therefore from (38)  and (39)  

,...2,1,0             ,)())(()(),,(  


jxfxfpxfxUM kk
j

Ij

j
k

kk
k

k    

which is contrary to what have been supposed in (38). Hence the sequence  kx is bounded.  

Further it would be shown that x


is feasible solution to (1). Suppose that  

(40)   xxlt k
k


 .  

Assume that x


is not feasible to (1). Therefore there exists some Ij such that 0)(  xf j


. Now 

(41) ))(()(),,( k
j

Ij

k
k

kk
k xfpxfxU

k


    

                       = ))(())(()(

)()(

k
jpk

k

xVj

jk
k xfxfpxf
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k
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k
k

k
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)(5
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xVj k
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Since 0)(  xf j


 , so for any large k the set )(: xfj j


is non -void . Then  any Ij  will satisfy 

the condition  )(xf j


. So if k and k and 0k , then  (41) gives  

),,( kk
kxU  which contradictory to what has been assumed in the statement of the theorem. 

Hence our assumption is false. Thus x


is a feasible solution to (1). Now in the last part of the proof 

it is required to show that x


is an optical solution to (1). Let us suppose that x is an optical solution 

to (1). Since in the algorithm it has been assumed that kx is an optical solution to ),,( kk
kxU  which 

means that  

(42)    ....,3.2.1),,(),,(  kxUxU kkkk
k   gives  

))(()()(()( xfpxfxfpxf

Ij

jk
k

Ij

jk
k

kk 


     

   Now using (39) in above inequality it is seen that  

  (43)  )()(()( xfxfpxf k

Ij

jk
k

k   


  

Let k   ,  using (40)  in (43)  

(44)  )()(()( xfxfpxf

Ij

jk k 

 



  

as x


is feasible to (1) , it can be concluded that 

(45)  )()( xfxf 

  

Also x


is feasible to (1) and x is an optical solution to (1) , it gets us the inequality  

(46)  )()( xfxf
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So from (45) and (46)  

)()( xfxf


   

Thus x


is an optimal solution to (1). 
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