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Abstract 

The current paper contributes towards the investigation of L-supermerotopic spaces. It is a generalization of 

merotopy as far as the axiomatic structure is concerned, and proximity, both in terms of axioms and number of 

elements. Lattice structures of L-supermerotopic spaces are investigated and it is searched through L-superpre-

merotopy. Some basic and desirable results are also obtained.. 
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1. Introduction 

A large part of our genuine life problems in engineering, and so forth deals with different uncertainties. Of 

all the theories, the idea of fuzzy sets [8] emerged as a powerful tool to manage uncertainties. The concept  of 

nearness introduced in [6], has been explored broadly widely in fuzzy settings. The idea of grills  in conjunction  

to merotopies may be seen in [9, 10]. Near structures have imparted hugely to understand and comprehend of 

various extension problems [5]. Nearness  of two sets and more than two sets  in soft set theory may be seen in 

[11, 12, 13, 14]. Katsaras [2] presented fuzzy proximity in [0,1]-fuzzy  set  theory.  Afterwards,  Wang and  Liu  

[3], further extended the proximities into 𝐿-fuzzy set theory. Ward [1] studied nearness of finite order by giving 

a restriction on the cardinality. Chattopadhyay and Njastad [7] discussed the completion of Riesz merotopic 

space. 

The concept of supernearness is introduced in [4] and motivated by this we extended the concept  of 

supernearness in L-fuzzy set theory in the present paper. 

2. Preliminaries  

Suppose 𝑈 be a non-empty set and 𝐿 be a distributive and complete lattice with largest element 1, smallest 

element 0 and an order reversing involution: 𝐿 → 𝐿. An 𝐿 − fuzzy subset in 𝑈 is an element of the family 𝐿𝑈 of 

every functions from 𝑈 to 𝐿. An 𝐿 − fuzzy point 𝑥𝑠 ∈ 𝐿𝑈, 𝑠 ∈ 𝐿 − {0}, is defined by 𝑥𝑠(𝑢) = 𝑠, 𝑥𝑠(𝑣) = 0 

when 𝑢 ≠ 𝑣. 

2.1 Definition 

Let ℭ, ℑ be subsets of 𝐿𝑈 then we say: 

(i) 𝑠𝑒𝑐 ℭ = {𝑘 ∈ 𝐿𝑈: 𝑘 ⋀ 𝑙 ≠ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑙 ∈ 𝐿𝑈} 

(ii) 𝑠𝑡𝑎𝑐𝑘 ℑ = {𝑘 ∈ 𝐿𝑈: 𝑘 ≥ 𝑙, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑙 ∈ 𝐿𝑈} 

2.2 Definition 

Suppose 𝑈 be a nonempty set and 𝑃(𝐿𝑈) denotes the power set. Then 𝜍 is said to be an 𝐿 −merotopy on 𝑈 

provided, for subsets 𝒞, ℳ ∈ 𝐿𝑈, 
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(M1) 𝒞 corefines ℳ and ℳ ∈ 𝜍 implies  𝒞 ∈ 𝜍 ,  

(M2) ∧ 𝒞 ≠ 0 implies 𝒞 ∈ 𝜍, 

(M3) ∅ ≠ 𝜍 ≠ 𝑃(𝐿𝑈), 

(M4) 𝒞 ∨  ℳ ∈ 𝜍 implies 𝒞 ∈ 𝜍 or ℳ ∈ 𝜍 

The pair (𝑈, 𝜍) is said to be an 𝐿 −merotopic space. For an 𝐿 −merotopic spaces (𝑈, 𝜍): 

𝑐𝑙𝜍𝑘 = ∨ {𝑥𝑝: {𝑥𝑝, 𝑘} ∈ 𝜍}, 𝑘 ∈ 𝐿𝑈, 

An 𝐿 −merotopy 𝜍 on 𝑈 is said to be an 𝐿 −nearness if the below mentioned condition is satisfied:  

(M5) {𝑐𝑙𝜍𝑘 , 𝑐𝑙𝜍𝑙 }∈ 𝜍 implies {𝑘, 𝑙} ∈ 𝜍. 

3.  𝐋 −Supermerotopies 

3.1 Definition 

Let 𝑈 a non-empty set.  A subset 𝐵𝑈 ⊂ 𝐿𝑈 is said to be 𝐿 −prebornology or a 𝐵 −structure on 𝑈 if the 

followings conditions hold: 

(FB1) 𝑓 ≤ 𝑔 ∈ 𝐵𝑈 ⇒ 𝑓 ∈ 𝐵𝑈 

(FB2) 0 ∈ 𝐵𝑈 

(FB3) 𝑥 ∈ 𝑈 ⇒ {𝑥𝑝} ∈ 𝐵𝑈  

For a pair of 𝐹𝐵 −structures 𝐵𝑈 , 𝐵𝑉 on sets 𝑈 and 𝑉, respectively, a map 𝐹: 𝑈 → 𝑉 is said to be bounded if 

and only if it satisfies the followings condition: 

{𝐹[𝑏]|𝑏 ∈ 𝐵𝑈} ⊆ 𝐵𝑉 

Elements of 𝐵𝑈 will be called bounded fuzzy sets 

3.2 Definition 

For an 𝐹𝐵 − set 𝐵𝑈, a map 𝑀𝑈: 𝐵𝑈 → 𝑃(𝑃(𝐿𝑈)) is said to be 𝐿 −premerotopic operator (denoted as super 

𝐿 −premerotopic) if the following axioms holds: 

(FNS1) 𝑔 ∈ 𝐵𝑈and ℭ corefines ℑ ∈ 𝑀𝑈(𝑔) ⇒ ℭ ∈ 𝑀𝑈(𝑔) 

(FNS2) 𝑔 ∈ 𝐵𝑈 ⇒ 𝐵𝑈 ∉ 𝑀𝑈(𝑔) ≠ 0 

(FNS3) 𝑔 ∈ 𝑀𝑈(0) ⇒ 𝑔 = 0 

(FNS4) {𝑥𝑝} ∈ 𝑈 ⇒ {𝑥𝑝} ∈ 𝑀𝑈{{𝑥𝑝}} 

(FNS5) ℎ ⊆ 𝑔 ∈ 𝐵𝑈 ⇒ 𝑀𝑈(ℎ) ⊆ 𝑀𝑈(𝑔) 

If in addition to this, 

(FNS6) 𝑔 ∈ 𝐵𝑈 and 𝒞 ∨  ℳ ∈ 𝑀𝑈(𝑔)  ⇒ 𝒞 ∈ 𝑀𝑈(𝑔) or ℳ ∈ 𝑀𝑈(𝑔) 

Then the pair (𝐵𝑈 , 𝑀𝑈) is said to be an 𝐿 − supermerotopic space. 

Elements of 𝑀𝑈(𝑔) are known as 𝐵 −near collection. 

For a pair merotopic spaces (𝐵𝑈 , 𝑀𝑈), (𝐵𝑉 , 𝑀𝑉) a bounded map 𝜏: 𝐵𝑈 → 𝐵𝑉 is said to be 𝐿 −
supermerotopic map if and only if it satisfies {𝜏[𝑔]|𝑔 ∈ 𝐵𝑈} ⊆ 𝐵𝑉. 

3.3 Example 

(i) Let 𝑠 be a 𝐿 −superproximity structures on 𝐵𝑈. Then  for 𝑔 ∈ 𝐵𝑈, define: 

𝑀𝑈(ℎ) = {𝒞 |𝒞 ⊂ 𝑠(𝑔)} such that 𝑠(𝑔) = {ℎ ∈ 𝐿𝑈|𝑔 𝑠 ℎ}. 

(ii) For semi nearness space (𝑈, 𝜍) such that 𝐵𝑈 = 𝑃(𝐿𝑈), define: 

𝑀𝜉(ℎ) = {
{0}, 𝑖𝑓 𝑓 = 0

 {𝑔: {ℎ} ∪ 𝑔 ∈ 𝜍}, otherwise
. 
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3.4 Remar 

 For an 𝐿 −merotopy structures 𝜉 on 𝐵𝑈 , for 𝑘 ∈ 𝐵𝑈 

𝑀𝑈(𝑘) = {ℭ: ℭ ⊂ 𝜉(𝑘)} where 𝜉(𝑘) = {𝑙 ∈ 𝐵𝑈: {𝑘, 𝑙} ∈ 𝜉} 

Then 𝑀𝑈(𝑘) is super 𝐿 −premerotopy 

Let 𝑆𝑀(𝑈) = {𝑀𝑈: 𝑀𝑈 is a 𝐿 − supermerotopy on 𝑈} and family 𝑆𝑀(𝑈) is partially ordered by the 

relation defined by 𝑀𝑈 ≤ 𝑀𝑉 if and only if 𝑈 ⊂ 𝑉, for 𝑀𝑈, 𝑀𝑉 ∈ 𝑆𝑀(𝑈) 

3.5 Proposition 

Suppose (𝐵𝑈 , 𝑀𝑈) be a nonempty subfamily of 𝑆𝑀(𝑈) (super 𝐿 −premerotopic spaces). Then  

(i) ∪ 𝑀𝑈 is a super 𝐿 −premerotopy on 𝑈 and ∪ 𝑀𝑈 = sup {𝑀𝑈: 𝑈 ∈ 𝐼}. 

(ii) ⋂𝑀𝑈 is a super 𝐿 −premerotopy on 𝑈 and ⋂𝑀𝑈 = inf {𝑀𝑈: 𝑈 ∈ 𝐼}. 

Proof:  Since 𝑓 ∈  ∪ 𝑀𝑈 implies 𝑓 ∈ 𝑀𝑈 such that ℭ corefines ℑ ∈ ∪ 𝑀𝑈 ⇒ ℭ ∈ 𝑀𝑈  which gives ℭ ∈ ∪
𝑀𝑈. Suppose 𝑀𝑈(0) = {0} such that 𝑀 = ∪ 𝑀𝑈(0) = {0}  and 𝐵(𝐿𝑈) ∉ 𝑀𝑈(𝑓), ∀𝑓 ∈ 𝐵𝑈 . Since 𝐵𝑈 ∉
𝑀𝑈(𝑓) implies 𝐵𝑈 ∉ ∪ 𝑀𝑈(𝑓). Therefore, 0 ∉ 𝑀𝑈(𝑓). Further ℎ ≤ 𝑔 ∈ 𝑀𝑈 implies 𝑀𝑈(ℎ) ⊂ 𝑀𝑈(𝑔). It can be 

easily proved that ∪ 𝑀𝑈(𝑔) ⊂ ∪ 𝑀𝑈(𝑓). Also 𝑥𝑝 ∈ 𝑈 ⇒ {𝑥𝑝} ∈  ∪ 𝑀𝑈 {{𝑥𝑝}}. Since 𝑥 ∨  𝑦 ∈ 𝑀(𝑓) =

 ∪ 𝑀𝑈(𝑓). Now 𝑥  ∨  𝑦 ∈ 𝑀𝑈𝑠
(𝑓), for some 𝑠 which implies 𝑥 ∈ 𝑀𝑈𝑠

(𝑓) or 𝑦 ∈ 𝑀𝑈𝑠
(𝑓) also 𝑥 ∈ ∪ 𝑀𝑈𝑠

(𝑓) or 

𝑦 ∈  ∪ 𝑀𝑈𝑠
(𝑓). This gives 𝑥 ∨  𝑦 ∈ 𝑀𝑈. Hence proved. 

(ii) ⋂𝑀𝑈 is a 𝐿 −premerotopy on 𝑈 if satisfies: if  𝑘 ≤ 𝑙 and 𝑙 ∈ 𝑀𝑈 ∀ 𝛽, then 𝑘 ∈ 𝑀𝑈 for all 𝛽. If ⋂𝑘 ≠ 0 

then 𝑘 ∈ 𝑀𝑈 ∀ 𝛽 and so ⋂𝑀𝑈 ≠ ∅. If 0 ∈ 𝑘, gives 𝑘 ∉ 𝑀𝑈 and {1} ∈ 𝑀𝑈∀ 𝛽. 

3.6 Theorem 

(i) Consider a super 𝐿 −supermerotopic space (𝐵𝑈 , 𝑀𝑈
∗ ). Define ℭ ∈ 𝑀𝑈

∗  if and only if there do not exists 

finitely many ℑ1, ℑ2, ℑ3, ℑ4, … … . , ℑ𝑛 ∉ 𝑀𝑈
∗  such that ℑ1 ∨ ℑ2 ∨ ℑ3 ∨, … … . ,∨ ℑ𝑛 corefines ℭ. Then (𝐵𝑈 , 𝑀𝑈

∗ ) is 

an 𝐿 − superpremerotopic space. 

(ii) Suppose 𝑀𝑈
∗ = ⋂𝑀𝑈

∗  be a nonempty family of 𝐿 −merotopic space on the set 𝑈. If  𝑀𝑈
∗ = ⋂𝑀𝑈

∗  then 

𝑀𝑈
∗ = 𝑖𝑛𝑓{𝑀𝑈

∗ }. 

Proof. With axioms (FNS1) 𝑓 ∈ 𝐵𝑈  and ℑ corefines ℭ ∈ 𝑀𝑈
∗  implies ℑ ∈ 𝑀𝑈

∗ . Suppose ℭ ∈ 𝑀𝑈
∗  there do not 

exists finitely many ℑ1, ℑ2, ℑ3, ℑ4, … … . , ℑ𝑛 does not corefines ℭ and ℑ ∉ 𝑀𝑈
∗  there exists ℑ1 ∨ ℑ2 ∨ ℑ3 ∨

, … … . ,∨ ℑ𝑛 corefines ℑ and ℑ corefines ℭ implies there exists ℑ1 ∨ ℑ2 ∨ ℑ3 ∨ , … … . ,∨ ℑ𝑛 corefines ℭ such that 

ℭ ∉ 𝑀𝑈
∗ . Now suppose that 0 ∉ 𝑀𝑈

∗  there exists finitely many ℑ1, ℑ2, ℑ3, ℑ4, … … . , ℑ𝑛 ∉ 𝑀𝑈
∗ (∅) and also ℑ1 ∨

ℑ2 ∨ ℑ3 ∨, … … . ,∨ ℑ𝑛 ∉ 𝑀𝑈
∗ (0) impies 0 ∉ 𝑀𝑈

∗ (0) which is contradiction. So 0 ∈ 𝑀𝑈
∗ . Since 𝑔 < 𝑓 ∈ 𝐵𝑈 

implies 𝑀𝑈
∗ ⊂ 𝑀𝑈

∗ (𝑓) and 𝑀𝑈
∗ ≠ 𝐵𝑈 . 

Let {𝑀𝑈𝛼
: 𝛼 ∈ 𝐼, 𝑤ℎ𝑒𝑟𝑒 𝐼 𝑖𝑠 𝑎𝑛 𝑖𝑛𝑑𝑒𝑥 𝑠𝑒𝑡} is the family of super 𝐿 −premerotopies on a set 𝑈, then ∪ 𝑀𝑈𝛼

 

is a super 𝐿 −premerotopy on 𝑈. 

3.7 Theorem 

The family 𝑆𝑀(𝑈) of all 𝐿 −supermerotopies on a universal set 𝑈 is a complete distributive lattice with 

respect to the order defined by set inclusion. 

Proof. As per the previous theorem, 𝑆𝑀(𝑈) is a complete lattice and for 𝑀𝑈1
, 𝑀𝑈2

, 𝑀𝑈3
∈ 𝑆𝑀(𝑈), 𝑀𝑈1

∨

(𝑀𝑈2
∨  𝑀𝑈3

) = (𝑀𝑈1
∨ 𝑀𝑈2

)⋀(𝑀𝑈1
∨  𝑀𝑈3

); here ∨ {𝑀𝑈𝑖
: 𝑖 ∈ 𝐼} = ∪ {𝑀𝑈𝑖

: 𝑖 ∈ 𝐼}, 𝑀𝑈𝑖
∈ 𝑆𝑀(𝑈). Suppose ℑ ∈

𝑀𝑈1
∨ (𝑀𝑈2

∨  𝑀𝑈3
). Then either ℑ ∈ 𝑀𝑈1

 or ℑ ∈ (𝑀𝑈2
∨  𝑀𝑈3

). Suppose ℑ ∈ 𝑀𝑈1
 for any finite number of 

ℑ1, ℑ2, ℑ3, ℑ4, … … . , ℑ𝑛 if  ℑ1 ∨ ℑ2 ∨ ℑ3 ∨, … … . ,∨ ℑ𝑛 corefines ℑ then ℑ𝑖 belongs to 𝑀𝑈𝑖
 for some 𝑖. Therefore 

ℑ ∈ (𝑀𝑈1
∨ 𝑀𝑈2

)⋀(𝑀𝑈1
∨  𝑀𝑈3

). Second care, Suppose that ∃ finitely many element ℑ1, ℑ2, ℑ3, ℑ4, … … . , ℑ𝑛 

belongs to 𝑃(𝐿𝑈) − (𝑀𝑈1
∪ 𝑀𝑈2

) ∩ (𝑀𝑈1
∪  𝑀𝑈3

) such that ℑ1 ∨ ℑ2 ∨ ℑ3 ∨, … … . ,∨ ℑ𝑛 corefines ℑ. Then either 

ℑ𝑖 ∉ (𝑀𝑈1
∪ 𝑀𝑈2

) or ℑ𝑖 ∉ (𝑀𝑈1
∪  𝑀𝑈3

) for all 𝑖 therefore ℑ𝑖 ∉ (𝑀𝑈1
∩  𝑀𝑈3

). 

So ℑ1, ℑ2, ℑ3, ℑ4, … … . , ℑ𝑛 ∈ 𝑃(𝐿𝑈) − (𝑀𝑈2
∩ 𝑀3) such that ℑ1, ℑ2, ℑ3, ℑ4, … … . , ℑ𝑛 corefines ℑ implies 

ℑ ∉ (𝑀𝑈2
⋀ 𝑀3). 



L-Supermerotopic Spaces 

1517 

Converse of this theorem , suppose ℑ ∈ (𝑀𝑈1
∪ 𝑀𝑈2

)⋀(𝑀𝑈1
∪  𝑀𝑈3

) such that there do not exists finitely 

many ℑ1, ℑ2, ℑ3, ℑ4, … … . , ℑ𝑛 ∉ (𝑀𝑈1
∪ 𝑀𝑈2

)⋀(𝑀𝑈1
∪  𝑀𝑈3

) such that ℑ1 ∨ ℑ2 ∨ ℑ3 ∨, … … . ,∨ ℑ𝑛 corefines ℑ. 

Then ℑ ∈ 𝑀𝑈1
∪ (𝑀𝑈2

⋀ 𝑀𝑈3
) which implies (𝑀𝑈1

∪ 𝑀𝑈2
) ∩ (𝑀𝑈1

∪  𝑀𝑈3
) ⊇ 𝑀𝑈2

∩  𝑀𝑈3
 

3.8 Definition 

A non-empty 𝐿 −merotopic space (𝐵𝑈 , 𝑀𝑈) such that 0 ≠ 𝑓 ∈ 𝐵𝑈 being a bounded set. A subset ℭ ⊂ 𝐿𝑈 is 

said to be 𝑀𝑈− clan in 𝑓 if it follows following axioms: 

(cl1) 𝑠𝑡𝑎𝑐𝑘 ℭ = ℭ, 

(cl2) 𝑓 ∨ 𝑔 ∈ ℭ ⇒ 𝑓 ∈ ℭ 𝑜𝑟 𝑔 ∈ ℭ, 

(cl3) 0 ∉ ℭ, 

(cl4) 𝑐𝑙𝑁(𝑓) ∈ ℭ ⇒ 𝑓 ∈ ℭ, 

(cl5) ℭ ∈ 𝑀𝑈(𝑓), 

(cl6) 𝑓 ∈ sec {𝑐𝑙𝑁(𝑓)|𝑓 ∈ ℭ}. 

 3.9  Theorem 

Consider a super 𝐿 −supermerotopic space (𝐵𝑈 , 𝑀𝑈).  Let 𝐶𝑈  =  {ℭ ⊂  𝐿𝑈 | ∃ 𝑔 ∈  𝐵𝑈  \ {0}, ℭ 𝑖𝑠 𝑎𝑛 𝑁 −
𝑐𝑙𝑎𝑛 𝑖𝑛 𝑔} and for each ℳ ⊂ 𝐶𝑈 , we have 𝑐𝑙𝐶𝑈  (ℳ) = {ℭ ∈ 𝐶𝑈  | ∩ ℳ ⊂ ℭ }. Then 𝑐𝑙𝐶𝑈  (ℳ)is a kuratowski 

closure operator on 𝑈 which generates a topology. 

Proof. Since 0 ∉ ℭ, ℭ ∉  𝑐𝑙𝐶𝑈  (ℳ) and so the result follows. Let 𝒦 ∈ ℳ. Then ∩ ℳ ⊂ 𝒦. Therefore ℳ ⊂

𝑐𝑙𝐶𝑈  (ℳ). As ∩ 𝒦2 ⊂ ∩ 𝒦1 for every 𝒦1 ⊂  𝒦2, we have, 𝑐𝑙𝐶𝑈  (𝒦1) ⊂  𝑐𝑙𝐶𝑈  (𝒦2). Let ℭ ∉  𝑐𝑙𝐶𝑈 (ℳ1) ∪

 𝑐𝑙𝐶𝑈  (ℳ2). Then ∩ ℳ1 ⊈ ℭ and ∩ ℳ1 ⊈ ℭ. This gives that there exists, ℎ1 ∈  ∩ ℳ1 but ℎ1 ∉ ℭ. Also, there 

exists, ℎ2 ∈  ∩ ℳ2 but ℎ2 ∉ ℭ. Hence, ℎ1 ∨ ℎ2 ∉ ℭ. But, ℎ1 ∨ ℎ2 ∈ (∩ ℳ1) ∩ (∩ ℳ2) = ∩ (ℳ1 ∪ ℳ2). 

Therefore, ℭ ∉  𝑐𝑙𝐶𝑈  (ℳ1 ∪ ℳ2). Lastly, let ℭ ∉  𝑐𝑙𝐶𝑈  (ℳ). So, ∩ ℳ ⊈ ℭ. The result follows by noting that 

there exists, ℎ ∈ ∩ ℳ but ℎ ∉ ℭ. 

3.10 Theorem 

For 𝐿 −supermerotopic spaces (𝐵𝑈 , 𝑀𝑈) and (𝐵𝑉 , 𝑀𝑉), let 𝑓: 𝑈 → 𝑉 be a 𝐿 −supermerotopic map. Define a 

function 𝑓: 𝐶𝑈  → 𝐶𝑉  by setting for each ℭ ∈ 𝐶𝑈 ∶ 𝑓(ℭ) = {𝔇 ⊂  𝐿𝑈|𝑓−1[𝑐𝑙V(𝔇)] ∈ ℭ}. Then  𝑓: (𝐶𝑈, 𝑐𝑙𝐶𝑈
) →

(𝐶𝑉 , 𝑐𝑙𝐶𝑈
) is a continuous map. 

3.11 Theorem 

Let 𝜍  be an 𝐿 −supermerotopy on 𝑈. Then every maximal 𝜍 −compatible family (with respect to set 

inclusion) is an 𝐿 −grill and therefore a maximal 𝜍 −clan. 

Proof. Suppose that 𝜍 is an 𝐿 −supermerotopy on 𝑈, and 𝛿 ⊆ 𝐿𝑈 be a maximal 𝜍 −compatible family. So, 

0 ∉ 𝛿. Suppose 𝑘 ≥ 𝑙 and 𝑙 ∈ 𝛿. Then {𝑘} ∪ 𝛿 corefines 𝛿 and so {𝑘} ∪ 𝛿 is an 𝜍 −compatible family. But 

since, 𝛿 is a maximal 𝜍 −compatible family, 𝑘 ∈ 𝛿. Suppose 𝑘 ∨ 𝑙 ∈ 𝛿. Then this is our claim that either {𝑘} ∪
𝛿 or {𝑙} ∪ 𝛿 is an 𝜍 −compatible family. Let 𝛾 = {𝛿 ⊆ 𝐿𝑈: 𝛿 ⊆ 𝛿} and let the above stated the claim is not true. 

Then there exists 𝛿1 and 𝛿2 in 𝛾 such that {𝑘} ∪ 𝛿1 ∉ 𝜍  and {𝑙} ∪ 𝛿2 ∉ 𝜍 , and ({𝑘} ∪ 𝛿1)  ∨  ({𝑙} ∪ 𝛿2) ∉ 𝜍  

4 Conclusion 

We introduce  𝐿- supermerotopies, which is a generalization of  nearness both in axiomatic structure and 

fuzzy settings. The study investigates some significant and desirable properties in fuzzy settings. Moreover, the 

results obtained will be useful when considering extension problems. For future research, it is of interest to 

extend the results to study  𝐿 −supermerotopies through categorical viewpoint. Taking into account the 

generalization, the current work will assist in exploring the ideas of nearness in  further studies of topology. 
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