Turkish Online Journal of Qualitative Inquiry (TOJQI) Volume 12, Issue 7 July 2021: 12371 – 12380 #### Research Article # **Decomposition Of** (A_h, Λ) -Continuity HB. Sudhir 1 and Dr. S. Subramanian 2 #### **Abstract** In this paper, we introduce and study the notions of αg_{μ} - H -closed sets and $(\alpha g_{\rm H}, \lambda)$ -continuous functions in hereditary generalized topological spaces. Also we obtain a decomposition of $(\alpha_{\rm H}, \lambda)$ -continuity and $(\sigma_{\rm H}, \lambda)$ -continuity on a hereditary generalized topological space. #### 1 Introduction In the year 2002, Csaszar [1] introduced very usefull notions of generalized topology (G.T.) and generalized continuity. A subset A of a space (Z, μ) is μ - α -open [2], if $A \subset i_{\mu}c_{\mu}i_{\mu}(A)$. Let us denote by $\alpha(\mu)$ that of all μ - α -open sets. The μ - α -interior [2] of a subset A of a G.T.S. (Z, μ) denote by $i_{\alpha}(A)$, is defined by the union of all μ - α -open sets of (Z, μ) contained A. A subset A of (Z, μ) is said to be αg_{μ} -closed [5], if $c_{\alpha}(A) \subset M$ whenever $A \subset M$ and M is μ -open in (X, μ) . A nonempty family A of subsets of A is said to be a hereditary class [3], if $A \in A$ and $A \in A$, then $A \in A$, then $A \in A$ is hereditary generalized topological space (A, G, T.S.) and denoted by (A, μ) is hereditary generalized topological space (A, G, T.S.) and denoted by (A, μ) is (A, μ) for each $A \subseteq A$, (A, μ) is (A, μ) and (A, μ) and (A, μ) is (A, μ) such that (A, μ) and (A, μ) is ocontinuous ⁰Keywords: αg_u - H -closed sets, $(\alpha g_H, \lambda)$ -continuous functions. ⁰2000 Mathematics Subject Classification : 54A05. ¹Research Scholar, Department of Mathematics Prist University Tanjaavur, Tamil Nadu, India. ²Dean of Arts and Science, Prist University Tanjaavur, Tamil Nadu, India. [1] (resp. (σ, λ) -continuous [4], (α, λ) -continuous [4]), if for each λ -open set M in W, $f^{-1}(M)$ is μ -open (resp. μ - σ -open, μ - α -open) in (Z, μ) . **Lemma 1.1.** [[2], Lemma 2.2] Let (Z, μ) be a G.T.S. For any $L \subseteq Z$, we have 1. $$i_{\alpha}(L) = L \cap i_{\mu}c_{\mu}i_{\mu}(L)$$. ## 2 αg_{μ} - H-closed **Definition 2.1.** A subset A of a hereditary generalized topological space (X, μ, H) is said to be α -H-closed, if A^c is α -H-open. **Definition 2.2.** Let A be a subset of a hereditary generalized topological space (X, μ, H) . Then $i_{\alpha H}(A)$ is the union of all α -H-open set contained in A. **Propositon 2.3.** Let A be a subset of a hereditary generalized topological space (X, μ, H) . Then $i_{\alpha H}(A) = A \cap i_{\mu}c_{\mu}^{*}i_{\mu}(A)$. **Proof.** Let A be a subset of a hereditary generalized topological space (X, μ, H) . Then $A \cap i_{\mu}c_{II}^{*}i_{\mu}(A) \subset i_{\mu}c_{II}^{*}i_{\mu}(A)$ $=i_{\mu}(c_{\mu}^{*}(i_{\mu}(A\cap i_{\mu}(c_{\mu}^{*}(i_{\mu}(A))))))$ $=i_{\mu}(c_{\mu}^{*}(i_{\mu}(i_{\mu}(A)\cap c_{\mu}^{*}(i_{\mu}(A)))))$ $=i_{\mu}(c_{\mu}^{*}(i_{\mu}(i_{\mu}(A))))\cap i_{\mu}(c_{\mu}^{*}(i_{\mu}(A)))$ $\subseteq i_{\mu}(c - \mu^*(i_{\mu}(A \cap i_{\mu}(c^*_{\mu}(i_{\mu}(A)))))).$ Hence $A \cap i_{\mu}(c^*_{\mu}(i_{\mu}(A)))$ is an α -H-open in (X, μ, H) and contained in A. Thus, $A \cap i_{\mu}(c^*_{\mu}(i_{\mu}(A))) \subset i_{\alpha H}(A)$. Now $i_{\alpha H}(A)$ is α -H-open in (X, μ, H) . Therefore $i_{\alpha H}(A) \subset i_{\alpha H}(A) \cap i_{\mu}(c^*_{\mu}(i_{\mu}(A)))$ $\subseteq A \cap i_{\mu}(c^*_{\mu}(i_{\mu}(A))).$ Hence $i_{\alpha H}(A) = A \cap i_{\mu} c_{\mu}^* i_{\mu}(A)$. **Definition 2.4.** Let A be a subset of a hereditary generalized topological space (X, μ, H) . Then $c_{\alpha H}(A)$ is intersection of all α -H-closed set containing A. **Propositon 2.5.** Let A be a suset of a hereditary generalized topological space (X, μ, H) . Then $c_{\alpha H}(A) = A \cup c_{\mu} i_{H}^{*} c_{\mu}(A)$. **Proof.** Let A be a suset of a hereditary generalized topological space (X, μ, H) . Then $$c_{\mu}(i_{\mathbf{I}}(c_{\mu}(A \cup c_{\mu}(i_{\mathbf{I}}(c_{\mu}(A)))))) = c_{\mu}(i_{\mathbf{I}}(c_{\mu}(A))) \cup c_{\mu}(i_{\mathbf{I}}(c_{\mu}(A)))$$ $= c_{\mu}(i_{\mu}^*(c_{\mu}(A)))$ $\subseteq A \cup c_{\mu}(i_{\mathcal{U}}^*(c_{\mu}(A))).$ Now, $A \cup c_{\mu}(i_{\mu}^*(c_{\mu}(A)))$ is α -H-closed. Hence $c_{\alpha H}(A) \subseteq c_{\mu}(i^*_{\mu}(c_{\mu}(A))).$ Now, $c_{\mu}(i_{\mu}^{*}(c_{\mu}(A))) \subseteq c_{\mu}(i_{\mu}^{*}(c_{\mu}(c_{\alpha H}(A))) \subseteq c_{\alpha H}(A)$. $\Rightarrow A \cup c_{\mu}(i_{\mu}^{*}(c_{\mu}(A) \subseteq A \cup c_{\alpha H}(A) = c_{\alpha H}(A) \text{ Thus, } A \cup c_{\alpha H}(A) \subseteq c_{\alpha H}(A).$ Hence $c_{\alpha H}(A) = A \cup c_{\mu} i_{\mu}^* c_{\mu}(A)$. **Definition 2.6.** Let (X, μ, H) be a hereditary generalized topological space. A subset A of X is said to be αg_{μ} - H-closed if $c_{\alpha H}(A) \subseteq M$ whenever $A \subseteq M$ and M is μ -open. **Theorem 2.7.** Every μ -closed set is αg_{μ} -H-closed set but not conversely. **Proof.** Let $A \subset X$ is μ -closed such that $A \subseteq M$ and M is μ -open. Now $c_{\alpha H}(A) \subset c_{\mu}(A) \subseteq M$ and M is μ -open. Hence A is αg_{μ} -H-closed set **Example 2.8.** Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, d, e\}, \{a, b, d, e\}, \{a, c, d, e\}, X\}$ and $H = \{\emptyset, \{c\}\}$. Then $A = \{a, c, d\}$ is αg_{μ} - H-closedset but not μ -closed. **Theorem 2.9.** Every α - H-closed set is αg_u - H-closed set but not conversely. **Proof.** Let $A \subseteq X$ is α - H -closed. Consider M be any μ -open set and $A \subseteq M$. Since A is α - H -closed, so $c_{\alpha H}(A) \subseteq M$ whenever $A \subseteq M$ and M is μ -open. Hence A is αg_{μ} - H - closed. **Example 2.10.** Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, d, e\}, \{a, b, d, e\}, \{a, c, d, e\}, X\}$ and $H = \{\emptyset, \{c\}\}$. Then $A = \{a, c, d\}$ is αg_{μ} - H-closed set but not α - H-closed set. **Remark 2.11.** The intersection of any two αg_{μ} - H-closed sets need not be αg_{μ} - H-closed set. **Example 2.12.** Let $X = \{a, b, c\}$, $\mu = \{\emptyset, \{a\}, X\}$ and $H = \{\emptyset, \{c\}\}$. Then $A = \{a, b\}$ and $B = \{a, c\}$ are two ag_{μ} - H-closed sets but $A \cap B = \{a\}$ is not aag_{μ} - H-closed set. **Theorem 2.13.** If a subset A of X is αg_{μ} - H -closed in (X, μ, H) , then $c_{\alpha H}(A)$ - A contains no nonempty μ -closed sets of (X, μ) . **Proof.** Assume that A is αg_{μ} - H -closed. Let F be a non empty μ -closed set contained in $c_{\alpha H}(A) - A$. Since $A \subseteq X - F$ and A is αg_{μ} - H -closed, $c_{\alpha H}(A) \subseteq X - F$ and $F \subseteq X - c_{\alpha H}(A)$. Therefore, $F \subseteq c_{\alpha H}(A) \cap (X - c_{\alpha H}(A)) = \emptyset$, which implies that $c_{\alpha H}(A) - A$ contains no nonempty μ -closed sets. **Corollary 2.14.** Let (X, μ) be a strong generalized topological space with hereditary class H and $A \subseteq X$ is αg_{μ} -H-closed. Then A is α -H-closed iff $c_{\alpha H}(A) - A$ is μ -closed. **Proof.** Let A be α - H -closed. If A is α - H -closed $c_{\alpha H}(A) - A = \emptyset$ and $c_{\alpha H}(A) - A$ is μ -closed. Conversely, let $c_{\alpha H}(A) - A$ be μ -closed set, where A is α - H -closed. Then by Theorem 2.13, $c_{\alpha H}(A) - A$ does not contain any non empty μ -closed set. Since $c_{\alpha H}(A) - A$ is a μ -closed subset of itself, $c_{\alpha H}(A) - A = \emptyset$ and hence A is α - H-closed. **Theorem 2.15.** If A is μ -open and αg_{μ} -H-closed in (X, μ, H) then A is α -H-closed in (X, μ) . **Proof.** Let A be a μ -open and αg_{μ} -H-closed in (X, μ, H) . Then $c_{\alpha H}(A) \subseteq A$ and hence A is α -H-closed in (X, μ) . **Proposition 2.16.** A subset A of X is αg_{μ} -H-closed in (X, μ, H) if and only if $c_{\alpha H}(A) \cap F = \emptyset$ whenever $A \cap F = \emptyset$ and F is μ -closed in (X, μ, H) . **Proof.** Assume that A is αg_{μ} - H -closed. Let $A \cap F = \emptyset$ and F is μ -closed. Then $A \subseteq X - F$ and $c_{\alpha H}(A) \subseteq X - F$. Therefore, we have $c_{\alpha H}(A) \cap F = \emptyset$. Conversely, let $A \subseteq M$ and M be μ -open. Then $A \cap (X - M) = \emptyset$ and X - M is μ -closed. By hypothesis, $c_{\alpha H}(A) \cap (X - M) = \emptyset$ and hence $c_{\alpha H}(A) \subseteq M$. Therefore, A is an αg_{μ} -H-closed set. **Theorem 2.17.** For a subset A of (X, μ) , the following properties are equivalent: - 1. A is μ -locally closed, - 2. $A = U \cap c_{\alpha H}(A)$ for some $U \in \mu$, - 3. $c_{\alpha H}(A) A$ is μ -closed, - 4. $A \cup (X c_{\alpha H}(A)) \in \mu$, - 5. $A \subset i_{\alpha H}(A \cup (X c_{\alpha H}(A)))$. - **Proof.** (1) \Rightarrow (2). Let $A = U \cap V$, where $U \in \mu$ and V is μ -closed. Since $A \subset V$, we have $c_{\alpha H}(A) \subset c_{\alpha H}(V) \subset c_{\mu}(V) = V$. Since $A \subset U \cap c_{\alpha H}(A) \subset U \cap V = A$. Therefore, we obtain $A = U \cap c_{\alpha H}(A)$ for some $U \in \mu$. - (2) \Rightarrow (3). Suppose that $A = U \cap c_{\alpha H}(A)$ for some $U \in \mu$. Then, $c_{\alpha H}(A) A = c_{\alpha H}(A) \cap [X (U \cap c_{\alpha H}(A))] = c_{\alpha H}(A) \cap (X U)$. Since $c_{\alpha H}(A) \cap (X U)$ is μ -closed and hence, $c_{\alpha H}(A) A$ is μ -closed. - (3) \Rightarrow (4). We have $X (c_{\alpha H}(A) A) = (X c_{\alpha H}(A)) \cup A$ and hence, by (3) we obtain $A \cup (X c_{\alpha H}(A)) \in \mu$. - (4) ⇒ (5). By (4), $A \subset A \cup (X c_{\alpha H}(A)) = i_{\alpha H}(A \cup (X c_{\alpha H}(A)))$. - (5) \Rightarrow (1). Let $U = i_{\alpha H}[A \cup (X c_{\alpha H}(A))]$. Then, $U \in \mu$ and $A = A \cap U \subset U \cap c_{\mu}(A) \subset [A \cup (X c_{\alpha H}(A))] \cap c_{\mu}(A) = A \cap c_{\mu}(A) = A$. Therefore, we obtain $A = U \cap c_{\mu}(A)$, where $U \in \mu$ and $c_{\mu}(A)$ is μ -closed. Hence A is μ -locally closed. **Theorem 2.18.** Let A and B be subsets of a hereditary generalized topological space (X, μ, H) . If $A \subset B \subset c_{\alpha H}(A)$ and A is $\alpha g_{\mu} - H$ -closed, then B is $\alpha g_{\mu} - H$ -closed. **Proof.** Assume that $A \subset B \subset c_{\alpha H}(A)$ and A is αg_{μ} - H -closed. Then we have $c_{\alpha H}(B) - B \subset c_{\alpha H}(A) - A$. Let F be a μ -closed set such that $F \subset c_{\alpha H}(B) - B \subset c_{\alpha H}(A) - A$. Since A is αg_{μ} - H -closed, therefore $c_{\alpha H}(A) - A$ has no non-empty μ - closed subset and hence $c_{\alpha H}(B) - B$ contains no nonempty μ -closed subset. Hence B is αg_{μ} - H -closed. **Theorem 2.19.** If a subset A of (X, μ, H) is αg_{μ} - H-closed and B is μ -closed, then $A \cap B$ is αg_{μ} - H-closed. **Proof.** Suppose that $A \cap B \subseteq M$, where M is μ -open in (X, μ, H) . Then $A \subseteq (M \cup (X - B))$. Since A is $\alpha g_{\mu} - H$ -closed, $c_{\alpha H}(A) \subseteq M \cup (X - B)$ and hence $c_{\alpha H}(A) \cap B \subseteq M$. Therefore, $c_{\alpha H}(A \cap B) \subseteq M$ which implies that $A \cap B$ is $\alpha g_{\mu} - H$ -closed. **Definition 2.20.** A subset A of a hereditary generalized topological space (X, μ, H) is $\alpha g_{\mu} - H$ open if and only if A^c is $\alpha g_{\mu} - H$ -closed. **Theorem 2.21.** A subset A of a hereditary generalized topological space (X, μ, H) is αg_{μ} - H-open if and only if $F \subset \alpha Hi_{\mu}(A)$ whenever F is μ -closed and $F \subset A$. **Proof.** Assume that $F \subset \alpha \text{H}i_{\mu}(A)$ whenever F is μ -closed and $F \subset A$. Let $A^c \subset M$, where M is μ -open. Then $M^c \subset A$ and M^c is μ -closed, therefore $M^c \subset \alpha \text{H}i_{\mu}(A)$, which implies $\alpha \text{H}c_{\mu}(A^c) \subset M$. So A^c is $\alpha g_{\mu} - \text{H}$ -closed. Hence A is $\alpha g_{\mu} - \text{H}$ -open. Conversely, suppose that A is αg_{μ} - H -open, $F \subset A$ and F is μ -closed. Then F^c is open and $A^c \subset F^c$. Therefore, $\alpha H c_{\mu}(A^c) \subset F^c$ and so $F \subset \alpha H i_{\mu}(A)$. **Theorem 2.22.** Every ag_{μ} - H-open set is ag_{μ} -open set but not conversely. **Proof.** Let $A \subset X$ is αg_{μ} - H -open in (X, μ, H) . Then we have, $F \subset \alpha Hi_{\mu}(A)$ whenever $F \subset A$ and F is μ -closed in (X, μ, H) . Since $F \subset \alpha Hi_{\mu}(A) = A \cap i_{\mu}c_{\mu}^{*}i_{\mu}(A)$ $\subseteq i_{\mu}c_{\mu}i_{\mu}(A)$ $=i_{\alpha}(A).$ Hence A is αg_{μ} -open set by Theorem 2.11 [5]. **Theorem 2.23.** Let A and B be subsets of a hereditary generalized topological space (X, μ, H) . If $i_{\alpha H}(A) \subset B \subset A$ and A is $\alpha g_{\mu} \cdot H$ -open, then B is $\alpha g_{\mu} \cdot H$ -open. **Proof.** Suppose that $i_{\alpha H}(A) \subset B \subset A$. Then $X - A \subset X - B \subset c_{\alpha H}(X - A)$. By Theorem 2.18, X - B is αg_{μ} - H-closed. Hence B is αg_{μ} - open. **Propositon 2.24.** Let (X, μ) be a strong generalized topological space with hereditary class H . For each $x \in X$, either $\{x\}$ is μ -closed or $\{x\}$ is αg_{μ} -H-open. **Proof.** Let $\{x\}$ be not μ -closed. Then $X - \{x\}$ is not μ -open and the only μ -open set containing $X - \{x\}$ is X itself. Therefore $c_{\alpha H}(X - \{x\}) \subseteq X$ and hence $X - \{x\}$ is αg_{μ} -H-closed. Thus $\{x\}$ is αg_{μ} -H-open. **Remark 2.25.** The notions of μ^* -closed and αg_{μ} -H-closed are independent. **Example 2.26.** Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, d, e\}, \{a, b, d, e\}, \{a, c, d, e\}, X\}$ and $H = \{\emptyset, \{c\}\}$. Then $A = \{a, c, d\}$ is αg_{μ} - H-closedset but not μ^* -closed. **Example 2.27.** Let $X = \{a, b, c, d\}$, $\mu = \{\emptyset, \{b\}, \{c, d\}, \{b, c, d\}, X\}$ and $H = \{\emptyset, \{c\}\}$. Then $A = \{c\}$ is μ^* -closed but not αg_u -H-closed set. **Definition 2.28.** A subset A of a hereditary generalized topological space (X, μ, H) is said to be H-R-closed, if $A = c^*_{\mu}i_{\mu}(A)$. **Theorem 2.29.** Every H-R-closed is σ -H-open but not conversely. **Proof.** Let $A \subset X$ is H-R-closed in (X, μ, H) . Then $A = c^*_{\mu} i_{\mu}(A)$, which implies $A \subset c^*_{\mu} i_{\mu}(A)$. Hence A is σ -H-open. **Example 2.30.** Let $X = \{a, b, c, d\}, \mu = \{\emptyset, \{a, b\}, \{c\}, \{a, b, c\}, \{b, c, d\}, X\}$ and $H = \{\emptyset, \{d\}\}\$. Then $A = \{c\}$ is σ -H-open but not H-R-closed. **Definition 2.31.** A subset A of a hereditary generalized topological space (X, μ, H) is said to be - 1. $a \eta_{\mu}$ H-set, if $A = U \cap V$, where U is μ -open and V is α H-closed. - 2. a sA_H -set, if $A = U \cap V$, where U is σ - μ -open and V is H-R-closed. **Remark 2.32.** The union of two η_{μ} - H-sets need not be a η_{μ} - H-set. **Example 2.33.** Let $$X = \{\varsigma_1, \varsigma_2, \varsigma_3\}$$, $\mu = \{\emptyset, \{\varsigma_1\}, \{\varsigma_1, \varsigma_2\}, X\}$ and $H = \{\emptyset, \{\varsigma_2\}, \{\varsigma_3\}, \{\varsigma_2, \varsigma_3\}\}$. Then $A = \{\varsigma_1\}$ and $B = \{\varsigma_3\}$ are η_{μ} - H-sets but $A \cup B = \{\varsigma_1, \varsigma_3\}$ is not a η_{μ} - H-set. **Theorem 2.34.** Let A and B be a subset of quasi topological space (X, μ) withhereditary class H. If A and B are η_{μ} - H-sets. Then $A \cap B$ is also an η_{μ} - H-set. **Proof.** Let $A = U \cap V$ and $B = L \cap M$, where U and L are μ -open sets and V and M are α -H-closed sets. Now $A \cap B = (U \cap V) \cap (L \cap M) = (U \cap L) \cap (V \cap M)$, where $(U \cap L)$ is μ -open and $(V \cap M)$ is α -H-closed set. Hence $A \cap B$ is η_{μ} -H-set. **Theorem 2.35.** For a subset A of a hereditary generalized topological space (X, μ, H) the following are equivalent: - 1. A is η_{μ} H-set - 2. $A = U \cap c_{\alpha H}(A)$, for some μ -open set U. **Proof.** (1) \Rightarrow (2). Let A is η_{μ} - H -set. Then $A = U \cap V$, where U is μ -open V is α - H -closed. So $A \subset U$ and $A \subset V$. Which implies $c_{\alpha H}(A) \subset \alpha H c_{\mu}(V)$. Therefore, $A \subset U \cap c_{\alpha H}(A) \subset U \cap \alpha H c_{\mu}(V) = U \cap V = A$. Hence $A = U \cap c_{\alpha H}(A)$. (2) \Rightarrow (1). Let $A = U \cap c_{\alpha H}(A)$, for some μ -open set U. Here $c_{\alpha H}(A)$ is α - H -closed. Hence A is η_{μ} - H -set. **Theorem 2.36.** In a hereditary generalized topological space (X, μ, H) , the following hold: - 1. Every σ H-open is sA_H -set. - 2. Every H-R-closed set is sA_H-set. **Proof.** Obvious. **Theorem 2.37.** For a subset A of a hereditary generalized topological space (X, μ, H) , the following are equivalent: - 1. A is α -H-closed - 2. A is αg_{μ} H-closed set and η_{μ} H-set. **Proof.** $(1) \Rightarrow (2)$. This is obvious. (2) \Rightarrow (1). Let A is αg_{μ} - H-closed set and η_{μ} - H-set. Since A is η_{μ} - H-set, then A = U $\cap c_{\alpha H}(A)$, where U is μ -open in (X, μ, H) . So $A \subseteq U$ and since A is αg_{μ} - H-closed, then $c_{\alpha H} \subseteq U$. Therefore $c_{\alpha H} \subseteq U \cap c_{\alpha H} = A$. Hence A is α - H-closed set. **Theorem 2.38.** Let (X, μ) be a quasi topological space (X, μ) with hereditary class H. Then Every sA_H -set is δ -H-open. **Proof.** Let A be sA_H -set. Then $A = U \cap V$, where U is σ -H-open and V is H-R-closed. Since U is σ -H-open, $U \subset c^*_{\mu}i_{\mu}(U)$. Now $A \subset U \subset c^*_{\mu}i_{\mu}(U) \Rightarrow i_{\mu}c^*_{\mu}(A) \subset c^*_{\mu}i_{\mu}(U)$. Since V is H-R-closed, which implies $A \subset V = c^*_{\mu}i_{\mu}(V) \Rightarrow i_{\mu}c^*_{\mu} \subset i_{\mu}(V)$. Thus $i_{\mu}c^*_{\mu}(A) \subset c^*_{\mu}i_{\mu}(U)\cap i_{\mu}(V) \subset c^*_{\mu}(i_{\mu}(U)\cap i_{\mu}(V)) \subset c^*_{\mu}[i_{\mu}(U\cap V)] = c^*_{\mu}i_{\mu}(A)$. Hence A is δ -A-open. **Theorem 2.39.** For a subset A of a quasi topological space (X, μ) with hereditary class H the following are equivalent: - 1. A is σ -H-open - 2. A is strong β -H-open and sA_H -set - 3. A is strong β H-open and δ H-open **Proof.** (1) \Rightarrow (2). Let A is σ -H-open. Then $A \subset c_{\mu}^* i_{\mu}(A) \Rightarrow c_{\mu}^* (A) \subset c_{\mu}^* c_{\mu}^* i_{\mu}(A) = c_{\mu}^* i_{\mu}(A) \Rightarrow i_{\mu} c_{\mu}^* (A) \subset i_{\mu} c_{\mu}^* i_{\mu}(A) \subset c_{\mu}^* i_{\mu}(A)$. So $i_{\mu} c_{\mu}^* (A) \subset c_{\mu}^* i_{\mu}(A)$. Hence A is strong β -H-open and sA_H -set by Theorem (4.1.14.) - (2) \Rightarrow (3). Let A is strong β H-open and sA_H -set. Then A is strong β H-open and δ H-open by Theorem (4.1.16). - (3) \Rightarrow (1) Let A is strong β -H-open and δ -H-open. Then $A \subset c_{\mu}^* i_{\mu} c_{\mu}^* (A)$ and $i_{\mu} c_{\mu}^* (A) \subset c_{\mu}^* i_{\mu} (A)$. Now $A \subset c_{\mu}^* i_{\mu} c_{\mu}^* (A) \subset c_{\mu}^* i_{\mu} (A) = c_{\mu}^* i_{\mu} (A)$, which implies $\subset c_{\mu}^* i_{\mu} (A)$. Hence A is σ -H-open. # 3 $(\alpha g_{\rm H}, \lambda)$ -continuity **Definition 3.1.** A function $f:(X, \mu, H) \rightarrow (Y, \lambda)$ is said to - 1. (α_H, λ) -continuous, if $f^{-1}(V)$ is a α -H-open in (X, μ, H) for each $V \in \lambda$. - 2. (σ_H, λ) -continuous, if $f^{-1}(V)$ is a σ -H-open in (X, μ, H) for each $V \in \lambda$. - 3. (π_H, λ) -continuous, if $f^{-1}(V)$ is a π -H-open in (X, μ, H) for each $V \in \lambda$. - 4. $(\alpha g_H, \lambda)$ -continuous, if $f^{-1}(V)$ is a αg_{μ} -H-open in (X, μ, H) for each $V \in \lambda$. - 5. (η_H, λ) -continuous, if $f^{-1}(V)$ is a α -H-open in (X, μ, H) for each $V \in \lambda$. - 6. (R_H, λ) -continuous if $f^{-1}(V)$ is a H-R-open in (X, μ, H) for each $V \in \lambda$. - 7. (sA_H, λ) -continuous, if $f^{-1}(V)$ is a α -H-open in (X, μ, H) for each $V \in \lambda$. **Theorem 3.2.** For a function $f:(X, \mu, H) \to (Y, \lambda)$, the following hold: - 1. Every (α_H, λ) -continuous function is $(\alpha g_H, \lambda)$ -continuous. - 2. Every $(\alpha g_H, \lambda)$ -continuous function is $(\alpha g_\mu, \lambda)$ -continuous. **Proof.** (1). Let $f:(X, \mu, H) \to (Y, \lambda)$ is (α_H, λ) -continuous function. Now $f^{-1}(V)$ is α - H -open for each $V \in \lambda$. Since $f^{-1}(V)$ is αg_{μ} - H -open. Hence f is $(\alpha g_H, \lambda)$ -continuous. (2). Let f is $(\alpha g_H, \lambda)$ -continuous, which implies $f^{-1}(V)$ is αg_{μ} - H-open for each $V \in \lambda$. Now $f^{-1}(V)$ is αg_{μ} -open. Hence f is $(\alpha g_H, \lambda)$ -continuous. **Example 3.3.** Let $X = \{a, b, c, d, e\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, d, e\}, \{a, b, d, e\}, \{a, c, d, e\}, X\}$, $H = \{\emptyset, \{c\}\}, Y = \{p, q, r, s\}$ and $\lambda = \{\emptyset, \{p\}, \{q\}, \{p, q\}, \{q, s, t\}, \{p, q, s, t\}, \{p, r, s, r\}, Y\}$. Let the function $f : (X, \mu, H) \to (Y, \lambda)$ is defined by f(a) = p, f(b) = q, f(c) = r, f(d) = s, f(e) = r. Then the function f is $(\alpha g_H, \lambda)$ -continuous but not (α_H, λ) -continuous. **Example 3.4.** Let $X = \{a, b, c, d, e\}$, $\mu = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, d, e\}, \{a, b, d, e\}, \{a, c, d, e\}, X\}$, $H = \{\emptyset, \{c\}\}, Y = \{p, q, r, s\} \text{ and } \lambda = \{\emptyset, \{p\}, \{q\}, \{p, q\}, \{q, s, t\}, \{p, q, s, t\}, \{p, r, s, r\}, Y\}$. Let the function $f : (X, \mu, H) \rightarrow (Y, \lambda)$ is defined by f(a) = p, f(b) = q, f(c) = r, f(d) = s, f(e) = r. Then the function f is $(\alpha g_H, \lambda)$ -continuous but not $(\alpha g_\mu, \lambda)$ -continuous. **Theorem 3.5.** For a function $f:(X, \mu, H) \to (Y, \lambda)$, the following hold: - 1. Every (σ_H, λ) -continuous function is (sA_H, λ) -continuous. - 2. Every (R_H, λ) -continuous function is (sA_H, λ) -continuous. **Proof.** Obvious. **Example 3.6.** Let $X = \{1, 2, 3\}$, $\mu = \{\emptyset, \{1\}, \{2\}, \{1, 2\}, X\}$, $H = \{\emptyset, \{3\}\}$ and $\lambda = \{\emptyset, \{3\}, X\}$. Then the identity function $f : (X, \mu, H) \to (Y, \lambda)$ is (sA_H, λ) -continuous but not (σ_H, λ) -continuou. **Example 3.7.** Let $X = \{1, 2, 3, 4\}$, $\mu = \emptyset, \{2\}, \{1, 4\}, \{1, 2, 4\}, X\}$, $H = \{\emptyset, \{1\}\}$ and $\lambda = \{\emptyset, \{1, 2, 4\}, X\}$. Then the identity function $f : (X, \mu, H) \rightarrow (Y, \lambda)$ is (sA_H, λ) -continuous but not (R_H, λ) -continuous. **4 Decomposition** of (α_H, λ) -continuity **Definition 4.1.** A function $f:(X, \mu, H) \rightarrow (Y, \lambda)$ is said to - 1. strong (β_H, λ) -continuous, if $f^{-1}(V)$ is a strong β -H-open in (X, μ, H) foreach $V \in \lambda$. - 2. (δ_H, λ) -continuous, if $f^{-1}(V)$ is a δ -H-open in (X, μ, H) for each $V \in \lambda$. **Theorem 4.2.** For a function $f:(X, \mu, H) \to (Y, \lambda)$, the following hold: - 1. f is (α_H, λ) -contiuity - 2. f is $(\alpha g_H, \lambda)$ -continuity and (η_H, λ) -continuity. **Proof.** This is obvious from Theorem 2.37. **Theorem 4.3.** For a function $f:(X, \mu, H) \to (Y, \lambda)$, the following hold: - 1. f is (σ_H, λ) -contiuity - 2. f is strong (β_H, λ) -continuity and (sA_H, λ) -continuity. - 3. f is strong (β_H, λ) -continuity and (δ_H, λ) -continuity. **Proof.** This is obvious from Theorem 2.39. #### References - 1. A. Csaszar, *Generalized topology, generalized continuity*. Acta Math. Hungar., **96**(2002), 351-357. - 2. A. Csaszar, *Generalized open sets in generalized topologies*, Acta Math. Hungar., **106**(1-2)(2005), 53-66. - 3. A. Csaszar, *Modification of generalized topologies via hereditary classes*, ActaMath. Hungar., **115**(2007), 29-36. - 4. W. K. Min, Generalized continuous functions defined by generalized open sets on - generalized topological spaces, Acta Math. Hungar., 128(4)(2010), 299-306. - 5. T. Noiri, M. Rajamani and R. Ramesh, αg_{μ} -Closed sets in generalized topological spaces, Journal of Advanced Research in Applied Mathematics **3**(2013), 66-71. - 6. M. Rajamani, V. Inthumathi and R. Ramesh, *Some new generalized topologiesvia hereditary classes*, Bol. Soc. Paran. Mat. 30 **2**(2012), 71-77. - 7. M. Rajamani, V. Inthumathi and R. Ramesh, (ω_{μ}, λ) -continuity in generalized topological spaces, International Journal of Mathematical Archive, **3**(10)(2012), 3696-3703. - 8. M. Rajamani, V. Inthumathi and R. Ramesh, A decomposition of (μ, λ) -continuity in generalized topological spaces, Jordan Journal of Mathematics and Statistics, $\mathbf{6}(1)(2013)$, 15 27. - 9. A. Al-Omari, M. Rajamani and R. Ramesh, A Expansion continuous maps and (A, B) -weakly continuous maps in hereditary generalized topological spaces, Scientific Studies and Research, 23(2) (2013), 13-22. - 10. R. Ramesh and R. Mariappan, *Generalized open sets in hereditary generalized topological spaces*, J. Math. Comput. Sci., **5(2)** (2015), pp 149-159. - 11. R. Ramesh, R. Suresh and S. Palaniammal, *Decompositions of* (μ_m, λ) *Continuity*, Global Journal of Pure and Applied Mathematics **14**(4)(2018), 603-610. - 12. R. Ramesh, R. Suresh and S. Palaniammal, *Decompositions of* (μ, λ) *Continuity*, Global Journal of Pure and Applied Mathematics **14**(4)(2018), 619-623. - 13. R. Ramesh, R. Suresh and S. Palaniammal, *Decomposition of* (π, λ) *-continuity*, American International Journal of Research in Science, Technology Engineering and Mathematics, 246-249. - 14. R. Ramesh, R. Uma and R. Mariappan, *Decomposition of* (μ^*, λ) *-continuity*, American International Journal of Research in Science, Technology Engineering and Mathematics, 250-255. - 15. R. Ramesh, *Decomposition of* $(\kappa \mu^*, \lambda)$ *continuity*, Journal of Xi'an University of Architecture and Technology, **11**(VI), (2020), 2095-2101.